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Abstract 
 

In this paper we suggest an architecture that would 
integrate various methods for synthesis of a software 
process model based on domain knowledge about 
artifacts, process fragments, tools, and limited process 
execution observations. Our approach suggests using 
a meta-process specification for integration of various 
process synthesis methods to provide a generalized 
process model. We also propose using a process 
execution observation for confirmation of a 
synthesized process model.  
 
1. Introduction 
 
The area of software engineering is mainly concerned 
with methods for synthesis and analysis of software. In 
this paper we are focusing on an automated method for 
synthesis of software processes based on very few 
observations and various domain knowledge. The 
automation of synthesis brings many benefits: 
repeatability, efficiency, cost reduction. In addition, a 
process synthesized by our approach is itself 
automated due to the use of learning methods for 
synthesis of control flow decisions. Some of the early 
work on process discovery is based on analysis of 
retrospective data about the process executions 
[1,2,3,4]. The process models discovered with these 
early methods focus on the set of activities and the 
process control flow. The process synthesis method 
integration we suggest expands the earlier process 
discovery work in several directions. Our approach is 
novel because it allows to automatically synthesize a 
process based on very few observations of process 
execution (process instance) thanks to the use of 
learning methods and a greater variety of domain 
knowledge. It provides a process model enhanced with 
activity attributes and control flow decision-making. 

Our approach has been informally evaluated in the 
context of a real problem of a human-centric process 
of technical object control and was considered 
technically feasible, useful, and practical. 

In this work we are focusing on the architecture for 
integration of methods for synthesis of various process 

aspects that comprise a process model as opposed to 
the details of the methods themselves. The architecture 
assumes availability of the domain knowledge about 
the process artifacts, tools to be used by a process, the 
environment in which a process is to be enacted, and a 
limited number of observations of process execution. 
In a way, we propose an approach that involves 
synthesis of a process model via limited observations 
of examples of its execution. 
 
2. Problem statement and approach 
intuition 
 
The problem calls for a synthesis of a rich process 
model based on a single observation of process 
execution. The real world need to solve this problem 
arose due to the need to learn plans or processes from 
human users by being shown one example. Sample 
applications include air-tasking-order planning and 
CAD design planning. Such a process learner will 
learn from one example by opportunistically 
assembling knowledge from many different sources, 
including generating it by reasoning. The process 
model must be rich because the knowledge of a greater 
number of process aspects increases the accuracy of 
analysis, lends better process improvements, allows for 
the use of a greater variety of domain knowledge about 
the learned process. The assumptions include 
availability of domain knowledge including artifact 
well-formedness constraints, bill of materials, 
generalized description of a finished product or 
service, tools used for process execution, process 
fragments, environment conditions for process 
execution and others. Each of these kinds of 
information can be either incomplete or have some 
degree of uncertainty. 

Next let us give an explanation of our intuition 
about a possible solution. Abstractly, this problem 
seems to require us to synthesize an accepting 
computation abstraction specification (e.g. Turing 
machine) for a language based on one sentence of that 
language. The retrospective data about previous 
executions of this process is assumed to be very 
limited. How could we produce a generalized process 
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specification if we are given only one path which even 
might be providing an unreliable product ? It seems 
that doing so without the knowledge about artifacts is 
impossible due to the lack of information. Thus, our 
approach prescribes construction of a generalized 
process model based on whatever domain knowledge 
is available and then checking whether the observed 
execution path is a feasible path through our model. It 
is quite possible that the observed path itself provides a 
low quality product. Nevertheless, if that path is 
feasible in the “guessed” process model then it 
validates the model. Otherwise, the path is considered 
to be a counterexample, the process model is 
considered incorrect and thus it is modified to satisfy 
the observed path. 

At the implementation level, we suggest specifying 
the synthesis process itself in a process language, this 
allows for flexibility of the integration of methods for 
synthesis of particular process aspects based on 
particular domain knowledge available. 

3. Process model aspects 
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Figure 1 Architecture of a process synthesis integrator 

 
In this section we will discuss in greater detail the 

kinds of information needed to specify a rich process 
model. The final integrated process synthesis system 
must be able to synthesize the specification of these 
aspects from available domain knowledge and the 
observation. 

By a process we understand a systematic, 
disciplined way of either producing a final artifact or 
delivering a service. Since it is possible to model a 
service as an electronic artifact we will use the term 
“final artifact” or product to denote a process outcome. 

By a generalized process model we understand a 
process “program” that, if specified in a rigorous 
process specification language, can be instantiated by a 
process enactment engine provided an input and 
environment specifications. The following aspects 
characterize a rich generalized process model: 
- set of activities 
- each activity characterized by an identifier, interface 
(sets of input and output artifact types), pre-condition 
and post-condition of activities  



- constraints on control flow of activities, relaxed to 
the extent possible 
- hierarchical decomposition of activities according to 
various sets of criteria 
- specification of artifact type system manipulated by 
activities 
- specification of resource needs of activities including 
people roles and tools 
- predictors that provide distributions for cost, duration 
of individual activities and assessment of quality of 
output artifacts of an activity. 

The execution of a process is greatly influenced by 
guidelines or reasoning mechanisms for control flow 
choices which are not part of process specification per 
se, rather they are part of the resources specification. 
These guidelines define reasoning of resources 
assigned to execution of process activities. It is our 
intent that the process synthesis system will discover 
such guidelines to accompany the generalized process 
model. The generalized process model must not over-
constrain the control flow. That is why a 
straightforward mapping of the observation onto the 
generalized process model is unacceptable. For 
instance, it might turn out that a certain sequence of 
artifact transformations was enforced by scarce 
resource availability while in the generalized model 
those artifact transformations can happen in parallel 
given abundant resources.   

 
 
4. Architecture of process synthesis 
integrator 
 

The previous section outlined the various aspects of 
a process model that must be ultimately synthesized. 
Intuitively it is clear that various synthesis methods 
would be needed to synthesize those aspects. The 
choice of a particular method depends on the aspect, 
kind, amount, and certainty of domain knowledge 
available, nature of domain knowledge, whether the 
chosen methods are an effective match. Thus the 
architecture must allow for great flexibility in the 
choice of the set of activities involved in the synthesis, 
the tools used, the sequence of their application. 
Therefore we suggest using a process specification and 
an associated process execution system for the 
synthesis process itself. 

According to Perry&Wolf [12] an architectural 
description is comprised of elements, form, and 
rationale. The architecture of the process synthesis 
integrator depicted in Fig. 1 contains the elements (sets 
of components and connectors) and the form 
(constraints on their interconnections). The 

architectural description in Fig. 1 uses rounded corner 
rectangles to denote the internal components, yellow 
rectangles denote external components, directed arcs to 
denote connectors, rectangles associated with the arcs 
to denote the data, the cylinder to denote persistent 
storage. For the purpose of this paper we limited the 
architectural description to high level of abstraction 
without the use of dedicated rigorous architecture 
description languages such as ACME, Wright or 
xArch. As a matter of fact this high level architecture 
also gives an idea about a process specification for the 
integrator.  
     The separation of components set into internal to 
the integrator and external ones signifies the division 
between the components supplied by domain experts 
from other organizations and components that are 
native to the integrator.  

Below we will describe the architecture rationale 
referring to the architecture’s elements (components 
and connectors) from Figure 1. 

The Process Model Generator forms an initial 
process model in a chosen process specification 
language based on the domain knowledge (product, 
process, known execution traces, resource utilization) 
and refines some aspects of the initial process model 
based on the demonstration episode (observation). 

Next Process Enactor, Domain-specific Simulator, 
Learning Mechanisms, and Domain Planner 
synergistically subject the initial process model to 
dynamic analysis and refinement. The interaction of 
these architecture elements is as follows. The Process 
Enactor receives an initial process model by data 
exchange along a connector from the Process Model 
Generator and, provided the cost, duration, quality of 
activities can be estimated, submits a fragment of the 
process to the Domain Planner by the corresponding 
connector. The Domain Planner chooses the set of 
process activities from the model and provides partial 
order for them. It is possible for the Domain Planner to 
choose an approximated optimal set of activities if 
their cost, duration, quality are available. If the 
estimates of cost, duration, quality are not available 
then the Process Enactor chooses the first set of 
alternative activities based on the control flow 
constraints specified in the initial process model. Thus 
the choice of activities will produce a feasible path 
through the process model barring the optimality 
approximation. A planner based on the design to 
criteria paradigm can serve as an example of a planner 
that reasons based on cost, duration, quality of 
activities [16]. For some processes a human can play 
the part of the Domain Planner as an override of an 
automatic planner. 



If the resource declarations are not available, the 
activities from this set are either chosen to be 
performed by the resources themselves (self-
identification) or they are assigned based on the 
matching of the functionality of resources to the nature 
of transformation of artifacts by the activities. The self-
identification implies that resources would request an 
assignment to activities themselves once they find out 
from a registry that another activity has been posted 
for execution. The constraints on the availability of 
identified suitable resources can further refine the first 
set of activities to be started. 

Next, the Learning Mechanisms might use their 
exploration method in face of the uncertainty about 
activities cost, duration, quality to refine the set of 
alternative activities. The refined set of alternative 
activities is assigned by the Process Enactor to 
resources in case the resource declarations have been 
already identified from the domain knowledge.  

Once the set of the activities is identified and 
resources are assigned, the Simulator starts modeling 
the execution of the tasks by the modeled resources 
which affect the state of modeled artifacts. The 
Simulator notifies the Process Enactor of various 
events such as completion of tasks by resources, time 
ticks, contingencies due to the modeled environment, 
contingencies due to artifact states. The Process 
Enactor reacts to the events from the Simulator or 
events generated by the Process enactor itself (e.g. 
time-out of activity completion). The reactions 
themselves are specified as process fragments, they 
can be either domain-specific or default reaction 
processes (e.g. reaction to time-out of activity 
completions, resource unavailability contingencies, 
resolution of contradictions between needs of 
concurrently running process fragments, pre-emption 
control decisions). 

The Simulator models the transformations of 
artifacts as these artifacts are processed by resources 
according to manipulations prescribed by process 
activities. The state of modeled artifacts is used by the 
Learning Mechanisms to update the knowledge they 
accumulated about various aspects of the process such 
as the control flow decisions, decisions on the sets of 
activities to be executed and resource assignments. In 
addition, the Simulator produces estimates of cost and 
duration based on the models of resources and 
artifacts, these estimates are also used by the Learning 
Mechanisms to update the predictors for cost and 
duration or to suggest new ones in case the domain 
knowledge contained no such estimates to begin with. 

Thus the simulation and learning of a single process 
instance (called episode in the machine learning 
terminology [10]) continues until either all the 

activities are finished and/or final artifacts are 
produced or predefined time runs out or it is 
determined that there are insufficient resources to 
produce final artifacts. We will use the terms process 
instance and episode interchangeably from now on, 
meaning a trace of a particular execution of a process 
model. On completion of an episode the Learning 
Mechanisms update their knowledge based on the 
results of an episode. 

The demonstration episode results are used by the 
Learning Mechanisms to update their knowledge. The 
demonstration information about the cost, duration, 
quality control flow decisions, resources used are 
given higher preference over such data obtained from 
simulation. The number of episodes can depend on the 
coverage criteria, number of typical environment states 
in which a process is supposed to function, the amount 
of knowledge about process executions. 

The demonstration episode is used as a test-case to 
verify the process modeled learned from the domain 
knowledge and simulation. The process synthesis 
integrator will attempt to recreate a demonstration 
episode by simulation based only on the process 
model, resource knowledge and knowledge of 
environment changes. We assume that a demonstration 
might not necessarily result in a well-formed final 
artifact due to contingencies. So the simulator should 
be able to recreate the contingencies to check the 
correspondence of the process model behavior to a real 
world execution. The flexibility of the choice of a 
learning mechanism (that would depend on the process 
aspects to be learned) is allowed by the use of a 
process execution system. If a different mechanism is 
required, the process specification for the integrator is 
modified to include a different step with a different 
tool invoked. 

Considering the space restrictions we cannot 
provide detailed description of the components of this 
architecture. Some additional information about the 
Process Model Generator component and likely 
candidates for the learning methods is mentioned 
below. 
 
4.1 Process Model Generator 
 

As our process specification and execution system 
we chose the industry-level Atlas system developed at 
Telcordia Research Center in Austin. The Atlas system 
has already been successfully used in a number of 
projects [13][14][15]. Its design is tightly connected to 
a database used for persistent storage of processes and  
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Figure 2. Partial order state space. 
 
process fragments which results in the linear 
dependency of the scalability of the process execution 
system on the scalability of the database. 

We have some initial experience with the process 
model generator that uses artifact domain knowledge 
(i.e. possible artifact transformations) to synthesize 
such process aspects as the set of activities, their 
input/output and their execution constraints. The 
process model generator has been specified in the 
Atlas specification language enhanced with JPython 
script that invokes a process generator subcomponent 
written in Java. This subcomponent uses the 
specification of the bill of materials and the finished 
product to guess an initial process model. The bill of 
materials and the finished products are expressed in an 
agreed upon artifact ontology. The artifact 
representation language resembles a software 
architecture description language in its constructs for 
specification of artifact components, connectors, ports, 
and “glue” [12]. The Java subcomponent writes the 
initial process model in an Atlas process specification. 

Ultimately the process synthesis integrator will use 
multiple generators to construct the set of all 
distinguishable paths from which we can construct an 
initial process model. Some of the kinds of domain 
knowledge we assume would include: 

1. Artifact structure and well-formedness constraints 
on possible combinations of artifact 
decomposition units. These can determine a subset 
of the powerset of artifact decomposition unit 
combinations corresponding to legal 
combinations, some of which are final artifacts. 

2. Resources such as physical tools or automated 
software tools with known functionality. These 
can provide legal partial order of tool applications 
to input and  intermediate artifacts that can lead to 
final artifacts of the process being discovered. 

3. Known fragments of the process being discovered. 
This specification already provides us with an 
initial, but possibly incomplete, set of 
distinguishable paths.  

4. Traces of execution of the process being 
discovered. These traces can be generalized into a 
process fragment [2, 3, 4, 5]. 

5. Domain-specific intents. These can determine the 
partial order of sub tasks that can lead to the final 
artifact  
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Figure 3. Partial order activity state. 

 
Next we give a high-level description of the 

principle of operation of the process model generator 
component of the integrator architecture. This 
description focuses on the case when the process 
domain knowledge contains well-defined constraints 
on the artifact well-formedness. This is especially 
likely in the domain of mechanical assembly processes. 
The input to the process model generator is assumed to 
be a bill of materials, constraints on artifact well-
formed interconnections and the description of the 
desired final product. Essentially, a naive approach of 
the process generation implies trying all possible ways 
of putting the available parts together such that they 
lead to a legal final combination (product of assembly). 

Assuming the artifact well-formedness contraints 
are available, first we generate a graph that describes 
transitions between all legal combinations of artifact 
elements. A transition corresponds to a single 
modification in the set of combined atomic artifact 
elements. Such a graph is shown in Fig. 2. We call this 
graph a partial order state space. 

In Fig. 2 each state corresponds to subsets of 
process artifacts that comply with artifact well- 

 



 
Figure 4. Initial process model. 

 
formedness constraints. It is possible to generate these 
states based on the bill of materials and the well- 
formedness constraints of artifact combinations. The 
sets of transitions between such states would 
correspond to possible activity instances. The partial 
order space will also indicate input/output artifact sets 
for the activity instances. In Fig. 2 we assume there are 
four product parts that comprise the final artifact(s). 
Octagons represent states that are marked with the sets 
of parts. For instance, the blue octagons denote the 4 
individual atomic artifacts from the bill of materials  
and are marked with artifact “1”, artifact “2” and so 
on. The well-formedness constraints allow for 5 
physically possible combinations of these artifacts, one 
of which is the final product (all artifacts combined). 
Fig. 2 shows two possible ways of deriving the final 
product.  

Based on the partial order state space, the process 
model generator must construct a hypothetical general 
process model. Such a model will explicitly represent 
the activities  that correspond to transitions in the 
partial order state graph. Thus a partial order activity 
graph will be produced. It will represent all possible 
ways to assemble a final product as trees, the leaves of 
which are the individual atomic artifact elements, the 
root is the final product and intermediate nodes 
correspond to legal but incomplete artifact 
combinations. They are incomplete according to the 
final product specifcation. 

Generation of the set of all distinguishable trees. 
An initial process model derived from a partial activity 
order graph should include a complete set of 
alternative trees, but only a subset of them could be 
distinguishable due to incomplete domain knowledge. 
The domain knowledge provides us with constraints of 
varying degree on product decompositions, partial 
order of tool applications, process fragments or intents 
structure (goal tree).  There seems to be a relationship 
between the nature of a process and/or its artifacts 
and/or its resources and the degree of constraintedness 
of kinds of domain knowledge. The degree to which 

any of the different kinds of domain knowledge are 
constrained determines our choice of which domain 
knowledge will be used for the initial set of alternative 
paths.  

Ultimately, the partial order of activities in an initial 
process model is defined by the constraints of the 
different kinds of domain knowledge. To suggest the 
alternative trees through a graph corresponding to each 
partial order of activities, the generator needs to 
impose these constraints on all possible paths. The first 
step to generate the partial order efficiently is to apply 
the sets of constraints (e.g. artifact imposed 
constraints, tool functionality imposed constraints) to 
all possible paths in order of decreasing degree of 
constraintedness. For instance, if the artifact element 
combinations are more constrained than the resources 
used to combine the artifact elements then it is the 
constraints on the artifacts that must be taken into 
account first. In a scientific process domain, usually 
top-down proactive process models or fragments are 
available; therefore they can be used as a starting point 
for constraining the partial order of the activities space. 
The set of resources and the sets of their functionality 
on the other hand are constrained very loosely in this 
domain. On the other hand, processes such as control 
processes with dedicated software systems for 
monitoring and control highly constrain the resources. 
Such processes also tend to be event-driven, without a 
defined top-down proactive specification. For 
processes of this kind it is possible to use the 
constraints on resources to greater effect in generation 
of the initial partial order of activities space. 

Process model construction. Based on the 
enumeration of all potential trees, the Process Model 
Generator must construct a hypothetical initial process 
model. At this stage, the demonstration episodes that 
were captured serve as a guide and/or a reality check in 
the process model construction. However, the 
enumerated potential trees may contain other 
knowledge that is not present in the demonstration 
artifact, depending on the extent and quality of the 
domain knowledge. Therefore, this generated process 
model will describe activities that were not present in 
the demonstration. 

As an example of this, let us continue with the 
partial order state space example from above. In this 
situation, the partial order state space has to be 
transformed into a process model. The state space 
based on artifact element combinations or resource 
application sequences contains enough information to 
suggest some aspects of a process model. These 
aspects include a set of activities, their type hierarchy, 
their functional decomposition and partial order of 
activities execution. In a way, the process model 



succinctly specifies the distinguishable trees by a set of 
abstractions more suitable for analysis and execution 
of the process. 

The set of activities can be deduced based on the 
sets of transitions going into the states in Fig. 2, i.e. 
sequences of artifact transformations without explicit 
representation of process activities. The result of this 
mapping is shown in Fig. 3 in which the rectangles 
correspond to activities and the color of their border 
corresponds to the color of transitions in Fig. 2 on 
which they were based. By using data flow analysis we 
can construct a partial process model that represents 
functional decomposition of activities and the 
constraints on their execution. The partial process 
model in an Atlas-like process language for this 
assembly example is shown in Fig. 4. This model is 
partial because it only represents process activities 
deduced from legal transformations of input artifacts 
into a final product. Such a way for initial process 
generation is  possible in problem domains where 
rigorous well-formedness constraints on legal artifact 
combinations are known. For instance assembly of 
physical objects out of available parts is such a 
problem domain. 

Rigorous well-formedness constraints are not 
available in all process domains. Then it is difficult to 
generate a partial order state space based on artifact 
combinations. Other domain knowledge has to be used 
to form an initial process model in such cases. For 
instance, the set of tools with well-defined 
functionality or domain-specific intents can be used to 
suggest either sequences of tool applications or partial 
order of sub-intents that can lead to a product. 

 
4.2 Learning mechanisms 
 

The learning mechanisms we considered are 
supervised neural network learning, reinforcement 
learning, and evolutionary computation [1]. The hybrid 
method will leverage the strengths of each of the 
individual methods. Such process aspects as duration, 
cost, quality, process activity clustering (to generate or 
confirm activity decomposition captured by the 
synthesized process) and guidelines/automation for 
making control flow choices in the synthesized process 
are expected to be learned by these mechanisms. To 
our knowledge, these mechanisms have not been 
applied to procedural learning previously, we expect it 
to be a novel experience. 

The learning mechanisms in the process synthesis 
integrator cannot assume sufficient examples of 
desired behavior exist to learn a process using 
supervised or statistical approaches. In this case, 
effective actions are learned by exploring alternatives 

and their outcomes in the simulator, using 
reinforcement learning and neuroevolution. The 
process specifications learned earlier allow simulating 
the process with some degree of accuracy, and the 
observation can be transformed into a demonstration 
episode that allows evaluating and generating feedback 
to the learners.  

In situations where the information consists of 
discrete state variables and discrete actions, and the 
state is fully known, reinforcement learning [10] is an 
effective approach. Through Q-learning, a table of 
values indicating the expected utility of each action in 
each state is learned; this table is then used to select 
appropriate actions. For example, reinforcement 
learning can be used to diagnose failure reports and 
select compensatory actions. 

In other situations, the state is not fully known, and 
the state and the actions are described with continuous 
values. Such situations are difficult for reinforcement 
learning because it is hard to discretize the space and 
to identify which utility values need to be changed. 
However, recurrent neural networks can be constructed 
through evolutionary learning, and can perform 
robustly in such situations [6,8]. For example, a 
recurrent network can monitor sensor and navigational 
inputs from the missile, and guide it to the target even 
when its exact position is uncertain. Such a network 
can be evolved in the simulator, by allowing a 
population of neural networks to control the process, 
and reproducing the networks that perform well. 

These learning methods are brought together to 
learn an effective decision policy for the process. The 
learning uses the domain knowledge in the simulator 
and in the constructed episodes, as well as in the 
demonstration episode (observation).  The decision 
policy is initially represented statistically in terms of 
neural network weights and Q-tables. Using standard 
techniques for knowledge extraction, this knowledge is 
then translated into a rule-based description of the 
process [9,10,11]. In this manner, the project not only 
results in a practical method for learning a generalized 
process description for a given domain, but also leads 
to an important scientific conclusion: understanding of 
how the different learning algorithms compare, i.e. 
what kinds of tasks they can each solve well, and what 
kind of knowledge they learn in the process. 
 
5. Conclusions and Future work 
 

The experience we have with synthesizing assembly 
processes based on the bill of materials and the final 
product description is encouraging, yet the vast 
majority of work still lies ahead. We need to make the 



process model generator be able to use a more 
generalized description of the final product that does 
not directly refer to the artifacts in the bill of materials. 
The other approaches to generation of the initial 
process model that do not rely on availability of the 
rigorous artifact well-formedness specifications must 
be implemented. The learning mechanisms must be 
evaluated based on their applicability to capturing the 
various process aspects described. Finally the whole 
integrator must be evaluated on real-life process 
domain knowledge from various process domains, to 
name a few: mechanical assembly, web-services 
integration, mechanical object control procedures, 
software development, crisis responses. 
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