
Mining Change and Version Management Histories
to Evaluate an Analysis Tool

– Extended Abstract –

Danhua Shao, Sarfraz Khurshid and Dewayne E. Perry
Empirical Software Engineering Lab (ESEL)

 Electrical and ComputerEengineering,
The University of Texas at Austin, Austin TX 78712

{dshao, khurshid, perry}@ece.utexas.edu

ABSTRACT

Parallel changes are becoming increasingly prevalent in
the development of large scale software system. To
deepen the study on the relationship between parallel
changes and faults, we have designed a tool to detect the
direct semantic interference between parallel changes. In
this paper, we describe an empirical study to evaluate
this semantic interference detection tool. We first mine
the change and version management repositories to find
sample versions sets of different degree of parallel
changes. On the basis of the analysis reports, we mine the
change and version repositories to find out what faults
were discovered subsequent to the analyzed versions. We
will also determine the lapse and cost data for finding
and fixing the faults associated with those samples. This
approach provides a significant and low cost method for
effectively evaluating the usefulness of software tools.

1. INTRODUCTION

The evaluation of software engineering tools is best
served by a rigorous empirical approach. A solid
empirical basis serves to provide a deep understanding of
the problem of how to determine the effectiveness of
tools in software development. So, based on the
delineation of the parallel changes in the large scale
software systems and the algorithms to detect the
potential interference between them, we want to evaluate
the effectiveness of this detection method.

This research is part of a continuing series of
investigations based on the change and version
management histories of one subsystem of Lucent
Technologies 5ESS Telephone Switching System. Upon
the analysis of the change history, we found that high
degrees of parallel changes happened during the

development [1, 2]. So these changes are very likely to
conflict with each other.

We classify the conflicts into two levels: prima facie
conflicts (the changes happen on the same lines of source
code) and semantic conflicts (the changes are made to the
same slice of program and modify the semantics in
different ways). In a previous study on the subsystem of
5ESS, we showed that 3% of the changes made with in 24
hours by different developers physically overlapped each
others’ change [1, 2].

But we believe that more conflicts exist at the semantic
level. Based on the data dependency analysis and
program slicing, we have proposed a semantic
interference detection algorithm [15].

To investigate the effectiveness of this algorithm, we
propose to evaluate the following two hypotheses: 1) the
number of semantic interferences this algorithm will
detect is dependant on the degree and kind of parallelism
that occurs in the versions analyzed; and 2) this algorithm
saves time and effort especially where parallel changes
happen in the software development. To quantify the
evaluation, we use the change and version management
histories of the 5ESS subsystem. We also utilize the effort
analysis technique in [18] to investigate the effectiveness
of our algorithm.

In Section 2, we discuss the background for our
evaluation work. In Section 3, we give an overview of
the semantic interference detection algorithm. While in
Section 4, we show the concrete steps we perform for the
evaluation. Finally, in Section 5 we summarize our
approach.

2. BACKGROUND

In this study, the data repository and our previous study
constitute the base environment to evaluate the semantic

interference detection algorithm. We present the
description about them in this section.

2.1 Change & Version Management Repositories

The data for us to evaluate the analysis tool, as well as
that for our previous parallel changes studies, comes from
the complete change and version management history of a
subsystem of the Lucent Technologies’ 5ESS. It covers
the first fifteen years of the subsystem project [3, 4].
Changes in the development organization also contributed
to the high degree of parallel changes in the development.
The number of developers reached 200 at the peak and
dropped to a low of 50. And the two products, one for US
customers and one for international customers, were
developed separately although some files are common for
both of them.

Lucent Technologies uses a two-layered system for
managing the evolution of 5ESS: a change management
layer, ECMS [4], to initiate and track changes to the
product, and a configuration management layer, SCCS
[5], to manage the versions of files needed to construct
the appropriate configurations of the product.

In 5ESS, the changes are managed in a layered hierarchy:
feature, Initial Modification Request (IMR), Modification
Request (MR) and delta. A feature is the fundamental unit
of extension to the system, and each feature is composed
of a set of IMRs that represent problems to be solved. All
changes are handled by ECMS and are initiated using an
IMR, which may have one or more MRs (each of which
represents a solution to part of the IMR’s problem),
whether the change is for fixing a fault, perfecting or
improving some aspect of the system, or adding new
features to the system. Each functionally distinct set of
changes to the code made by a developer is recorded as a
MR by the ECMS. When a change is made to a file in the
context of an MR, SCCS keeps track of the actual lines
added, changed, or deleted. This set of changes is known
as a delta. For each delta, the ECMS records its date, the
developer who made it, and the MR to which it belongs.

2.2 Parallel changes in the repository
Based on this package of data, we have done research on
the phenomena of parallel changes and their effects on
software quality.

On the parallel change, our investigation showed that [1,
2], in this repository:

• There are multiple levels of parallel development.
Each day, there is ongoing work on multiple MRs by
different developers solving different IMRs
belonging to different features within different

releases of two similar products aimed at distinct
markets.

• The activities within each of these levels cut across
common files. 12.5% of all deltas are made by
different developers to the same files within a day of
each other and some of these deltas interfere with
each other.

• Over the interval of a particular release, the number
of files changed by multiple MRs is 60% that are
concurrent with respect to that release. These
parallel MRs may result in interfering changes ---
though we would expect the degree of awareness of
the implications of these changes to be higher than
those made within one day of each other.

Further more, our study also found that there is a
significant correlation between files with a high degree of
parallel development and the number of faults [1, 2]. We
use PCmax, the maximum number of parallel MRs per
file in a day, as the measure of the degree of parallel
changes. The boxplot (Figure 1) from our analysis show
that high degrees of parallel changes tend to have more
faults. The analysis of variance strongly indicates that,
even accounting lifetime, size and numbers of deltas,
parallel changes were a significant cause of faults (p
< .0001).

Figure 1: Parallel development (PCmax) vs. number of
faults. This boxplot show the number of faults for each
file, grouped by degree of parallel changes.

In this repository, we have found high degrees of parallel
changes and a direct correlation between parallel changes
and faults. So we believe that it could also serve well to
adequately evaluate the utility and effectiveness of the
methods, techniques and tools that detect interference
between parallel changes.

3. SCA: A SEMANTIC INTERFERENCE
DETECTOR FOR PARALLEL VERSIONS

In the previous study about the relationship between
parallel changes and faults, our initial focus was on Prima
facie conflict. It showed that 3% of the deltas made
within 24 hours by different developers physically
overlap another’s change. But the physical overlap is just
one way by which one developer’s changes could
interfere with another’s. We believe that many more
interfering conflicts arise as a result of parallel changes to
the same data flow or program slice - that is, conflicts
arise as a result of semantic interference in addition to
syntactic interference. Semantic interference has become
one of the major focuses of our current research on
parallel changes.

In the study on semantic interference, parallel changes are
classified into two categories: temporal and logical.

• Temporally parallel changes are changes performed
through Version Management Systems that allow
multiple valid copies of the same code module at the
same time. Changes of this sort are truly parallel and
in general, there is no assumed priority among
changes. The final version is an integrated version.
These systems embody what is referred to as
optimistic version control [2, 7]. In this case, there is
only one delta per version.

• Logically parallel changes are changes made
independently on the same release and may be
temporally separated by minutes, days or even
months. In this case, the time of submission for a
change determines its placement in a priority based
ordering. These changes are done in the context of
configuration management systems that embody
pessimistic version control [2, 7]. In this case, there
may be several deltas per logical version.

The algorithm to detect semantic interference between
two deltas is the kernel component in SCA. We use a
combination of the (static) program slicing [11] and data
flow analysis [12] (specifically the flow of values from a
source node to their destination nodes) as the basis for
this analysis algorithm.

For each delta, two dependency sets Δ1 and Δ2 are
calculated from the version before and after the change.
Where each dependency set is a triple (v, d, u) such that
vertex u uses the variable v that is defined in vertex d. By
comparing the two dependency sets, we can tell from the
vertexes which dependency relationships are changed by
that delta. Then, through forward slicing, we can get the
program fragments impacted by this delta. With the
fragment set for each delta, we know whether the two
deltas semantically interference with each other.

The implementation of SCA is based on standard real-
world development components, such as SCCS for the

version management system, and GrammaTech’s
CodeSurfer [12] for the slicing mechanism. Note that
with SCCS, we have only logically parallel versions.

4. MINING CHANGE AND VERSION
MANAGEMENT HISTORIES

The design and implementation of SCA, together with the
change and version history databases from 5ESS
subsystem, provides the experimental setting to evaluate
the semantic interference detection algorithm. From the
observation and implications from the previous study, we
will test the two hypotheses about the tool evaluation:
1. The number of semantic interferences detected by

SCA is dependant on the degree and kind of
parallelism that occurs in the versions analyzed.

2. SCA saves the time and effort especially where
intertwined logically parallel changes occur.

We evaluate the effectiveness of SCA in the following 5
steps.

Step 1. Create three sets of program versions for
analysis by SCA

To supply changes of differing degrees and kinds of
parallelism, we will construct three sets of logically
parallel change versions from the change and version
histories. To maximize internal validity considerations,
we add the following controls: we make each set as nearly
identical with respect to the size of changes, number of
faults, and the purposes (i.e., corrective, perfective or
adaptive classified according to the MR classification
method by Mockus and Votta [20]) of the changes.
Further we will choose the number of samples for each
set to achieve a significance level of at least .01.

1) For the control set, we randomly select versions that
have no parallel changes with respect to a particular
release – that is, versions that have only one set of
changes for the entire release.

2) For the set representing a low degree of parallelism, we
randomly select versions that are logically parallel with
respect a specific release, but that have a reasonable
amount of time (measured in terms of days or weeks)
separating the sequence of versions – sufficient time for
the developers to be able to understand the implications
of those changes. We choose a representative number of
versions with two sets of changes, three sets of changes,
etc.

3) For the set representing a high degree of parallelism,
we randomly select versions that are logically parallel
with respect to a specific release, but represent versions
covered by MRs that are in fact being worked on

concurrently (such that the there is a significant degree of
interleaving of deltas for each of the files begin changed
under each MR – cf. [1,2]). We again choose versions
that represent the varying degrees of parallelism from 2
to 16 (the highest degree of parallelism found in [1,2]).

For each set, we mine the change management history to
find the candidate versions that match the attributes
desired for the overall controls needed and for the specific
attributes appropriate for each set. Once we have the
candidate set of versions, we then mine the version
management history for those versions to be analyzed.

Step 2. Analyze the three sets of parallel changes.

In each set of parallel versions, for each related pair of
versions, create the delta pairs needed by SCA to perform
its analysis. Each analysis results in a set of semantic
interferences created by the second version changing the
first. These interferences are the basis for evaluating the
effectiveness of SCA.

Step 3. Determine the history of relevant faults.

For each set of parallel versions (each with its set of
semantic interferences) we first mine the change
management history subsequent to these versions for
faults found in these versions and then mine the version
management history to get the code fragments changed as
a result of fixing those faults. The results of mining these
two repositories provide us with the historical evidence
of faults relative to the changes in our three version sets.

Step 4. Evaluate the effectiveness of SCA.

The goal of the evaluation step is to determine the time
and effort saved in finding the faults at the time of version
deposit by determining the time lapse between the time of
the fault insertion and its detection and the amount of
effort needed to fix the problem when it was detected.
With the results from Step 2 and 3, we have the basic data
to perform this evaluation.

For each related pair of versions in the three version sets,
we compare the program fragments of the faults found
and the sets of interference between them, and classify
them into three groups:

1. Match - the detected interference represents a fault;

2. No match – an interference was found, but no
corresponding fault was found;

3. No match – a fault was found, but no there was no
detected interference that matched it.

For group 1, we will analyze and evaluate the
performance of SCA in two ways:

a. Determine the time saved by SCA. For set 1,we mine
the change management history for the available data on
the time the fault was found and the time it was fixed, etc,
to calculate the time saved by SCA.

b. Determine the effort saved by SCA. With the
information about the changes, we can use the effort
estimation algorithm in [18] to quantify the saved effort.

We then analyze the time data across the three different
version sets, the fault rates, the change sizes and their
respective purposes to provide the time effectiveness of
SCA with respect to faults found.

Group 2, represents, presumably, false positives in our
interference analysis – that is, interferences for which
there were no faults. This represents the noise level in
the evaluation of SCA, which if too high will of course
detract from its utility as an effective analysis tool. We
analyze what appears to be the noise level in two ways:

a. For the false positives that we determine to be
intentional interferences, we first check to determine the
relationship between corrective changes and false
positives. In particular, we want to see how many of the
false positives could be eliminated by not analyzing
corrective changes. For the remaining false positives,
look for common factors among them and consider ways
to improve the interference detection algorithm.

b. If the interference is not an intentional one, analyze
the code change to see if it represents a fault that has not
been found. If it does represent a fault that has not been
found yet in the course of system testing and
development, this represents an additional dimension of
effectiveness for SCA.

Group 3 represents faults that are not visible to SCA in
terms of semantic interferences as it is currently
configured. We summarize the kinds of faults
represented to see whether there might be the faults that
could be detected by extending SCA.

At this point, we can determine the relationship between
the three version sets and how effective SCA was in each
of these sets.

Step 5. Summarize our evaluation work.

With the results of Step 4, we evaluate SCA with respect
to how much time and effort it saved, what kinds of faults
it can find and what kinds faults it cannot find.

With the evaluation in hand, we add both to our
understanding of the amount of interference in terms of
both prima facie and semantic interference in parallel
changes and to our understanding of the relationship

between the degree of parallelism in changing source
code and the number of faults found.

5. SUMMARY AND NEXT STEPS

The high degree of parallel changes in the development of
large scale software systems makes the evaluation of
semantic interference detection methods increasingly
important. With the data from change and version
management histories in the 5ESS system, we construct
an empirical study to show how much time and effort our
algorithm can save for developers. In this paper, we give
an overview of our semantic interference detection
method, the data used to evaluate them and the steps to
implement this study.

To deepen the evaluation, we would like to do further
work following this study:

First, deeply analyze the faults not found by the semantic
interference detection algorithm. We could classify them
according to their semantic traits and explore various
analysis technologies.

Second, compare the cost and effectiveness between
direct semantic interference detection and indirect
detection. In our current algorithm, we focus only on the
direct semantic interference. To quantify the comparison,
we should implement an indirect semantic detection
algorithm, test it with the same version sets, and compare
the resource costs, the detected faults, the ratio of faults to
noise, and other aspects between the two detection
algorithms.

Third, detect higher levels of interference. In this study,
we analyze the version change at the source code level.
From the multiple levels of parallel changes in the 5ESS
system, we believe that the conflicts between changes
will also happen in the higher levels of software
development, such as software architecture.

6. References

 [1] Dewayne E. Perry, and Harvey P. Siy. “Challenges in Evolving a

Large Scale Software Product”, Proceedings of the International
Workshop on Principles of Software Evolution, 1998.
International Software Engineering Conference, Kyoto, Japan,
April 1998.

 [2] Dewayne E. Perry, Harvey P. Siy, and Lawrence G. Votta.
“Parallel Changes in Large Scale Software Development: An
Observational Case Study.”, ACM Transactions on Software
Engineering and Methodology, Vol. 10, No. 3, July, 2001, pp
308-337.

[3] K. Martersteck, and A. Spencer. “Introduction to the 5ESS(TM)
Switching System.”, AT&T Technical Journal, Vol. 64, No. 6,
part 2, July-August 1985, pp 1305-1314.

[4] P.A. Tuscany. “Software development environment for large

switching projects.”, In Proceedings of Software Engineering for
Telecommunications Switching Systems Conference, 1987.

[5] M.J. Rochkind. “The Source Code Control System.”, IEEE
Transactions on Software Engineering, Vol. SE-1, No. 4,
December 1975, pp 364-370.

[6] Ulf Asklund, and Boris Magnusson. "A Case Study of
Configuration Management with ClearCase in an Industrial
Environment.", System Configuration Management, 1997.

[7] Tom Mens. "A State-of-the-art Survey on Software Merging.",
IEEE Transactions on Software Engineering, Vol. 28, No. 5, May
2002.

[8] Frederick P. Brooks, Jr. "No silver bullet: Essence and accidents
of software engineering." IEEE Computer, April 1987, pp 10-19.

[9] Susan Horwitz, Jan Prins, and Thomas Reps. "Integrating
Noninterfering Versions of Programs.", ACM Transactions on
Programming Languages and Systems, Vol. 11, No. 3, July 1989,
pp 345-387.

[10] J. Estublier, and R. Casallas. “The Adele configuration
manager.”, In W.F. Tichy, Ed., Configuration Management:
Trends in Software, John Wiley & Sons, 1994.

[11] Frank Tip. “A survey of program slicing techniques.”, Journal of
Programming Languages 3, 1995, pp 121-195.

[12] P. Anderson, and T. Teitelbaum. "Software Inspection Using
CodeSurfer." In Workshop on Inspection in Software
Engineering (CAV 2001), Paris, France, July 18-23, 2001.

[13] Ranjith Purushothaman, and Dewayne E. Perry. "Towards
Understanding the Rhetoric of Small Changes - Extended
Abstract.", International Workshop on Mining Software
Repositories (MSR 2004), International Conference on Software
Engineering 2004 (ICSE 2004), May 2004, Edinburgh, Scotland.

[14] Ranjith Purushothaman, and Dewayne E. Perry. “Towards
Understanding the Rhetoric of Small Changes.”, Accepted for
publication. TSE – under review 2005.

[15] Giovanni Lorenzo Thione. “Detecting Semantic Conflicts in
Parallel Changes.”, MSEE Thesis, The Department of Electrical
and Computer Engineering, The University of Texas at Austin,
December 2002. 98pp.

 [16] Giovanni Lorenzo Thione, and Dewayne E. Perry. “A Technique
for Detecting Direct Semantic Conflicts in Parallel Changes.”,
Revised March 2004. Submitted for publication.

[17] David L. Atkins, Thomas Ball, Todd L. Graves, and Audris
Mokus. “Using Version Control Data to Evaluate the impact of
Software Tools: A Case Study of the Version Editor.”, IEEE
Transaction on software engineering, Vol. 28, No. 7, July 2002.

[18] Todd L. Graves, and Audris Mockus. “Inferring change effort
from configuration management data.”, In Metrics 98: Fifth
International Symposium on Software Metrics, Bethesda,
Maryland, November 1998, pp 267-273.

[19] Todd L. Graves, and Audris Mockus. “Identifying Productivity
Drivers by Modeling Work Units Using Partial Data.”,
Technometrics, Vol. 43, No. 2, May 2001, pp 168-179.

[20] Audris Mockus, and Lawrence G. Votta. “Identifying Reasons for
Software Changes using Historic Databases.”, Proceedings of the
International Conference on Software Maintenance (ICSM'00),
11-14, October 2000, San Jose, California, USA, pp 120-130.

