
Software architecture for flexible integration of process model synthesis
methods

Rodion Podorozhny Anne Ngu Dimitrios Georgakopoulos Dewayne Perry
Texas State University Texas State University Telcordia Research The University of Texas
rp31@txstate.edu hn12@txstate.edu dimitris@research.telcordia.com perry@ece.utexas.edu

Abstract

In this paper we suggest an architecture that would
integrate various methods for synthesis of a software
process model based on domain knowledge about
artifacts, process fragments, tools, and limited process
execution observations. Our approach suggests using
a meta-process specification for integration of various
process synthesis methods to provide a generalized
process model. We also propose using a process
execution observation for confirmation of a
synthesized process model.

1. Introduction

The area of software engineering is mainly concerned
with methods for synthesis and analysis of software. In
this paper we are focusing on an automated method for
synthesis of software processes based on very few
observations and various domain knowledge. The
automation of synthesis brings many benefits:
repeatability, efficiency, cost reduction. In addition, a
process synthesized by our approach is itself
automated due to the use of learning methods for
synthesis of control flow decisions. Some of the early
work on process discovery is based on analysis of
retrospective data about the process executions
[1,2,3,4]. The process models discovered with these
early methods focus on the set of activities and the
process control flow. The process synthesis method
integration we suggest expands the earlier process
discovery work in several directions. Our approach is
novel because it allows to automatically synthesize a
process based on very few observations of process
execution (process instance) thanks to the use of
learning methods and a greater variety of domain
knowledge. It provides a process model enhanced with
activity attributes and control flow decision-making.

Our approach has been informally evaluated in the
context of a real problem of a human-centric process
of technical object control and was considered
technically feasible, useful, and practical.

In this work we are focusing on the architecture for
integration of methods for synthesis of various process

aspects that comprise a process model as opposed to
the details of the methods themselves. The architecture
assumes availability of the domain knowledge about
the process artifacts, tools to be used by a process, the
environment in which a process is to be enacted, and a
limited number of observations of process execution.
In a way, we propose an approach that involves
synthesis of a process model via limited observations
of examples of its execution.

2. Problem statement and approach
intuition

The problem calls for a synthesis of a rich process
model based on a single observation of process
execution. The real world need to solve this problem
arose due to the need to learn plans or processes from
human users by being shown one example. Sample
applications include air-tasking-order planning and
CAD design planning. Such a process learner will
learn from one example by opportunistically
assembling knowledge from many different sources,
including generating it by reasoning. The process
model must be rich because the knowledge of a greater
number of process aspects increases the accuracy of
analysis, lends better process improvements, allows for
the use of a greater variety of domain knowledge about
the learned process. The assumptions include
availability of domain knowledge including artifact
well-formedness constraints, bill of materials,
generalized description of a finished product or
service, tools used for process execution, process
fragments, environment conditions for process
execution and others. Each of these kinds of
information can be either incomplete or have some
degree of uncertainty.

Next let us give an explanation of our intuition
about a possible solution. Abstractly, this problem
seems to require us to synthesize an accepting
computation abstraction specification (e.g. Turing
machine) for a language based on one sentence of that
language. The retrospective data about previous
executions of this process is assumed to be very
limited. How could we produce a generalized process

mailto:rp31@txstate.edu
mailto:hn12@txstate.edu
mailto:dimitris@research.telcordia.com
mailto:perry@ece.utexas.edu

specification if we are given only one path which even
might be providing an unreliable product ? It seems
that doing so without the knowledge about artifacts is
impossible due to the lack of information. Thus, our
approach prescribes construction of a generalized
process model based on whatever domain knowledge
is available and then checking whether the observed
execution path is a feasible path through our model. It
is quite possible that the observed path itself provides a
low quality product. Nevertheless, if that path is
feasible in the “guessed” process model then it
validates the model. Otherwise, the path is considered
to be a counterexample, the process model is
considered incorrect and thus it is modified to satisfy
the observed path.

At the implementation level, we suggest specifying
the synthesis process itself in a process language, this
allows for flexibility of the integration of methods for
synthesis of particular process aspects based on
particular domain knowledge available.

3. Process model aspects

Components for
capturing

demonstration

Process
Model

Generator

Process
Enactor

Domain
Planner

{ initial
process
model }

Knowledge
bases

(domain, world,
environment)

{ process
model

fragments }

Domain -specific
Simulator

{ set of ranked plans }

{ events about
sim. time, states
of artifacts,
resources, task
execution, other
environment
events}

Learning
Mechanisms

{ episodes }

{ updates for
process model
aspects and
reasoning }

{ learned
process
model }

{Demonstration
episode} { tasks for

resources
to perform}

Legend: internal component -

external component -

connector -

data exchange -

Components for
capturing

demonstration

Process
Model

Generator

Process
Enactor

Domain
Planner

{ initial
process
model }

Knowledge
bases

(domain, world,
environment)

{ process
model

fragments }

Domain -specific
Simulator

{ set of ranked plans }

{ events about
sim. time, states
of artifacts,
resources, task
execution, other
environment
events}

Learning
Mechanisms

{ episodes }

{ updates for
process model
aspects and
reasoning }

{ learned
process
model }

{Demonstration
episode} { tasks for

resources
to perform}

Legend: internal component -

external component -

connector -

data exchange -

Figure 1 Architecture of a process synthesis integrator

In this section we will discuss in greater detail the

kinds of information needed to specify a rich process
model. The final integrated process synthesis system
must be able to synthesize the specification of these
aspects from available domain knowledge and the
observation.

By a process we understand a systematic,
disciplined way of either producing a final artifact or
delivering a service. Since it is possible to model a
service as an electronic artifact we will use the term
“final artifact” or product to denote a process outcome.

By a generalized process model we understand a
process “program” that, if specified in a rigorous
process specification language, can be instantiated by a
process enactment engine provided an input and
environment specifications. The following aspects
characterize a rich generalized process model:
- set of activities
- each activity characterized by an identifier, interface
(sets of input and output artifact types), pre-condition
and post-condition of activities

- constraints on control flow of activities, relaxed to
the extent possible
- hierarchical decomposition of activities according to
various sets of criteria
- specification of artifact type system manipulated by
activities
- specification of resource needs of activities including
people roles and tools
- predictors that provide distributions for cost, duration
of individual activities and assessment of quality of
output artifacts of an activity.

The execution of a process is greatly influenced by
guidelines or reasoning mechanisms for control flow
choices which are not part of process specification per
se, rather they are part of the resources specification.
These guidelines define reasoning of resources
assigned to execution of process activities. It is our
intent that the process synthesis system will discover
such guidelines to accompany the generalized process
model. The generalized process model must not over-
constrain the control flow. That is why a
straightforward mapping of the observation onto the
generalized process model is unacceptable. For
instance, it might turn out that a certain sequence of
artifact transformations was enforced by scarce
resource availability while in the generalized model
those artifact transformations can happen in parallel
given abundant resources.

4. Architecture of process synthesis
integrator

The previous section outlined the various aspects of
a process model that must be ultimately synthesized.
Intuitively it is clear that various synthesis methods
would be needed to synthesize those aspects. The
choice of a particular method depends on the aspect,
kind, amount, and certainty of domain knowledge
available, nature of domain knowledge, whether the
chosen methods are an effective match. Thus the
architecture must allow for great flexibility in the
choice of the set of activities involved in the synthesis,
the tools used, the sequence of their application.
Therefore we suggest using a process specification and
an associated process execution system for the
synthesis process itself.

According to Perry&Wolf [12] an architectural
description is comprised of elements, form, and
rationale. The architecture of the process synthesis
integrator depicted in Fig. 1 contains the elements (sets
of components and connectors) and the form
(constraints on their interconnections). The

architectural description in Fig. 1 uses rounded corner
rectangles to denote the internal components, yellow
rectangles denote external components, directed arcs to
denote connectors, rectangles associated with the arcs
to denote the data, the cylinder to denote persistent
storage. For the purpose of this paper we limited the
architectural description to high level of abstraction
without the use of dedicated rigorous architecture
description languages such as ACME, Wright or
xArch. As a matter of fact this high level architecture
also gives an idea about a process specification for the
integrator.
 The separation of components set into internal to
the integrator and external ones signifies the division
between the components supplied by domain experts
from other organizations and components that are
native to the integrator.

Below we will describe the architecture rationale
referring to the architecture’s elements (components
and connectors) from Figure 1.

The Process Model Generator forms an initial
process model in a chosen process specification
language based on the domain knowledge (product,
process, known execution traces, resource utilization)
and refines some aspects of the initial process model
based on the demonstration episode (observation).

Next Process Enactor, Domain-specific Simulator,
Learning Mechanisms, and Domain Planner
synergistically subject the initial process model to
dynamic analysis and refinement. The interaction of
these architecture elements is as follows. The Process
Enactor receives an initial process model by data
exchange along a connector from the Process Model
Generator and, provided the cost, duration, quality of
activities can be estimated, submits a fragment of the
process to the Domain Planner by the corresponding
connector. The Domain Planner chooses the set of
process activities from the model and provides partial
order for them. It is possible for the Domain Planner to
choose an approximated optimal set of activities if
their cost, duration, quality are available. If the
estimates of cost, duration, quality are not available
then the Process Enactor chooses the first set of
alternative activities based on the control flow
constraints specified in the initial process model. Thus
the choice of activities will produce a feasible path
through the process model barring the optimality
approximation. A planner based on the design to
criteria paradigm can serve as an example of a planner
that reasons based on cost, duration, quality of
activities [16]. For some processes a human can play
the part of the Domain Planner as an override of an
automatic planner.

If the resource declarations are not available, the
activities from this set are either chosen to be
performed by the resources themselves (self-
identification) or they are assigned based on the
matching of the functionality of resources to the nature
of transformation of artifacts by the activities. The self-
identification implies that resources would request an
assignment to activities themselves once they find out
from a registry that another activity has been posted
for execution. The constraints on the availability of
identified suitable resources can further refine the first
set of activities to be started.

Next, the Learning Mechanisms might use their
exploration method in face of the uncertainty about
activities cost, duration, quality to refine the set of
alternative activities. The refined set of alternative
activities is assigned by the Process Enactor to
resources in case the resource declarations have been
already identified from the domain knowledge.

Once the set of the activities is identified and
resources are assigned, the Simulator starts modeling
the execution of the tasks by the modeled resources
which affect the state of modeled artifacts. The
Simulator notifies the Process Enactor of various
events such as completion of tasks by resources, time
ticks, contingencies due to the modeled environment,
contingencies due to artifact states. The Process
Enactor reacts to the events from the Simulator or
events generated by the Process enactor itself (e.g.
time-out of activity completion). The reactions
themselves are specified as process fragments, they
can be either domain-specific or default reaction
processes (e.g. reaction to time-out of activity
completions, resource unavailability contingencies,
resolution of contradictions between needs of
concurrently running process fragments, pre-emption
control decisions).

The Simulator models the transformations of
artifacts as these artifacts are processed by resources
according to manipulations prescribed by process
activities. The state of modeled artifacts is used by the
Learning Mechanisms to update the knowledge they
accumulated about various aspects of the process such
as the control flow decisions, decisions on the sets of
activities to be executed and resource assignments. In
addition, the Simulator produces estimates of cost and
duration based on the models of resources and
artifacts, these estimates are also used by the Learning
Mechanisms to update the predictors for cost and
duration or to suggest new ones in case the domain
knowledge contained no such estimates to begin with.

Thus the simulation and learning of a single process
instance (called episode in the machine learning
terminology [10]) continues until either all the

activities are finished and/or final artifacts are
produced or predefined time runs out or it is
determined that there are insufficient resources to
produce final artifacts. We will use the terms process
instance and episode interchangeably from now on,
meaning a trace of a particular execution of a process
model. On completion of an episode the Learning
Mechanisms update their knowledge based on the
results of an episode.

The demonstration episode results are used by the
Learning Mechanisms to update their knowledge. The
demonstration information about the cost, duration,
quality control flow decisions, resources used are
given higher preference over such data obtained from
simulation. The number of episodes can depend on the
coverage criteria, number of typical environment states
in which a process is supposed to function, the amount
of knowledge about process executions.

The demonstration episode is used as a test-case to
verify the process modeled learned from the domain
knowledge and simulation. The process synthesis
integrator will attempt to recreate a demonstration
episode by simulation based only on the process
model, resource knowledge and knowledge of
environment changes. We assume that a demonstration
might not necessarily result in a well-formed final
artifact due to contingencies. So the simulator should
be able to recreate the contingencies to check the
correspondence of the process model behavior to a real
world execution. The flexibility of the choice of a
learning mechanism (that would depend on the process
aspects to be learned) is allowed by the use of a
process execution system. If a different mechanism is
required, the process specification for the integrator is
modified to include a different step with a different
tool invoked.

Considering the space restrictions we cannot
provide detailed description of the components of this
architecture. Some additional information about the
Process Model Generator component and likely
candidates for the learning methods is mentioned
below.

4.1 Process Model Generator

As our process specification and execution system
we chose the industry-level Atlas system developed at
Telcordia Research Center in Austin. The Atlas system
has already been successfully used in a number of
projects [13][14][15]. Its design is tightly connected to
a database used for persistent storage of processes and

1

2

3

4

1, 2

3,4

1,3

1,3,4

1,2,3,4

Figure 2. Partial order state space.

process fragments which results in the linear
dependency of the scalability of the process execution
system on the scalability of the database.

We have some initial experience with the process
model generator that uses artifact domain knowledge
(i.e. possible artifact transformations) to synthesize
such process aspects as the set of activities, their
input/output and their execution constraints. The
process model generator has been specified in the
Atlas specification language enhanced with JPython
script that invokes a process generator subcomponent
written in Java. This subcomponent uses the
specification of the bill of materials and the finished
product to guess an initial process model. The bill of
materials and the finished products are expressed in an
agreed upon artifact ontology. The artifact
representation language resembles a software
architecture description language in its constructs for
specification of artifact components, connectors, ports,
and “glue” [12]. The Java subcomponent writes the
initial process model in an Atlas process specification.

Ultimately the process synthesis integrator will use
multiple generators to construct the set of all
distinguishable paths from which we can construct an
initial process model. Some of the kinds of domain
knowledge we assume would include:

1. Artifact structure and well-formedness constraints
on possible combinations of artifact
decomposition units. These can determine a subset
of the powerset of artifact decomposition unit
combinations corresponding to legal
combinations, some of which are final artifacts.

2. Resources such as physical tools or automated
software tools with known functionality. These
can provide legal partial order of tool applications
to input and intermediate artifacts that can lead to
final artifacts of the process being discovered.

3. Known fragments of the process being discovered.
This specification already provides us with an
initial, but possibly incomplete, set of
distinguishable paths.

4. Traces of execution of the process being
discovered. These traces can be generalized into a
process fragment [2, 3, 4, 5].

5. Domain-specific intents. These can determine the
partial order of sub tasks that can lead to the final
artifact

S1P1

1,2,3,4

S1P2

1,

3,

S2P1

S3P1

1

2

3

4

1,3,
S2P2

S3P2

1,3

Figure 3. Partial order activity state.

Next we give a high-level description of the

principle of operation of the process model generator
component of the integrator architecture. This
description focuses on the case when the process
domain knowledge contains well-defined constraints
on the artifact well-formedness. This is especially
likely in the domain of mechanical assembly processes.
The input to the process model generator is assumed to
be a bill of materials, constraints on artifact well-
formed interconnections and the description of the
desired final product. Essentially, a naive approach of
the process generation implies trying all possible ways
of putting the available parts together such that they
lead to a legal final combination (product of assembly).

Assuming the artifact well-formedness contraints
are available, first we generate a graph that describes
transitions between all legal combinations of artifact
elements. A transition corresponds to a single
modification in the set of combined atomic artifact
elements. Such a graph is shown in Fig. 2. We call this
graph a partial order state space.

In Fig. 2 each state corresponds to subsets of
process artifacts that comply with artifact well-

Figure 4. Initial process model.

formedness constraints. It is possible to generate these
states based on the bill of materials and the well-
formedness constraints of artifact combinations. The
sets of transitions between such states would
correspond to possible activity instances. The partial
order space will also indicate input/output artifact sets
for the activity instances. In Fig. 2 we assume there are
four product parts that comprise the final artifact(s).
Octagons represent states that are marked with the sets
of parts. For instance, the blue octagons denote the 4
individual atomic artifacts from the bill of materials
and are marked with artifact “1”, artifact “2” and so
on. The well-formedness constraints allow for 5
physically possible combinations of these artifacts, one
of which is the final product (all artifacts combined).
Fig. 2 shows two possible ways of deriving the final
product.

Based on the partial order state space, the process
model generator must construct a hypothetical general
process model. Such a model will explicitly represent
the activities that correspond to transitions in the
partial order state graph. Thus a partial order activity
graph will be produced. It will represent all possible
ways to assemble a final product as trees, the leaves of
which are the individual atomic artifact elements, the
root is the final product and intermediate nodes
correspond to legal but incomplete artifact
combinations. They are incomplete according to the
final product specifcation.

Generation of the set of all distinguishable trees.
An initial process model derived from a partial activity
order graph should include a complete set of
alternative trees, but only a subset of them could be
distinguishable due to incomplete domain knowledge.
The domain knowledge provides us with constraints of
varying degree on product decompositions, partial
order of tool applications, process fragments or intents
structure (goal tree). There seems to be a relationship
between the nature of a process and/or its artifacts
and/or its resources and the degree of constraintedness
of kinds of domain knowledge. The degree to which

any of the different kinds of domain knowledge are
constrained determines our choice of which domain
knowledge will be used for the initial set of alternative
paths.

Ultimately, the partial order of activities in an initial
process model is defined by the constraints of the
different kinds of domain knowledge. To suggest the
alternative trees through a graph corresponding to each
partial order of activities, the generator needs to
impose these constraints on all possible paths. The first
step to generate the partial order efficiently is to apply
the sets of constraints (e.g. artifact imposed
constraints, tool functionality imposed constraints) to
all possible paths in order of decreasing degree of
constraintedness. For instance, if the artifact element
combinations are more constrained than the resources
used to combine the artifact elements then it is the
constraints on the artifacts that must be taken into
account first. In a scientific process domain, usually
top-down proactive process models or fragments are
available; therefore they can be used as a starting point
for constraining the partial order of the activities space.
The set of resources and the sets of their functionality
on the other hand are constrained very loosely in this
domain. On the other hand, processes such as control
processes with dedicated software systems for
monitoring and control highly constrain the resources.
Such processes also tend to be event-driven, without a
defined top-down proactive specification. For
processes of this kind it is possible to use the
constraints on resources to greater effect in generation
of the initial partial order of activities space.

Process model construction. Based on the
enumeration of all potential trees, the Process Model
Generator must construct a hypothetical initial process
model. At this stage, the demonstration episodes that
were captured serve as a guide and/or a reality check in
the process model construction. However, the
enumerated potential trees may contain other
knowledge that is not present in the demonstration
artifact, depending on the extent and quality of the
domain knowledge. Therefore, this generated process
model will describe activities that were not present in
the demonstration.

As an example of this, let us continue with the
partial order state space example from above. In this
situation, the partial order state space has to be
transformed into a process model. The state space
based on artifact element combinations or resource
application sequences contains enough information to
suggest some aspects of a process model. These
aspects include a set of activities, their type hierarchy,
their functional decomposition and partial order of
activities execution. In a way, the process model

succinctly specifies the distinguishable trees by a set of
abstractions more suitable for analysis and execution
of the process.

The set of activities can be deduced based on the
sets of transitions going into the states in Fig. 2, i.e.
sequences of artifact transformations without explicit
representation of process activities. The result of this
mapping is shown in Fig. 3 in which the rectangles
correspond to activities and the color of their border
corresponds to the color of transitions in Fig. 2 on
which they were based. By using data flow analysis we
can construct a partial process model that represents
functional decomposition of activities and the
constraints on their execution. The partial process
model in an Atlas-like process language for this
assembly example is shown in Fig. 4. This model is
partial because it only represents process activities
deduced from legal transformations of input artifacts
into a final product. Such a way for initial process
generation is possible in problem domains where
rigorous well-formedness constraints on legal artifact
combinations are known. For instance assembly of
physical objects out of available parts is such a
problem domain.

Rigorous well-formedness constraints are not
available in all process domains. Then it is difficult to
generate a partial order state space based on artifact
combinations. Other domain knowledge has to be used
to form an initial process model in such cases. For
instance, the set of tools with well-defined
functionality or domain-specific intents can be used to
suggest either sequences of tool applications or partial
order of sub-intents that can lead to a product.

4.2 Learning mechanisms

The learning mechanisms we considered are
supervised neural network learning, reinforcement
learning, and evolutionary computation [1]. The hybrid
method will leverage the strengths of each of the
individual methods. Such process aspects as duration,
cost, quality, process activity clustering (to generate or
confirm activity decomposition captured by the
synthesized process) and guidelines/automation for
making control flow choices in the synthesized process
are expected to be learned by these mechanisms. To
our knowledge, these mechanisms have not been
applied to procedural learning previously, we expect it
to be a novel experience.

The learning mechanisms in the process synthesis
integrator cannot assume sufficient examples of
desired behavior exist to learn a process using
supervised or statistical approaches. In this case,
effective actions are learned by exploring alternatives

and their outcomes in the simulator, using
reinforcement learning and neuroevolution. The
process specifications learned earlier allow simulating
the process with some degree of accuracy, and the
observation can be transformed into a demonstration
episode that allows evaluating and generating feedback
to the learners.

In situations where the information consists of
discrete state variables and discrete actions, and the
state is fully known, reinforcement learning [10] is an
effective approach. Through Q-learning, a table of
values indicating the expected utility of each action in
each state is learned; this table is then used to select
appropriate actions. For example, reinforcement
learning can be used to diagnose failure reports and
select compensatory actions.

In other situations, the state is not fully known, and
the state and the actions are described with continuous
values. Such situations are difficult for reinforcement
learning because it is hard to discretize the space and
to identify which utility values need to be changed.
However, recurrent neural networks can be constructed
through evolutionary learning, and can perform
robustly in such situations [6,8]. For example, a
recurrent network can monitor sensor and navigational
inputs from the missile, and guide it to the target even
when its exact position is uncertain. Such a network
can be evolved in the simulator, by allowing a
population of neural networks to control the process,
and reproducing the networks that perform well.

These learning methods are brought together to
learn an effective decision policy for the process. The
learning uses the domain knowledge in the simulator
and in the constructed episodes, as well as in the
demonstration episode (observation). The decision
policy is initially represented statistically in terms of
neural network weights and Q-tables. Using standard
techniques for knowledge extraction, this knowledge is
then translated into a rule-based description of the
process [9,10,11]. In this manner, the project not only
results in a practical method for learning a generalized
process description for a given domain, but also leads
to an important scientific conclusion: understanding of
how the different learning algorithms compare, i.e.
what kinds of tasks they can each solve well, and what
kind of knowledge they learn in the process.

5. Conclusions and Future work

The experience we have with synthesizing assembly
processes based on the bill of materials and the final
product description is encouraging, yet the vast
majority of work still lies ahead. We need to make the

process model generator be able to use a more
generalized description of the final product that does
not directly refer to the artifacts in the bill of materials.
The other approaches to generation of the initial
process model that do not rely on availability of the
rigorous artifact well-formedness specifications must
be implemented. The learning mechanisms must be
evaluated based on their applicability to capturing the
various process aspects described. Finally the whole
integrator must be evaluated on real-life process
domain knowledge from various process domains, to
name a few: mechanical assembly, web-services
integration, mechanical object control procedures,
software development, crisis responses.
 We would like to thank Dr. Misty Nodine of
Telcordia Research for discussions, useful comments,
and editing, Dr. Donald Baker of Telcordia Research
for his help with the Atlas process execution system,
and Prof. Risto Miikkulainen of the University of
Texas, Austin for discussions and help with the
application of reinforcement learning and
neuroevolution methods to the process synthesis.

6. References

[1] Stanley, K. and Miikkulainen, R. (2002). Evolution of
Neural Networks through Augmenting Topologies.
Evolutionary Computation, 10:99--127.
[2] Jonathan E. Cook and Alexander L. Wolf, "Discovering
Models of Software Processes from Event-Based Data",
ACM Transactions on Software Engineering and
Methodology 7(3), July, 1998, pp 215-249.
[3] Jonathan E. Cook, Lawrence G. Votta and Alexander L.
Wolf, "Cost-Effective Analysis of In-Place Software
Processes", IEEE Transactions on Software Engineering SE-
24(8), August 1998, pp 650-663.
[4] Jonathan E. Cook and Alexander L. Wolf, "Software
Process Validation: Quantitatively Measuring the
Correspondence of a Process to a Model", ACM Transactions
on Software Engineering and Methodology 8(2), April, 1999.
[5] Alexander L. Wolf and David S. Rosenblum, "A Study in
Software Process Data Capture and Analysis", ICSP 2 - 2nd

International Conference on Software Process, February,
1993, pp. 115—124.
[6] Moriarty, D. E., Schultz, A. C., and Grefenstette, J. J.
(1999). Evolutionary Algorithms for Reinforcement
Learning. Journal of Artificial Intelligence Research,
11:199-229.
[7] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986), Learning Internal Representations by Error
Propagation. In Rumelhart, D. E. and McClelland J. M.,
Parallel Distributed Processing. Cambridge, MA: MIT
Press.
[8] Stanley, K. and Miikkulainen, R. (2002). Evolution of
Neural Networks through Augmenting Topologies.
Evolutionary Computation, 10:99-127.
[9] Stanley, K. and Miikkulainen, R. (2004). Competitive
Coevolution through Evolutionary Complexification. Journal
of Artificial Intelligence Research, 21:63-100.
[10] Sutton, R. S. and Barto, A. G. (1998). Reinforcement
Learning: An Introduction. Cambridge, MA: MIT Press.
[11] Towell, G. G. and Shavlik, J. W. (1993). The Extraction
of Refined Rules from Knowledge-Based Neural Networks.
Machine Learning, 13:71-101.
[12] Dewayne E. Perry and Alexander L. Wolf. “Foundations
for the study of Software Architecture”, ACM SIGSOFT
Software Engineering Notes, 17:4 (October 1992).
[13] D.Georgakopoulos, H.Schuster, A.Cichocki, and
D.Baker. (1999) “Collaboration Management Infrastructure
in Crisis Response Situations”, Technical Report CMI-009-
99, Microelectronics and Computer Technology Corporation
[14] D.Baker, A.R.Cassandra, H.Schuster,
D.Georgakopoulos, and A.Cichocki. (1999) “Providing
Customized Process and Situation Awareness in the
Collaboration Management Infrastructure”, Proceedings of
the 4th IFCIS Conference on Cooperative Information
Systems (CoopIS'99)
[15] Dimitrios Georgakopoulos, Hans Schuster, Donald
Baker, and Andrzej Cichocki. (2000) “Managing Escalation
of Collaboration Processes in Crisis Mitigation Situations”,
Proceedings of the 16th International Conference on Data
Engineering (ICDE'2000)
[16] Wagner, Thomas A., Garvey, Alan J. and Lesser,
Victor R., “Satisficing Evaluation Functions: The Heart of
the New Design-to-Criteria Paradigm”,
UMass Computer Science Technical Report 1996

	1. Introduction
	2. Problem statement and approach intuition
	3. Process model aspects
	4. Architecture of process synthesis integrator
	4.1 Process Model Generator
	4.2 Learning mechanisms
	5. Conclusions and Future work
	6. References

