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ABSTRACT

Use-case diagrams (UCDs) are widely used to describe require-
ments and desired functionality of software products. However,
UCDs are loosely linked to the source code, and there are no ap-
proaches to maintain the correspondence between program variable
and types (or program entities) and elements of UCDs.

We offer a novel approach for automating a part of the process
of annotating program entities with names of elements from UCDs.
Developers first annotate an initial set of a few program entities.
Our LEarning ANnnotations (Lean) system combines these anno-
tations with run-time monitoring, program analysis, and machine-
learning approaches to discover and validate annotations on unan-
notated entities in Java programs. We evaluate our prototype imple-
mentation on open-source software projects and our results suggest
that Lean can generalize from a small set of annotated entities to
annotate many other entities.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques—
Computer-aided software engineering (CASE); 1.2.1 [Artificial In-
telligence]: Applications and Expert Systems

General Terms

Experimentation, Documentation, Algorithms

Keywords

Annotations, semantic concepts, machine learning, program analy-
sis, use-case diagrams, runtime monitoring

1. INTRODUCTION

Use-case diagrams (UCDs) are a leading way to capture require-
ments for software by describing scenarios in which users and sys-
tem components communicate to perform desired operations [17].
UCDs are especially valuable when maintaining and reengineering
legacy systems since programmers use UCDs to understand sys-
tems at a high level [18].
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Currently, major software design tools support UCDs as part of
designing software systems [26][16]. However, UCDs are loosely
linked to the source code, and there are no approaches that help to
maintain the correspondence between program variable and types
(or program entities) and elements of UCDs.

Program annotations assert facts about programs. They appear
as comments in the source code or within special language state-
ments. An annotation may assert that program entities belong to
some semantic categories. Program annotations help to catch er-
rors, improve program understanding, and recover software archi-
tecture.

One of the major uses of program annotations is to help program-
mers understand legacy systems. A Bell Labs study shows that up
to 80% of programmer’s time is spent discovering the meaning of
legacy code when trying to evolve it [10], and Corbi reports that
up to 50% of the maintenance effort is spent on trying to under-
stand code [9]. In many cases, the meaning can be expressed by
annotating program entities with names of elements (i.e., semantic
concepts) from UCDs. Thus, the extra work required to annotate
programs with semantic concepts from UCDs is likely to reduce
future development and maintenance time, as well as to improve
software quality.

Annotating programs with semantic concepts is often a manual,
tedious, and error prone process especially for large programs. Al-
though some programming languages (e.g., C# and Java) have sup-
port for annotations, many programmers do not annotate their code
at all, or at least insufficiently. A fundamental question for cre-
ating more robust and extensible software is how to annotate pro-
gram source code with a high degree of automation and precision.
Linking semantic concepts from UCDs to program entities with an-
notations enables programmers to map requirements to the imple-
mentation, which is one of the most difficult problems in software
engineering.

Our solution, called LEarning ANnotations (Lean), combines
program analysis, run-time monitoring, and machine learning to
automatically propagate a small set of initial annotations to addi-
tional unannotated program entities. The input to Lean is program
source code and UCDs. The core idea of Lean is that after pro-
grammers provide a few initial annotations of some program enti-
ties with semantic concepts from the UCDs, the system will glean
enough information from these annotations to annotate much of the
rest of the program automatically.

Lean works as follows. After programmers specify initial anno-
tations, Lean instruments a program to perform run-time monitor-
ing of program variables. Lean executes this program and collects
the values of the instrumented variables. Lean uses these values
along with names of program entities to train its learners to iden-
tify entities with similar values and names. Lean’s learners then



classify the rest of program entities by matching them with seman-
tic concept annotations. Once a match is determined for an entity,
Lean annotates it with the matching semantic concept.

We evaluate our approach on open-source software projects writ-
ten in Java and obtain results that suggest it is effective. Our results
show that after users annotate approximately 6% of the program
entities, Lean correctly annotates an additional 69% of program
entities in the best case, 47% in the average, and 12% in the worst
case, taking less than one hour to run on an application with over
20,000 lines of code.

2. BACKGROUND

Use cases (UCs) are widely used to describe requirements and de-
sired functionality of software products. UCs are expressed with
UCDs, an example of which is shown in Figure 1. It is a UCD for
the Vehicle Maintenance Tracker (VMT) project, an open source
Java application that records the maintenance of vehicles [4].

Vendor Editor

Figure 1: A use-case diagram for the VMT project.

UCs show actors, depicted as human figure icons, and actors
who carry out actions that are depicted as ovals. Actors can be
human users or components of software products. For example,
the actor Vendor represents vendors who can be reached using
Electronic Communications, and the actor Editor rep-
resents a component that is used to enter and display these Elect -
ronic Communications. Actors and actions are connected
with lines symbolizing relationships between them. Lines are la-

belled with the description of these relationships, or labels <<uses>>,

which are often omitted leaving a relationship unlabelled.

A special relation <<extend>> between two actions describes
associative generalizations, where one action is a specialized case
of the other action, which is more general. For example, vendors
using Phone, Email, and Website are specialized actions of the
more general action of using Electronic Communications.
Actions connected with relations labelled <<extend>> are often
implemented in program source code using inheritance.

Actors and actions represent semantic concepts of the domains
for which programs are written. Simply stated, semantic concepts
are nouns with well-accepted meanings in public or domain-specific
knowledge. For example, the noun Address is a semantic con-
cept meaning a place where a person or an institution is located.
Programmers may introduce variables named Address, Add, or
S[217, all for the Address concept. These names are taken from
the VMT programs whose code fragments are shown in Figure 2.
The name of the variable S[2] does not match Address, and
relating this variable to the Address concept is challenging be-
cause of the lack of information that helps programmers to iden-
tify this relation. While the variable named Add partially matches
Address, it is ambiguous if the program also uses a Summation
concept for adding numbers.

3. A MOTIVATING EXAMPLE

We use the VMT application as a motivating example throughout
this paper. Fragments of the VMT code from three different files
are shown in Figures 2(a)— 2(c), and a UCD for the VMT is shown
in Figure 1.

A fragment of code from the file vendors. java shown in
Figure 2(a) contains the declaration of the class vendors whose
member variables of type St ring are Name, Add, Pho, Email,
and Web. These variables stand for the vendor’s name, address,
phone number, email, and web site concepts respectively. A frag-
ment of the code from the file VendorEdit . java shown in
Figure 2(b) contains the declaration of the class VendorEdit
whose member variables of types Text and TextArea represent
the same concepts. Even though the names of these variables in
the class VendorEdit are different from the names of the cor-
responding variables in the class vendors, these names partially
match. For example, the variable name Pho in the class vendors
matches the variable PhoneText in the class VendorEdit more
than any other variable of this class when counting the number of
consecutive matching letters.

This informal matching procedure does not work for the frag-
ment of code shown in Figure 2(c). To what semantic concept does
the variable S, which is the parameter to the method addMainte-
nanceEditor, correspond? It turns out that the variable S is an
array of Strings, and its elements S[1], S[2], S[31, S[4],
and S [5] hold values of vendor’s name, address, phone number,
email, and web site concepts respectively. No VMT documenta-
tion mentions this information, and programmers have to run the
program and observe the values of these variables in order to dis-
cover their meanings.

Lean can automate the process of annotating classes and vari-
ables shown in Figures 2(a)- 2(c) with concepts from the UCD
shown in Figure 1. We observe that the spellings of some variable
names are similar to the names of corresponding concepts, i.e., Pho

public class vendors {
private String Name, Add, Pho, Email, Web;

(a) File vendors.java.

public class VendorEdit extends InternalFrame {
private Text NameText;
private TextArea AddressText;
private TextArea PhoneText;
private Text EmailText;
private Text WebText; }

(b) File VendorEdit.java.

public void addMaintenanceEditor(String[] S) {
addMaintenanceServices(new String[{
((MaintenanceEdit)Desktop.getSelectedFrame()).
getName(), S[4], S[51});
}
I3

String s = S[1];
if (s.equalsignoreCase(™))
s ="New",
String residence = S[2];
(c) File VMT java.

Figure 2: Code fragments from programs of the VMT project.



—Phone, Add — Address, Web —WebSite, Name — Name, and
Email —Email. Lean uses these similarities to match names of
variables and concepts, and subsequently to annotate variables and
types with matching semantic concepts.

Variable names residence and Address are spelled differ-
ently, but they are synonyms. Extended with a vocabulary linking
synonymic words, Lean hypothesizes about similarities between
words that are spelled differently but have the same meaning. These
vocabularies can link domain-specific concepts used by different
programmers thereby establishing common meanings for different
programs.

By observing patterns in values of program variables Lean can
also determine whether they should be annotated with certain con-
cepts. To observe patterns, Lean instruments source code to collect
run-time values of the program variables. After running the instru-
mented program, Lean creates a table containing sample data for
each variable. A sample table for the VMT application is shown in
Table 1. Each column in this table contains variable name and val-
ues it held. Some values have distinct structures. The variable Pho
contains only numbers and dashes in the format xxx-xxx—xxXxx,
where x stands for a digit and the dash is a separator. Values held
by the variable Email have a distinct structure with the @ symbol
and dots used as separators. Lean learns the structures of values
for annotated variables using machine-learning algorithms, and it
then assigns the appropriate semantic concepts to variables whose
values match the learnt structures.

| Email [ Pho [ Add ‘
tc@abc.com 512-342-8434 | Tamara Circle, Austin

men@jump.net | 512-232-3432 | McNeil Drive, Austin
sims @su.edu 512-232-6453 Sims Road, Dallas

Table 1: Values of some variables from the VMT program.

4. THE PROBLEM STATEMENT

Our goal is to annotate entities in Java programs with names of
elements from the corresponding UCDs with a high degree of au-
tomation and precision. Elements from the UCD correspond to
semantic concepts from the domains for which programs are writ-
ten. Program entities can be annotated with these semantic con-
cepts using the annotation type facility of Java. An example of a
Java annotation type declaration and its use is shown in Figure 3. In
Java, annotation type declarations are similar to interface declara-
tions [2]. An @ sign precedes the interface keyword, which is
followed by the Concept annotation type name that defines fields
UCD and Label, for the name of the UCD and the name of one
of its element respectively. Annotations consist of the @ sign fol-
lowed by the annotation type Concept and a parenthesized list of
element-value pairs.

Program comprehension is the process of acquiring knowledge
about programs [27]. Better program comprehension reduces de-
velopment time and faults [24]. It was stated that annotating pro-
grams with concepts from requirement specifications improves pro-
gram understanding [6][27]. We assume that the main benefit of an-
notating entities in Java programs with names of elements from the
corresponding UCDs is in better program comprehension. How-
ever, we do not conduct an empirical study showing the correlation
between annotating program entities with concepts from UCDs and
improved program understanding. This is a subject of our future
work.

public @interface Concept {
String UCD;
String Label;
}

@Concept (UCD="VMT", Label="Vendor")
public class vendors {...}

Figure 3: Example of annotating the class vendors from Fig-
ure 2(a) with the concept Vendor from the UCD shown in Fig-
ure 1 using the Java annotation type Concept.

It is not possible to develop a sound and complete approach for
automatic annotation of program entities with semantic concepts
from UCDs. An annotation approach is sound when program en-
tities are labelled with semantic concepts from UCDs correctly or
not labelled at all. False annotations (i.e., labelling program entities
with incorrect semantic concepts) are not produced by a sound an-
notation approach. An annotation approach is complete if it assigns
semantic concepts to all program entities. While a sound and com-
plete approach for annotating program entities with the names of
the elements from UCDs automatically is desirable, it is, in general
an undecidable problem’.

Since our approach cannot be sound and complete and fully au-
tomatic, some guidance from programmers is required. Initially,
programmers annotate a small percentage of program entities with
names of UCD elements, and our approach uses this information to
annotate much of the rest of the program. We do not consider an-
notating fragments of code or selected statements or lines of code,
only program entities. The former is a subject of our future work.

The complexity of the problem suggests the use of machine
learning (ML) techniques to classify program entities as belonging
to semantic concepts from UCDs. If we knew patterns for values
or names of program entities for each semantic concept in advance,
then we could write pattern-matching routines to assign the names
of semantic concepts to these program entities. Even though writ-
ing these routines is manual, tedious, and laborious, this approach
does not solve our problem. The information about patterns of val-
ues and names of program entities may be unavailable, and it is dif-
ficult to collect and analyze values and names of program entities
and extract exact patterns manually. ML techniques can learn and
extract the patterns information related to semantic concepts from
UCDs automatically, and then classify program entities using these
patterns thus annotating them with names of semantic concepts.

Annotating 100% of program entities correctly and automati-
cally using ML techniques is not realistic. Many reasons exist:
machine learning approaches do not guarantee absolute success in
solving problems; UCDs representing program design specifica-
tions may not match programs; and some concepts may be difficult
to relate to program entities due to the lack of modularity. ML
approaches are only as good as the training data, and they do not
guarantee 100% classification accuracy. Some data are more dif-
ficult to classify than other because they are hard-to-analyze (e.g.,

ISuppose that values described by some semantic concept are
strings generated by some context-free grammar (CFG). One CFG
generates strings for some element of a UCD and some other CFG
generates strings for some program variable. If strings generated
for the semantic concept and the program variable are identical,
then the program variable is described by, and consequently can
be annotated with the name of this semantic concept. However,
determining if two CFGs generate the same set of strings is an un-
decidable problem [28].
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binary strings of nonprintable characters). It is difficult to achieve
a high accuracy of classifiers on variables holding these data since
patterns in binary data are inherently complex. For these and other
reasons ML approaches may assign concept names from UCDs to
program entities incorrectly.

Since our approach is not sound, mistakes are made when learn-
ing annotations. In order to improve its precision, program analy-
sis helps to to determine relations among annotated entities. By
comparing these relations with corresponding relations between el-
ements in UCDs with which names these entities are annotated, it is
possible to detect some false annotations automatically. For exam-
ple, if a relation is present between two entities in the program code
and there is no relation in a UCD between concepts with which
these entities are annotated, then possible false annotation warn-
ings should be issued.

5. LEANARCHITECTURE AND PROCESS

The architecture for Lean and its process description are shown
in Figure 4. The main elements of the Lean architecture are the
Mapper, the Learner, and the Validator shown in Figure 4(a). Solid
arrows show the process of annotating program entities with names
of elements (concepts) from UCDs, and dashed arrows specify the
process of training the Learner.

The inputs to the system are program source code and a UCD

(1). The Mapper is a tool whose components are Java and XML
parsers, program and UCD analysis routines, and an instrumenter.
A Java parser produces a tree representing program entities. UCDs
are represented in XML format, and the Mapper uses an XML
parser to produce a tree representing elements and relations in the
UCD (2).

Programmers specify initial annotations as relations between el-
ements from the UCD and program entities from the source code.
Internally, annotations are represented as pairs (¢,¢) € o, where o
is the annotation relation, ¢ is a program entity, and c is a concept
from a UCD. Programmers can also specify what entities should be
excluded from the annotation process. For example, using Lean to
annotate an integer variable counting the number of iterations in a
loop consumes computing resources while there may not be an ap-
propriate concept for annotating this variable, or annotating it does
not warrant the amount of work required.

The Mapper constructs relations using the Mapper’s program
analysis routines. Relations between elements in UCDs are ex-
pressed as pairs (cp,cy) € 7Y, where ¢, and ¢, are concepts from
some UCD, and 7 is the relation between elements in UCDs. The
d-relation describes relations between program entities, and it in-
cludes three relations: between types and types, between types
and variables, and between variables and variables. The type-type
d-relations exist between classes connected via inheritance or be-
tween classes and interfaces 2. The type-variable 8—relations exist
between variables and types to which these variables are explicitly
cast or declared. Finally, the variable-variable d-relations specify
that two variables are used in the same expression. The Mapper out-
puts all detected relations as the XML data, which is then passed to
the Validator.

The Validator checks the correctness of annotations by explor-
ing & and y-relations (3). It uses the heuristics stating that for
a O-relation between annotated entities in the source code there is
a y-relation between the elements in a UCD with whose names
these program entities are annotated. This heuristic is based on
the observation that relations between elements of UCDs are often
preserved in the program code. For example, the <<extend>> re-
lation between elements of a UCD is often implemented using the
inheritance between classes implementing the UCD elements in the
program code. The output of the Validator is a list of flagged anno-
tations that can be false, and they should be verified by program-
mers manually. The Learner can improve its predictive capabilities
by using the results of this verification (4). That is, if the Learner
assigns an annotation incorrectly, them it can be retrained on this
negative example to improve the performance of the Learner.

The Mapper instruments the source code to record run-time val-
ues of program variables (5). Runtime logging is added after the
statements and expressions in which the monitored variables are
assigned values. Lean’s data flow analysis framework locates vari-
able definitions and traces the uses of these variables until either the
end of the scope for the definitions, or the definition of new vari-
ables with the same names that shadow previous definitions. Only
distinct values of the monitored variables are collected. Values of
annotated variables are used to train the Learner, which uses the

ZWe use the term type as a substitute for terms class and
interface, and vice versa.



learnt information to classify unannotated variables.

After instrumenting the source code, the Mapper calls a Java
compiler to produce an executable program (5). Then, the pro-
gram runs, storing names and the values of program variables in
the Program Data Table (PDT) (6). Both the Validator and the
runtime logger code output PDT in the Attribute Relation File For-
mat (ARFF) file format. ARFF serves as an input to the Learner
(7) , which is based on a machine-learning Java-based open source
system WEKA [30]. Once the Learner is trained, it classifies unan-
notated program entities that are supplied to the Learner as the
columns of the PDT. Lean classifies unannotated variables by ob-
taining their runtime values and their names and types by analyzing
their names, and supplying them to the Learner which emits predic-
tions for concepts with which these program entities should be an-
notated. In addition, domain-specific dictionaries (DSDs) increase
the precision of the classification. The output of the Learner is a set
of learnt annotations (LAs) (8). These LAs are sent to the Valida-
tor to check their correctness (9). The Validator sends corrected
annotations to the Learner for training to improve its accuracy (4) .
This continuing process of annotating, validating annotations, and
learning from the validated annotations makes Lean effective for
long-term evolution and maintenance of software systems.

6. LEARNING ANNOTATIONS

This section shows how Lean learns and validates annotations. We
explain the learning approach and describe the learners used in
Lean. Then we show how to extend the Learner to adapt to dif-
ferent domains.

6.1 The Learning Approach

We treat the automation of the program annotation process as a
classification problem: given n concepts from UCDs and a program
entity, which concept matches this entity the best? Statistical mea-
sures of matching between entities and concept names from UCDs
are probabilistic. The Learner classifies program entities with the
probabilities that certain concept names can be assigned to them.
A Lean classifier is trained to classify an unannotated entity based
on the information learnt from the annotated entities.

Lean has its roots in the Learning Source Descriptions (LSD)
system developed at the University of Washington for reconciling
schemas of disparate XML data sources [12, 13]. The purpose of
LSD is to learn one-to-one correspondences between elements in
XML schemas. Since it is difficult to find a learning algorithm
that can deliver consistently good results for different types of in-
put data, Lean employs the LSD multistrategy learning approach
[20, 13], which organizes multiple learners in layers. The learners
located at the bottom layer are called base learners, and their pre-
dictions are combined by metalearners located at the upper layers.

In the multistrategy learning approach, each base learner issues
predictions that a program entity matches a UCD element (concept)
with some probability. A metalearner combines these predictions
by multiplying these probabilities by weights assigned to each base
learner and taking the average for the products for the correspond-
ing predictions for the same program entity.

The Lean learning algorithm consists of two phases: the training
phase and the annotating (classifying) phase. The training phase
improves the ability of the learners to predict correct annotations
for program entities. Trained learners classify program entities with
concept names, and based on these classifications, Lean annotates
programs. The accuracy of the classification process depends upon
successful training of the Learner.

During the training phase, weights of the base learners are ad-
justed and probabilities are computed for each learner using the

runtime data for annotated entity. Then, during the classification
step the previously computed weights are used to predict concepts
for unannotated entity. Weights of the learner are modified using
regression [21].

6.2 The Learners

There are three types of base learners used in Lean: a name matcher,
a content matcher, and a Bayes learner [12, 21]. Even though many
different types of learners can be used with the multistrategy learn-
ing approach, we limit our study to these three types of learners
since they proved to give good results when used in the LSD.

Name matchers match the names of program entities with names
of UCD elements. The name matching is based on Whirl, a text
classification algorithm based on the nearest-neighbor class [8].
This algorithm computes the similarity distance between the name
of a program entity and a UCD element. This distance should be
within some threshold whose value is determined experimentally.

Whirl-based name matchers work well for meaningful names es-
pecially if large parts of them coincide. Their performance worsens
when names are meaningless or consist of combinations of num-
bers, digits, and some special characters (e.g., underscore or caret).

Content matchers work on the same principles and use the same
algorithm (Whirl) as name matchers. The difference is that con-
tent matchers operate on the values of variables rather than their
names. Content matchers work especially well on string variables
that contain long textual elements.

Finally, Bayes learners, particularly the Naive Bayes classifier,
are among the most practical and competitive approaches to clas-
sification problems [21]. Naive Bayes classifiers are studied ex-
tensively [14, 21], so we only state what they do in the context of
the problem that we are solving here. For each program entity the
Naive Bayes classifier assigns some names of UCD elements cy,
such that the probability that this entity belongs to the concept ci, is
maximized. Bayes learners perform well when classifying numer-
ical as well as string variables, and they compensate for the defi-
ciencies of the Whirl algorithm when classifying variables holding
numerical values and program entities whose names contain mixed
characters.

6.3 Extending the Learner

Domains use special terminologies whose dictionary words mean
specific things. Programmers use domain dictionaries to name vari-
ables and types in programs written for these domains. For exam-
ple, when word “dice” is encountered in a value of some variable of
a program written for a semiconductor domain, this variable may
be annotated with the circuit concept. Many domains have dic-
tionaries listing special words, their synonyms, and explaining their
meanings.

In general, the annotation process is dependent on relations be-
tween specific benchmarks and DSDs. The quality of the content of
a DSD may significantly improve the annotation process for some
applications while other applications may not be affected positively
especially if they belong to a different domain. Our goal is to show
that DSDs improve the quality of the annotation process for a given
domain, and expanding the scopes and the precision of DSDs leads
to more precise annotations.

Lean incorporates the knowledge supplied by these dictionaries.
Each concept in these dictionaries has a number of words that are
characteristic of this concept. If a word from the dictionary is en-
countered in a value or the name of a program entity, then this en-
tity may be classified and subsequently annotated by some concept
to which this dictionary word belongs. We use a simple heuris-
tic to change the probabilities that variables should be annotated



with certain UCD concept names. If no dictionary word is encoun-
tered among the name or the values of an entity, then its probabili-
ties computed by Lean learners for this variable remain unchanged.
Otherwise, if a word belongs to some concept, then the probability
that the given entity, v, belongs to this concept is incremented by
some small real number A, i.€., Peoncept (V) = Peoncept (V) +Ap. We
choose this number experimentally as 1/ |W|, where |W| is the
number of words in the DSD. If the resulting probability is greater
than 1.0 after adding A, then the probability remains 1. 0.

6.4 Learning Conditional Annotations

Often a program entity can be classified with more than one con-
cept. Consider a fragment of code shown in Figure 5. The while
loop iterates over the integer variable counter whose value mod-
ulo two serves as input to the method GetAttribute. This
method iterates through some dataset and returns String type
values which are assigned to the variable var. Suppose that the
value returned by the method GetAtt ribute belongs to the con-
cept Address when the value of the variable counter is even,
and to the concept Email when the value is odd. It means that the
variable var should be annotated with these two concepts. How-
ever, these annotations are conditional upon the value of the vari-
able counter. For example, annotating the variable var with two
concepts A and B should indicate that the concept A is valid when
the value of the expression counter%2 is equal to zero, and the
concept B is valid when the value of this expression is equal to one.

int counter = 0; String var=null;
while ( (counter++) < SOMEINTEGER) {
var = GetAttribute (counter%2);

Figure 5: Example of the code fragment whose variable var
can be annotated with more than one concept.

Currently, Lean supports multiple annotations for variables whose
values are assigned in loops, and which are conditional upon the
counter-like temporary variables. Temporary variables that are
incremented by a predictable amount each time through the loop,
are called induction variables [23]. Examples are variables whose
definitions within the loop are of the form counter = counter
+ ¢, where c is a constant called the loop invariant. In our exam-
ple the value of c is one. Lean combines induction variable values
with the values of other variables to train the Learner, and sub-
sequently classify the unannotated variables that depend on these
induction variables.

We observed that programs where the same entities were as-
signed values of different semantic concepts required more analysis
and Lean was less accurate in annotating these entities. Part of the
problem was to determine under which condition values of differ-
ent semantic concepts were assigned. It was equally difficult for
programmers to understand the logic of such programs, leading us
to believe that is it a poor design to assign values of different se-
mantic meanings to the same program entities.

7. VALIDATING ANNOTATIONS

This section describes how to validate annotations assigned by the
Learner. First, we describe the idea upon which the Validator is
based. Then, we give the algorithm for validating annotations. Fi-
nally, we evaluate the time and space complexities of this algo-
rithm.

7.1 The Idea

The idea of the validation algorithm is to guess annotations for
unannotated program entities using existing annotations and 8- and
Y-relations. Recall that 7y is the relation between elements in UCDs,
d specifies relations between program entities, and o is the annota-
tion relation. Annotations for unannotated entities are guessed by
composing these relations. Relations & and o can be composed if
the second component of a 8-relation matches the first component
of some a—relation. Relations o and 7y can also be composed if the
second component of a pair from the a—relation matches the first
component of some pair from the y-relation. We can write the com-
position rules as 6 = 8o, 6 = oYy, and 6 = doaoY. Relation
(t,¢) € o suggests that program entities,  may be annotated with
concept names, ¢. These suggested annotations are not added to
programs, they are used only to validate annotations determined by
the Learner.

The validation algorithm uses the heuristics stating that for a -
relation between annotated entities in the source code there is a
Y-relation between the elements in a UCD with whose names these
program entities are annotated. This heuristic is based on the ob-
servation that relations between elements of UCDs are often pre-
served in the program code. Suppose a programmer determines that
some program entity #, should be annotated with some concept ¢,
from some UCD. This annotation can be written as the a-relation
o(tn,cp). Suppose that there are relations &(ty,t,) and Y(cp,cq)
specifying that program entities #,, and #, are related in the pro-
gram, and concepts ¢, and ¢4 are also related in some UCD. By
composing these relations 8(t,1,) © O(ty,cp) 0 Y(cp,cq) We obtain
the new relation 6(z,,, c4) suggesting that the program entity 7, can
be annotated with the concept c;.

After running the Learner it may suggest two ai—relations: i, cq)
and o(ty,c,). Since there is a corresponding relation G(z,,cq),
the learned relation o(t,,,c4) is validated. However, the second
learned relation oz, cy) is flagged as possibly false since there is
no corresponding c—relation. Programmers should review flagged
annotations and reject them if they are proved to be false.

7.2 The Inference Algorithm

The algorithm InferAnnotations for inferring c—relations is
given in Algorithm 1. Its inputs are 8-, o—, and y-relations. The
o—relations contains annotations provided by programmers (i.e.,
initial annotations) and the outputs from the previous runs of the
Learner, and the correctness of these annotations was confirmed
by prior inspections. The algorithm iterates through all o— and
d-relations in the first two for-loops to find pairs of o—relations
whose first component (program entity) is the same as the second
component in some d-relation pair. The composition of o~ and
d-relations with matching components gives elements of the -
relation.

Then, the inner for-loop iterates through all y-relations to find
pairs that can be composed with the pair from the o—relation from
the outer for-loop. That is, the first component of the pair from
the y-relation should be the same as the second component of the
pair from the oi—relation. The result of this composition is a new
pair of the o—relation that suggests the annotation g for the program
entity s.

7.3 The Validation Algorithm

The Validate algorithm shown in Algorithm 2 checks for the
correctness of assigned annotations. The key criteria is to check if
pairs from the learned o—relation set are present in the 6—relation
set. The input to this algorithm is the set of a—relation pairs learned
by the Learner and the set of c—relation pairs obtained by the al-



Algorithm 1 The InferAnnotations procedure

InferAnnotations( J, o, y)
c—0
for all (a, b) € o do
for all (s, t) € 5 do
if t = a then
c+—oU (s, b)
for all (p, q) € Ydo
if p =b then
6 —0ouU(s,q)
end if
end for
end if
end for
end for

gorithm InferAnnotations shown in Algorithm 1. Each o~
relation has a color associated with it, which is initially set to red.
The red color means that a given o—relation is not correctly an-
notated (i.e., false), and the green color means that the learned
annotation is correct.

Algorithm 2 The validation procedure
Validate( ¢, o)
for all (a, b) € avdo
color(a, b) — red
for all (c,d) € o do
ifa=c Ab=dthen
color((a, b)) — green
end if
end for
end for
for all (a,b) € ado
if color(a, b) = red then
print: (a, b) is a possibly false annotation
end if
end for

This algorithm does not specify what the correct annotation of a
program entity is or what caused the error in program annotation.
In fact, annotation errors may be caused by incorrect UCD, errors
in program source code, or both. The last for-loop iterates through
all a—relations, checks the colors, and prints o—relation pairs that
are colored red as potentially incorrect.

7.4 The Computational Complexity

Suppose a program has n program entities and a UCD has m ele-
ments. Then it is possible to build n(n — 1) 3-relations, m(m—1) y-
relations, and nm a-relations. Thus, the space complexity is O(n” +
m? + nm). The time complexity is determined by three £for—loops
in the InferAnnotations algorithm, which iterate over all re-
lations. Considering all other operations in the algorithms taking
O(1), the time complexity is om3md).

8. THE PROTOTYPE IMPLEMENTATION

Our prototype implementation included the Mapper, the Validator,
and domain-specific dictionaries. The Mapper is a GUI tool writ-
ten in C++ that includes the EDG Java front end [1] and an MS
XML parser. The Mapper contains less than 2,000 lines of code.
Its program analysis routines recover d-relations between program
entities and y-relations between elements of the UCD. The Map-

per contains the instrumenter routine that adds the logging code to
the original program outputting runtime values of variables into the
PDT in ARFF format.

The Validator is written in C++ and contains less than 1,000 lines
of code. Its routines implement the InferAnnotations and
Validate algorithms as described in Section 7. The Validator
takes its input in XML format and outputs a PDT in ARFF format.
The input XML file contains annotations specified by users along
with program entities excluded from the annotation process, and 8-
and - relations. The output ARFF file contains names of program
entities and concepts assigned to them.

9. EXPERIMENTAL EVALUATION

In this section we describe the methodology and provide the results
of experimental evaluation of Lean on open-source Java programs.

9.1 Subject Programs

We experiment with a total of seven Java programs that belong to
different domains. MegaMek is a networked Java clone of Batt le—
Tech, a turn-based sci-fi boardgame for two or more players. PMD
is a Java source code analyzer which, among other things, finds
unused variables and empty catch blocks. FreeCol is an open
version of the Civilization game in which players conquer
new worlds. Jetty is an open source HTTP Server and Servlet
container. The Vehicle Maintenance Tracker (VMT)
tracks the maintenance of vehicles. The Animal Shelter Ma-
nager (AMS) is an application for animal sanctuaries and shel-
ters that includes document generation, full reporting, charts, in-
ternet publishing, pet search engine, and web interface. Finally,
Integrated Hospital Information System (IHIS)
is a program for maintaining health information records.

9.2 Selecting Input Data

A bias in choosing input data to the subject programs affects the
results of our experiments. Selecting homogeneous input data is
likely to increase the accuracy with which the Learner classifies
data, and selecting heterogeneous data may reveal the limitations
of the Learner in extracting patterns for different data. However,
completely random heterogeneous input data may not be good rep-
resentatives of the program inputs. Our goal is to select data inputs
for subject programs as close as possible to the real-world data.

Input data for the AMS application were extracted from the world-
wide animal shelter directory. Input data for the VMT applica-
tion were taken from the database of the Cobalt Group company
that builds solutions for the automotive retail marketplace. PMD
source code analyzer was run on Java programs taken from sam-
ples supplied with the Java Development Kit. Jetty served web
pages copied and saved from news information web sites. IHIS
used data from the American Hospital Directory and other hospital
databases available from the Internet. Input data for the MegaMek
and FreeCol games were supplied with the applications as well as
generated when playing these games.

9.3 Methodology

To evaluate Lean, we carried out two experiments to explore how
effectively Lean annotates programs and how its training affects the
accuracy of predicting annotations.

In one experiment, a group of graduate students created a DSD
and a UCD for each subject program. These students were not fa-
miliar with the subject programs, and acquired information about
them by reading their documentation and comments in the source
code. Then, these users annotated a small subset of variables for
each program manually using the Mapper, and then run Lean to an-



Program Size of Lines | Number of | Num of | Running User Lean annots | Lean annots | Accu-
DSD, words | of code concepts entities | Time, min | annots, % w/o DSD with DSD racy, %
Megamek 60 23,782 25 328 56 10% 58% 64% 64%
PMD 20 3,419 12 176 28 7.4% 23% 34% 35%
FreeCol 30 6,855 17 527 39 4.7% 56% 73% 79%
Jetty 30 4,613 6 96 32 12.5% 42% 81% 52%
VMT 80 2,926 8 143 25 5.6% 65% 72% 83%
ASM 60 12,294 23 218 43 5.5% 57% 79% 87%
IHIS 80 1,883 14 225 18 8% 53% 66% 68%

Table 2: Results of the experimental evaluation of Lean on open source programs.

notate the rest of the program. The goal of this experiment is to de-
termine how effective Lean is in annotating variables for programs
of different sizes that belong to different domains. Each annotation
experiment is run with and without a DSD in order to study the
effect of the presence of DSDs on the quality of Lean annotations.
A different group of graduate students validated the correctness of
annotations assigned by Lean.

We measure the number of variables annotated by Lean as well
as the number of annotations rejected by the validating algorithm.
The number of variables that Lean can possibly annotate, vars, is
vars = total - (excluded + initial),wheretotal
is the total number of variables in a program, excluded is the
number of variables excluded from the annotation process by the
user, and initial is the number of variables annotated by the
user. Lean’s accuracy ratio is computed as accuracy = (vars
- rejected) /vars, where re jected is the number of anno-
tations produced by Lean and rejected by the validating algorithm.

The goal of the other experiment is to evaluate the effect of train-
ing on the Lean’s classification accuracy. Specifically, it is impor-
tant to see the amount of training involved to increase the accuracy
of annotating programs. Training the Learner is accomplished by
running instrumented programs on input data and collecting values
for program variables. These values along with names of program
entities are used to train the Learner. Each training run is done
with a distinct input data set. Depending on the number of train-
ing runs Lean can achieve certain accuracy in classifying data on
which it was not trained. If the Learner should be trained continu-
ously to maintain even low accuracy, then performance-demanding
applications may be exempt from our approach. On the contrary,
if a program should run a reasonable number of times with distinct
data sets for training to achieve good classification accuracy, then
our approach is practical and can be used in the industrial setting.

9.4 Results

Table 2 contains results of the experimental evaluation of Lean on
the subject programs. Its columns contain the name of a program,
the size of the DSD, the number of lines of code in the subject,
the number of concepts in the UCD, the number of program en-
tities that Lean could potentially annotate, the Lean running time
in minutes, the percentage of initial annotations computed as ratio
initial/total, where total is the total number of variables
in a program, and initial is the number of variables annotated
by users. The next two columns compare the percentage of total an-
notations without and with the DSD. The last column of this table
shows Lean’s accuracy when used with DSDs.

The highest accuracy is achieved with programs that access and
manipulate domain-specific data rather than general information.
The lowest level of accuracy was with the program PMD which an-
alyzes Java programs whose code does not use terminologies from

any specific domain. The highest level of accuracy was achieved
with the programs ASM and VMT which are written for specific
domains with well-defined terminologies, and whose entity names
are easy to interpret and classify. Our experiments show that the
Validate algorithm performs well in practice for the majority of
cases by discarding up to 83% of incorrectly assigned annotations.

The next experiment evaluates the accuracy of the Learner. For
each subject application we collected up to 600 distinct input data
sets. We trained the Learner for each subject applications on the
subset of the input data, and used Lean to annotate program entities
using the rest of the input data. Figure 6 shows the dependency of
classification accuracy from the number of distinct training samples
used to train the Learner. When annotating the AMS application,
the Learner achieved the highest accuracy, close to 90%. This ac-
curacy was achieved when the number of distinct training samples
reached 500. The results of this experiment show that applications
need to be run only few hundred times with distinct input data in
order to train the Learner to achieve good accuracy. Since most ap-
plications are run at least several thousand times during their test-
ing, using Lean as a part of application testing to annotate program
source code is practical. Potentially, if a low-cost mechanism [5]
is applied to collect training samples over the life time of applica-
tions, then Lean can maintain and evolve program annotations with
evolving programs.

Next, we used the Learner trained for the VMT application to
annotate entities in other applications. This methodology is called
true-advice versus self-advice which uses the same program for
training and evaluation. Figure 7 shows the percentage of variables
that the Lean Learner annotates with self-advise (left bar) versus
the true-advice annotations (right bar) when the Learner is trained
on the VMT application. This experiment shows that Lean can be
trained on one application and used to annotate other programs if
they operate on the same domain-specific concepts. ASM and IHIS
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Figure 6: The graph of the accuracy of the Lean Learner.
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Figure 7: Percentage of program entities that the Lean Learner
annotates with self-advise (left bar) versus the true-advise an-
notations (right bar) when the Learner is trained on the VMT
application.

share common concepts with the VMT application, and it allows
learners to be trained and used interchangeably thus achieving the
high degree of automation in annotating program variables.

Finally, we determine how choosing entities for initial annota-
tions randomly and increasing their number affects the accuracy
and the coverage of the Learner. In our experience programmers
tend to choose program entities for initial annotations with which
they are already familiar. These entities tend to have descriptive
names reflecting the concept, and it eases the selection process for
initial annotations. However, choosing entities this way for initial
annotations may affect the outcome of the experiment. Patterns in
names and values in some program entities may be detected faster
by some classifiers and used more effectively to annotate some pro-
gram entities than the others that match different patterns. Also, in-
creasing the number of entities chosen for initial annotations leads
to a better coverage of the Lean Learner. At the same time choosing
more entities for initial annotations makes the Lean process more
expensive. So the question is what percentage of the total program
entities should be chosen for initial annotations to give an optimal
coverage?

The results shown in Table 2 come from experiments in which
programmers selected entities for initial annotations based on how
easy it was to map these entities to semantic concepts from UCDs.
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Figure 8: Dependency of the classification coverage and accu-
racy from the percentage of randomly selected program entities
for initial annotations.

As Lean annotates other entities, their annotations are collected,
validated, and stored. We perform the same experiments with choos-
ing initial annotations randomly using the annotations from the pre-
vious runs of Lean. This way we reduce the dependency of the
annotation process from particular entities chosen for initial anno-
tations.

The results of this experiment are shown in Figure 8 in the stock-
price-style graph. The horizontal axis shows the percentage of the
total number of program entities chosen randomly for initial an-
notations, and the vertical axis shows the percentage of the rest of
program entities correctly annotated (the correctness of Lean an-
notations is validated by the Validator and approved by pro-
grammers who inspect them). For each number of initially anno-
tated program entities we run a series of experiments in each of
which these entities were chosen randomly. The vertical lines on
this graph show the maximum and minimum numbers of correctly
annotated entities and the average number is shown by the horizon-
tal mark on the vertical lines. While the gap between the minimum
and the maximum numbers of the correctly learned annotations is
large, the average shows that in order to get a good annotating cov-
erage it is sufficient to annotate less than ten percent of program
entities.

10. RELATED WORK

Related work on program annotations falls into two major cate-
gories: systems that derive annotations as invariants or assertions
from program source code, and systems that automate the annota-
tion process for software-unrelated artifacts.

A technique for annotating source code with XML tags describ-
ing grammar productions is based on modified compilers for C,
Objective C, C++ and Java programs [25]. Like our research, this
parse tree approach uses grammars as external semantic relations
to guide the automatic annotation of program code. However, this
approach is tightly linked to grammars that do not express domain-
specific concepts and relations among them. By contrast, our solu-
tion operates on UCDs describing domains for which programs are
written rather than grammars of languages in which programs are
written.

Various tools and a language for creating framework annotations
allow programmers to generate annotations using frameworks’ and
example applications’ source code, automate the annotation process
with dedicated wizards, and introduce coding conventions for frame-
work annotations languages [29]. Like our research, concepts from
framework description diagrams are used to annotate program source
code. By contrast, the Lean’s goal is to automate the annotation
process rather then introduce a language that allows programmers
to enter annotations manually using some tools.

Calpa is a system that generates annotations automatically for
the Dy C dynamic compiler by combining execution frequency and
value profile information with a model of dynamic compilation cost
to choose run-time constants and other dynamic compilation strate-
gies [22]. Calpa is shown to generate annotations of the same or
better quality as those found by a human, but in a fraction of the
time.

Daikon is a system for automatic inferences of program invari-
ants that is based on recording values of program variables at run-
time with their following analysis [15]. Typically, print statements
are inserted in C source code to record the values of parameters to
functions and other variables before and after functions are called.
Then, these values are analyzed to find variables whose values are
not changed throughout the execution of certain functions. These
variables constitute invariants that annotate respective functions.

Like our research, Calpa and Daikon systems automate the



generation of annotations and the user is relieved from a task that
can be quite difficult and highly critical. Rather than identifying
run-time constants and low-level code properties that are extracted
from the source code, Lean enables programmers to automate the
process of annotating programs with arbitrary semantic concepts.

A number of systems automate the annotation process for software-

unrelated artifacts. Techniques used in these systems are similar to
ones that Lean uses. OpenText . org project presents an interest-
ing approach in automating text annotations [3]. It is a web-based
initiative for annotating Greek texts with various linguistic con-
cepts. Similar to Lean, the result of the annotation is kept in an
XML format which is later converted in the ARFF format required
by WEKA. Like in Lean, machine learning algorithms are used
to classify text and assign annotations based on the results of the
classification. The major difference between our approach and the
OpenText .orgq is that the latter is used to annotate texts while
the former annotates program code.

An automated annotation system for bioinformatics analysis is
applied to existing genom sequences to generate annotations that
are compared with existing annotations to illustrate not only poten-
tial errors but also to detect if they are not up-to-date [7]. Unlike
Lean, this system cannot be applied to programs, however, Lean
can use its ideas to further improve the validation of existing anno-
tations as programs evolve.

A semi-automatic method uses information extraction techniques
to generate semantic concept annotations for scientific articles in
the biochip domain [19]. This method is applied to annotate tex-
tual corpus from the biochip domain, and it was shown that adding
semantic annotations can improve the quality of information re-
trieval.

11. CONCLUSION

The contributions of this paper are the following:

e asystem called Lean that automates program annotation process

and validates assigned annotations;

e [ ean implementation in C++ that uses open source machine
learning tools and Java and XML parsers;

e anovel algorithm for validating annotations;

e our experiments show that after users annotate approximately
6% of the program variables and types, Lean correctly anno-
tates an additional 69% of variables in the best case, 47% on
the average, and 12% in the worst case.

We believe that our approach has significant potential. Even
though Lean is currently implemented to work with Java programs,
there are no inherent limitations against using Lean for other lan-
guages. Since requirements can be expressed in other forms besides
UCDs, Lean can be extended to work with other representations
of requirements diagrams. Our experience suggests that Lean is
practical for many applications, and its algorithms are efficient and
effective.
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