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ABSTRACT 
 
Parallel changes are becoming increasingly prevalent in 
the development of large scale software system. To 
deepen the study on the relationship between parallel 
changes and faults, we have designed a tool to detect the 
direct semantic interference between parallel changes. In 
this paper, we describe an empirical study to evaluate 
this semantic interference detection tool. We first mine 
the change and version management repositories to find 
sample versions sets of different degree of parallel 
changes. On the basis of the analysis reports, we mine the 
change and version repositories to find out what faults 
were discovered subsequent to the analyzed versions. We 
will also determine the lapse and cost data for finding 
and fixing the faults associated with those samples.  This 
approach provides a significant and low cost method for 
effectively evaluating the usefulness of software tools. 

 
 

1. INTRODUCTION 
 
The evaluation of software engineering tools is best 
served by a rigorous empirical approach. A solid 
empirical basis serves to provide a deep understanding of 
the problem of how to determine the effectiveness of 
tools in software development. So, based on the 
delineation of the parallel changes in the large scale 
software systems and the algorithms to detect the 
potential interference between them, we want to evaluate 
the effectiveness of this detection method. 

This research is part of a continuing series of 
investigations based on the change and version 
management histories of one subsystem of Lucent 
Technologies 5ESS Telephone Switching System. Upon 
the analysis of the change history, we found that high 
degrees of parallel changes happened during the 

development [1, 2]. So these changes are very likely to 
conflict with each other.  

We classify the conflicts into two levels: prima facie 
conflicts (the changes happen on the same lines of source 
code) and semantic conflicts (the changes are made to the 
same slice of program and modify the semantics in 
different ways). In a previous study on the subsystem of 
5ESS, we showed that 3% of the changes made with in 24 
hours by different developers physically overlapped each 
others’ change [1, 2]. 

But we believe that more conflicts exist at the semantic 
level. Based on the data dependency analysis and 
program slicing, we have proposed a semantic 
interference detection algorithm [15].  

To investigate the effectiveness of this algorithm, we 
propose to evaluate the following two hypotheses: 1) the 
number of semantic interferences this algorithm will 
detect is dependant on the degree and kind of parallelism 
that occurs in the versions analyzed; and 2) this algorithm 
saves time and effort especially where parallel changes 
happen in the software development. To quantify the 
evaluation, we use the change and version management 
histories of the 5ESS subsystem. We also utilize the effort 
analysis technique in [18] to investigate the effectiveness 
of our algorithm. 

In Section 2, we discuss the background for our 
evaluation work.  In Section 3, we give an overview of 
the semantic interference detection algorithm. While in 
Section 4, we show the concrete steps we perform for the 
evaluation. Finally, in Section 5 we summarize our 
approach.  

 
2. BACKGROUND 
 
In this study, the data repository and our previous study 
constitute the base environment to evaluate the semantic 



interference detection algorithm. We present the 
description about them in this section. 

 
2.1 Change & Version Management Repositories 
 
The data for us to evaluate the analysis tool, as well as 
that for our previous parallel changes studies, comes from 
the complete change and version management history of a 
subsystem of the Lucent Technologies’ 5ESS. It covers 
the first fifteen years of the subsystem project [3, 4]. 
Changes in the development organization also contributed 
to the high degree of parallel changes in the development. 
The number of developers reached 200 at the peak and 
dropped to a low of 50. And the two products, one for US 
customers and one for international customers, were 
developed separately although some files are common for 
both of them. 

Lucent Technologies uses a two-layered system for 
managing the evolution of 5ESS: a change management 
layer, ECMS [4], to initiate and track changes to the 
product, and a configuration management layer, SCCS 
[5], to manage the versions of files needed to construct 
the appropriate configurations of the product.  

In 5ESS, the changes are managed in a layered hierarchy: 
feature, Initial Modification Request (IMR), Modification 
Request (MR) and delta. A feature is the fundamental unit 
of extension to the system, and each feature is composed 
of a set of IMRs that represent problems to be solved. All 
changes are handled by ECMS and are initiated using an 
IMR, which may have one or more MRs (each of which 
represents a solution to part of the IMR’s problem), 
whether the change is for fixing a fault, perfecting or 
improving some aspect of the system, or adding new 
features to the system. Each functionally distinct set of 
changes to the code made by a developer is recorded as a 
MR by the ECMS. When a change is made to a file in the 
context of an MR, SCCS keeps track of the actual lines 
added, changed, or deleted.  This set of changes is known 
as a delta.  For each delta, the ECMS records its date, the 
developer who made it, and the MR to which it belongs.  

 

2.2 Parallel changes in the repository 
Based on this package of data, we have done research on 
the phenomena of parallel changes and their effects on 
software quality. 

On the parallel change, our investigation showed that [1, 
2], in this repository: 

• There are multiple levels of parallel development. 
Each day, there is ongoing work on multiple MRs by 
different developers solving different IMRs 
belonging to different features within different 

releases of two similar products aimed at distinct 
markets. 

• The activities within each of these levels cut across 
common files. 12.5% of all deltas are made by 
different developers to the same files within a day of 
each other and some of these deltas interfere with 
each other. 

• Over the interval of a particular release, the number 
of files changed by multiple MRs is 60% that are 
concurrent with respect to that release.  These 
parallel MRs may result in interfering changes --- 
though we would expect the degree of awareness of 
the implications of these changes to be higher than 
those made within one day of each other. 

Further more, our study also found that there is a 
significant correlation between files with a high degree of 
parallel development and the number of faults [1, 2].  We 
use PCmax, the maximum number of parallel MRs per 
file in a day, as the measure of the degree of parallel 
changes. The boxplot (Figure 1) from our analysis show 
that high degrees of parallel changes tend to have more 
faults. The analysis of variance strongly indicates that, 
even accounting lifetime, size and numbers of deltas, 
parallel changes were a significant cause of faults (p 
< .0001). 

 
Figure 1: Parallel development (PCmax) vs. number of 
faults. This boxplot show the number of faults for each 
file, grouped by degree of parallel changes. 

In this repository, we have found high degrees of parallel 
changes and a direct correlation between parallel changes 
and faults. So we believe that it could also serve well to 
adequately evaluate the utility and effectiveness of the 
methods, techniques and tools that detect interference 
between parallel changes.  

 
3. SCA: A SEMANTIC INTERFERENCE 
DETECTOR FOR PARALLEL VERSIONS 



 
In the previous study about the relationship between 
parallel changes and faults, our initial focus was on Prima 
facie conflict. It showed that 3% of the deltas made 
within 24 hours by different developers physically 
overlap another’s change. But the physical overlap is just 
one way by which one developer’s changes could 
interfere with another’s. We believe that many more 
interfering conflicts arise as a result of parallel changes to 
the same data flow or program slice - that is, conflicts 
arise as a result of semantic interference in addition to 
syntactic interference. Semantic interference has become 
one of the major focuses of our current research on 
parallel changes.  

In the study on semantic interference, parallel changes are 
classified into two categories: temporal and logical.  

• Temporally parallel changes are changes performed 
through Version Management Systems that allow 
multiple valid copies of the same code module at the 
same time. Changes of this sort are truly parallel and 
in general, there is no assumed priority among 
changes. The final version is an integrated version. 
These systems embody what is referred to as 
optimistic version control [2, 7]. In this case, there is 
only one delta per version. 

• Logically parallel changes are changes made 
independently on the same release and may be 
temporally separated by minutes, days or even 
months. In this case, the time of submission for a 
change determines its placement in a priority based 
ordering. These changes are done in the context of 
configuration management systems that embody 
pessimistic version control [2, 7]. In this case, there 
may be several deltas per logical version. 

The algorithm to detect semantic interference between 
two deltas is the kernel component in SCA. We use a 
combination of the (static) program slicing [11] and data 
flow analysis [12] (specifically the flow of values from a 
source node to their destination nodes) as the basis for 
this analysis algorithm.   

For each delta, two dependency sets Δ1 and Δ2 are 
calculated from the version before and after the change. 
Where each dependency set is a triple (v, d, u) such that 
vertex u uses the variable v that is defined in vertex d. By 
comparing the two dependency sets, we can tell from the 
vertexes which dependency relationships are changed by 
that delta. Then, through forward slicing, we can get the 
program fragments impacted by this delta. With the 
fragment set for each delta, we know whether the two 
deltas semantically interference with each other.  

The implementation of SCA is based on standard real-
world development components, such as SCCS for the 

version management system, and GrammaTech’s 
CodeSurfer [12] for the slicing mechanism.  Note that 
with SCCS, we have only logically parallel versions. 

 
4. MINING CHANGE AND VERSION 
MANAGEMENT HISTORIES 
 
The design and implementation of SCA, together with the 
change and version history databases from 5ESS 
subsystem, provides the experimental setting to evaluate 
the semantic interference detection algorithm. From the 
observation and implications from the previous study, we 
will test the two hypotheses about the tool evaluation: 
1. The number of semantic interferences detected by 

SCA is dependant on the degree and kind of 
parallelism that occurs in the versions analyzed.  

2. SCA saves the time and effort especially where 
intertwined logically parallel changes occur. 

 
We evaluate the effectiveness of SCA in the following 5 
steps.   

Step 1. Create three sets of program versions for 
analysis by SCA 

 
To supply changes of differing degrees and kinds of 
parallelism, we will construct three sets of logically 
parallel change versions from the change and version 
histories.   To maximize internal validity considerations, 
we add the following controls: we make each set as nearly 
identical with respect to the size of changes, number of 
faults, and the purposes (i.e., corrective, perfective or 
adaptive classified according to the MR classification 
method by Mockus and Votta [20]) of the changes.  
Further we will choose the number of samples for each 
set to achieve a significance level of at least .01. 

1) For the control set, we randomly select versions that 
have no parallel changes with respect to a particular 
release – that is, versions that have only one set of 
changes for the entire release.  

2) For the set representing a low degree of parallelism, we 
randomly select versions that are logically parallel with 
respect a specific release, but that have a reasonable 
amount of time (measured in terms of days or weeks) 
separating the sequence of versions – sufficient time for 
the developers to be able to understand the implications 
of those changes.  We choose a representative number of 
versions with two sets of changes, three sets of changes, 
etc. 

3) For the set representing a high degree of parallelism, 
we randomly select versions that are logically parallel 
with respect to a specific release, but represent versions 
covered by MRs that are in fact being worked on 



concurrently (such that the there is a significant degree of 
interleaving of deltas for each of the files begin changed 
under each MR – cf. [1,2]).  We again choose versions 
that  represent  the varying degrees of parallelism from 2 
to 16 (the highest degree of parallelism found in [1,2]). 

For each set, we mine the change management history to 
find the candidate versions that match the attributes 
desired for the overall controls needed and for the specific 
attributes appropriate for each set.  Once we have the 
candidate set of versions, we then mine the version 
management history for those versions to be analyzed. 

 
Step 2. Analyze the three sets of parallel changes. 
 
In each set of parallel versions, for each related pair of 
versions, create the delta pairs needed by SCA to perform 
its analysis.  Each analysis results in a set of semantic 
interferences created by the second version changing the 
first.  These interferences are the basis for evaluating the 
effectiveness of SCA. 

 
Step 3. Determine the history of relevant faults.  
 
For each set of parallel versions (each with its set of 
semantic interferences) we first mine the change 
management history subsequent to these versions for 
faults found in these versions and then mine the version 
management history to get the code fragments changed as 
a result of fixing those faults.  The results of mining these 
two repositories provide us with the historical  evidence 
of faults relative to the changes in our three version sets. 

 
Step 4. Evaluate the effectiveness of SCA.  
 
The goal of the evaluation step is to determine the time 
and effort saved in finding the faults at the time of version 
deposit by determining the time lapse between the time of 
the fault insertion and its detection and the amount of 
effort needed to fix the problem when it was detected. 
With the results from Step 2 and 3, we have the basic data 
to perform this evaluation.  

For each related pair of versions in the three version sets, 
we compare the program fragments of the faults found 
and the sets of interference between them, and classify 
them into three groups: 

1. Match - the detected interference represents a fault; 

2. No match – an interference was found, but no 
corresponding fault was found; 

3. No match – a fault was found, but no there was no 
detected interference that matched it. 

For group 1, we will analyze and evaluate the 
performance of SCA in two ways: 

a. Determine the time saved by SCA. For set 1,we mine 
the change management history for the available data on 
the time the fault was found and the time it was fixed, etc, 
to calculate the time saved by SCA.  

b. Determine the effort saved by SCA. With the 
information about the changes, we can use the effort 
estimation algorithm in [18] to quantify the saved effort. 

We then analyze the time data across the three different 
version sets, the fault rates, the change sizes and their 
respective purposes to provide the time effectiveness of 
SCA with respect to faults found. 

Group 2, represents, presumably, false positives in our 
interference analysis – that is, interferences for which 
there were no faults.  This represents the noise level in 
the evaluation of SCA, which if too high will of course 
detract from its utility as an effective analysis tool.  We 
analyze what appears to be the noise level in two ways:  

a. For the false positives that we determine to be 
intentional interferences, we first check to determine the 
relationship between corrective changes and false 
positives. In particular, we want to see how many of the 
false positives could be eliminated by not analyzing 
corrective changes.   For the remaining false positives, 
look for common factors among them and consider ways 
to improve the interference detection algorithm. 

b. If the interference is not an intentional one, analyze 
the code change to see if it represents a fault that has not 
been found.  If it does represent a fault that has not been 
found yet in the course of system testing and 
development, this represents an additional dimension of 
effectiveness for SCA. 

Group 3 represents faults that are not visible to SCA in 
terms of semantic interferences as it is currently 
configured. We summarize the kinds of faults 
represented to see whether there might be the faults that 
could be detected by extending SCA.  

At this point, we can determine the relationship between 
the three version sets and how effective SCA was in each 
of these sets. 

 
Step 5. Summarize our evaluation work.  
 
With the results of Step 4, we evaluate SCA with respect 
to how much time and effort it saved, what kinds of faults 
it can find and what kinds faults it cannot find.  

With the evaluation in hand, we add both to our 
understanding of the amount of interference in terms of 
both prima facie and semantic interference in parallel 
changes and to our understanding of the relationship 



between the degree of parallelism in changing source 
code and the number of faults found. 

 
5. SUMMARY AND NEXT STEPS 
 
The high degree of parallel changes in the development of 
large scale software systems makes the evaluation of 
semantic interference detection methods increasingly 
important. With the data from change and version 
management histories in the 5ESS system, we construct 
an empirical study to show how much time and effort our 
algorithm can save for developers. In this paper, we give 
an overview of our semantic interference detection 
method, the data used to evaluate them and the steps to 
implement this study.  

To deepen the evaluation, we would like to do further 
work following this study: 

First, deeply analyze the faults not found by the semantic 
interference detection algorithm. We could classify them 
according to their semantic traits and explore various 
analysis technologies.  

Second, compare the cost and effectiveness between 
direct semantic interference detection and indirect 
detection. In our current algorithm, we focus only on the 
direct semantic interference. To quantify the comparison, 
we should implement an indirect semantic detection 
algorithm, test it with the same version sets, and compare 
the resource costs, the detected faults, the ratio of faults to 
noise, and other aspects between the two detection 
algorithms.  

Third, detect higher levels of interference. In this study, 
we analyze the version change at the source code level. 
From the multiple levels of parallel changes in the 5ESS 
system, we believe that the conflicts between changes 
will also happen in the higher levels of software 
development, such as software architecture.  
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