

Difficulties with Feedback Control in Software Processes?1

Meir M. Lehman, Dewayne E. Perry & Wlad Turski

1 Proc. of the 19th Australasian Comp. Sc. Conf., Melbourne, Australia, invited talk, 31 Jan. - 2 Feb. 1996, pp. 107-115.

Abstract

Early data on the phenomenology of software system evolution suggest that such
evolution involves and is, to some extent, governed by feedback. This feedback may
take the form of information fed back to individuals or groups as a form of learning
from experience or may take the form of observation and data that are used to control
some aspect of the process. This chapter puts the former to one side and concentrates
only on feedback to explicit control mechanisms.

Initial investigations, using a basic model for feedback control, have exposed a variety
of reasons why software processes are not amenable to classical feedback control:
software processes are design, not production processes; control-directed process
changes tend to be step functions, not regulatory ones, and are often as creative as
the processes they control; and system development and evolution processes are still
immature with little theory to guide the design and application of regulation control
mechanisms. Despite these limitations, one can find promising examples of feedback
control and, on the basis of more recent phenomenological evidence, believe this area
of research to be critically important and vital to understanding and controlling the
development and evolution of software systems and improvement of software
processes.

Introduction

Software development and evolution processes have become a significant area of
software engineering and software engineering research. Among topics of
importance are process formalisms, process support, process assessment, process
architecture and process improvement. One of the underlying motivations for the
emergence of this relatively new direction in research and practice is the need to
move the development and evolution of software systems from a craft venture to an
engineering one. An expected consequence of this move is that the methods and
techniques by which software systems are built and evolved will be open to
scrutiny and evaluation by the community rather than considered to be secrets
passed amongst the initiated.

Given that the functionality of systems built (and hence the systems themselves)
can be exceedingly complex, that the processes used to build and evolve these

systems are complex, that the organizational structures that provide their
development and operation context are equally complex, and that there is
undoubtedly extensive feedback in the processes used and organization that
executes them, it is surprising that feedback and feedback control have been so
little investigated in the context of software systems evolution.

Despite the fact that the role and the impact of feedback has received little
attention as a research topic, it has long been recognized as a significant factor in
software processes. It was, for example, referred to in passing by several people at
the software engineering workshop in Garmisch [nau68] and is also discussed
briefly in Lehman's Programming Process report [leh69].

Sequence No.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Size

Figure 1 – Growth (in number of modules) of OS/360 over releases

Lehman and Belady [bel72, leh85] provide one of the earliest examples of feedback
control at work in the evolution of OS/360. Figure 1 depicts the growth of OS/360
in terms of number of modules over a period of 26 releases. The cyclic pattern
evident in the plot from release 1 through release 20 is characteristic of feedback
systems. They observed

... the ripple is typical of a self stabilizing process with positive and negative feedback
loops. From a long-range point of view the rate of system growth is self-regulatory,
despite the fact that many different causes control the selection of work implemented in
each release, with budgets varying, increasing numbers of users reporting faults or

desiring new capability, varying management attitudes towards system enhancement,
changing release intervals and improving methods ...

It is in this context of evolutionary software development that we have for some
time studied feedback and feedback control, a study for which the FEAST2 project
has provided a formal framework for this past two years [leh95, fea1, fea2, and
fea3]. This chapter first examines the definitions and nature of feedback and
control, and then presents a research manifesto and feedback control model as the
initial basis for further investigation. On the basis of this groundwork, the chapter
then considers various facets of feedback and control in the context of software
evolution processes: what feedback control means in design processes as opposed
to production processes; what feedback control means when it leads to a change in
processes rather than in their regulation; and finally, the contrast between
feedback influence and feedback control in relatively immature processes.

Feedback and Control

As the term feedback is used in a wide variety of contexts, it is worthwhile to take a
look at the basic meanings of the word. Webster's New Collegiate Dictionary defines
“feedback” as follows:

feedback: 1: the return to the input of a part of the output of a machine, system, or
process (as for producing changes in an electronic circuit that improve performance or
in an automatic control device that provides self-corrective action) 2 a: the partial
reversion of the effects of a process to its source or to a preceding stage b: the return to
a point of origin of evaluative or corrective information about an action or process
<student ~ was solicited to help revise the curriculum> <we welcome ... ~ from our
readers - brickbats as well as bouquets – Johns Hopkins Mag.> also : the information
so transmitted

The mere return of information, even if it is evaluative or corrective, does not
guarantee that it will have any effect. To have an effect, this information must be
somehow used, i.e. it must produce a change in something. And, while there are a
variety of ways in which feedback may have an effect, the interest here is in one
specific means of producing such effects --- namely, feedback control.

The verb control also has two principal (families of) meanings. Quoting again from
the Webster's New Collegiate Dictionary:

1: to check, test, or verify by evidence or experiments 2a: to exercise restraining or
directing influence over: REGULATE b: to have power over: RULE

These two meanings are often used interchangeably in everyday speech. However,
when applied to software evolution processes, the activities denoted by “control—1”

2 FEAST stands for Feedback, Evolution, And Software Technology.

are quite different from those denoted by “control-2”.3 The confusion is amplified
(or, perhaps, generated) by the fact that a single person (or a single group) often
performs both actions, “control—1” and “control—2” with respect to a productive
activity. In addition, it may happen that the same person or group performs
“control—2” over several activities, particularly when “control-2b” is meant.

Nevertheless, a precondition for any sensible approach to a scientific and
technological treatment of software evolution processes is that the meanings of
“control” are disentangled. From now on, the word check will be used for “control—
1” and regulate (or possibly rule, if it is needed) for “control—2”. Thus checking is
distinct from regulating.

In a disciplined work environment, all productive work actions are checked: do
action until check-successful. This qualitative function of checking is a part of
production, not part of control. It guarantees an established level of completeness
or quality of the production.

Regulation, on the other hand, is the control of the production process on the basis
of the production results. It is this meaning of control that is used in the
combination feedback control. The whole idea of applying feedback control to
software evolution processes rests on the assumptions that there is a stream of
similar production tasks and that regulation of the production processes is
required to maintain an ideal production state.

There are at least two factors that effect the maintenance of this ideal production
state: instability and random events. It is difficult to deny that software evolution
processes are often unstable4, or that random5 events occur in and impact these
processes. Thus, many software development processes require feedback control
to contain the tendency towards instability and to control the consequences of
randomness.

In contrast to checking, regulating may have one of the following effects as a result
of evaluating feedback.
• Change the processing --- that is, change various parameters that govern the

production process

3 The distinction between “control--2a” and “control--2b”, although important in many contexts, is
less fundamental in our considerations as---usually---one has to have power over something if one
is to exercise restraining or directing influence over it. With some hesitation one could accept that
in the context of software evolution processes “control--2a” implies “control--2b”.
4 Note of the editors: The term instability in the context of the software process has a meaning than is closer to the use of
the term in business than to the use of the term in control theory. Some of the characteristics of stability in business are
steady growth and absence of unanticipated circumstances.
5 Note of the editors: Such random events do not necessarily have to be random in the statistical sense, but unpredictable
and unanticipated.

• Change the process --- that is, change the process structure itself rather the
parameters that control the process. There are two ways in which this change
may be achieved:

o statically --- use an alternative part of the production process
o dynamically --- change the existing process or create a new process

Technology versus Sociology

Given our definitions of feedback and control, there are still a wide variety of
feedback control phenomena that are excluded from these investigations. One
such general category is that of learning as an example of feedback control. In this
case, feedback is the information returned to a person placed at the point of origin,
who absorbs the information and via an act of human learning modifies his or her
future behavior -- for example, the way this person manages whatever happens to
be his or her activity domain.

This interpretation is acceptable for the sociology of software evolution processes.
It can be a part of a manager's or developer's education: “thou shalt pay (more)
attention to the feedback you are getting”; or even more aggressively: “thou shalt
seek more feedback about the actions you manage”. It can be elaborated by
supplying a list of sources from which the feedback is to be considered or sought
categorized into “important”, “vital”, and “irrelevant” classes. Suitable case studies
may be conducted, yielding instances of the benefits that accrue when one heeds
such feedback and of the disasters that follow when the feedback information is
neglected. This, no doubt, can (and will) be a useful part of education and training
for both managers and developers.

However, this type of feedback and control cannot easily be interpreted and
modeled as a technological view of software evolution processes. The point is that
the evaluation and control machinery is all in the human brain. Moreover, even if
one accepts that feedback provides the stimulus and basis for learning, one still
faces a dilemma: either one explains what the appropriate reactions are that need
to be learned, or one leaves that to intuition or creativity.

In the former case, i.e. when it is ultimately known what are the recommended,
beneficial, profitable reactions to a particular combination of feedback signals
received, then one does have an explicit control machinery (``when you get too
many error reports coming from the customers strengthen the quality control'',
``when you are late with delivery, cut down on the most time-consuming activity''
etc.)

In the latter case (invoking intuition) such machinery is not readily apparent, but it
is hard to see what advice can be given to a manager or developer as the
(necessary) second part of the admonition to pay more attention to the feedback. A

rational person will almost certainly ask: “What am I supposed to do when I collect
all this information fed back to me? How can I act on it?” Unless one is prepared to
answer “use your head'” or some similarly profound platitude, one is inextricably
bound to construct control machinery.

Whatever other kinds of feedback are considered, if they are to be used for
improving the software process they must be turned into explicit control
mechanisms6. Thus, the concentration here is, at least initially, on feedback
control as a technological rather than a sociological endeavor.

Manifesto and Model

As a prelude to these investigations (in the FEAST project), we laid down a
manifesto defining project goals, identifying supporting postulates, describing a
basic model and enunciating a research hypothesis. One of the advantages of this
approach is that the manifesto provides the primary inputs to defining a project
and developing a work plan.

There are two general goals for our investigations:
• To produce specific recommendations, guidelines, methods and tools for

software evolution process improvement, and
• To contribute to a science of software process and software evolution.

These goals are to be pursued in the context of process systems that satisfy a set of
requirements about their structure and composition. That is, the FEAST project is
limited to process systems that implement the evolution of software systems and
that satisfy the following postulates:
• These systems have rich networks of feedback,
• Some of the feedbacks stabilize characteristics in these systems, and
• Some feedbacks are controllable.

The basis for these investigations is a process model of feedback and control. This
model consists of a process element (PE) that applies resources (R) to transform
inputs (I) into outputs (O). If one of the destinations of the output is a controller
(C), where output is fed back into the process element, we obtain a general
controlled feedback loop (as in Figure 2). We term this general controlled feedback
loop a process unit (PU). Process elements can contain process units.

6 Note of the editors: See chapter by Tasse and Madhavji, also in this volume, which presents a technical solution to make
explicit the feedback mechanisms in the process.

PU

I
O

PE

C

PU

I
O

PE

C

Figure 2 – A process model unit involving feedback and control

The hypothesis for this chapter is that a process or process system that satisfies the
postulates above can be usefully decomposed into a manageable number of process
units.

A number of important issues arise in the investigation of this hypothesis using the
model we have proposed. The first of these issues is how to model software
evolution processes --- in particular, what does one model and what is the basic
unit of modeling. There are two general approaches one might use: one is to model
people and organizations, the other is to model what people and organizations do --
- that is, their activities. Choosing people and organizations would lead to a
decomposition similar to an organizational chart of a company. For different
projects executed by the same company, the charts need not be identical, even
when the projects are concurrent. While these organizational charts are useful for
some purposes, they are not useful here.

The goal is, instead, to model the activities in software evolution processes. A
process element in this model, then, represents an activity performed in evolving a
software system. Moreover, this choice represents a focus on the design of the
processes and their activities, not their implementation in terms of people, tools,
environments and organizations. It should be emphasized that the resulting model
may not map readily to a traditional organizational structure --- in particular, the
control aspects in the model are associated with the elements they control and not
with the parts of the organization that may execute them.

The second issue is that of process element decomposition. Given that activities
are both the basic building block and the decomposable building block, how does

one structure software evolution processes recursively using this model. A process
element may be composed of both process elements and process units. It is not
necessary that a productive action have feedback control. It may simply be an
activity that produces something necessary for the overall product of the evolution
processes. The activities may be composed sequentially or in parallel into a larger
unit with or without a controller. The internal structure of a process element then
may look like a graph with multiple paths starting with the initial input and
resulting in the final output. How the decomposition is arrived at and how far the
modeling effort is taken --- that is, how many levels of recursion one has --- is a
matter of design choices.

Given that one can recursively decompose the process element of a process unit
into a combination of process elements and process units (each with their own
controller), the third issue is that of how far a controller can extend its control.
Obviously, the controller may affect the parameters that it regulates. These
parameters may affect the control of the checking in various process elements
(such as how many errors are allowed to be found before rewriting is required) or
they may affect the control of the subordinate process units (changing their
parameters and thus indirectly changing their range of control). Secondly, the
controller may effect a change in the activity structure by selecting a different, but
existing, path through the process element. And finally, the controller may modify
the internal structure of the process element it controls. These may range from
simple changes to the process elements and their interconnections to radical
redesigns of the entire activity.

A critical question at this point is the extent to which a controller may effect its
control --- how far into the recursive structure can a controller see? Since it is the
intent of this research to keep the model as simple as possible and introduce
complexity only when it is clear that one cannot do otherwise, the span of control
is limited to only one level of nesting. That does not, however, preclude the
controller from establishing changes in the controllers it regulates to cause them to
carry out desired changes beyond its limits.

The fourth issue is the form and frequency of the output from the process element
that is used as input to the controller. A classical feedback control approach
would suggest that the output from the process element is discrete and separated
in time by whatever delay exists due to the arrival of input and the time to
transform that input into output. For sub-elements nested deeply in the hierarchy,
this time delay may not be significant, but at the top level of a process that evolves
a very large software system the delay may be on the order of months or even
years.

In this latter case, the delay means that the controller will be able to effect its
regulation only infrequently. In practical terms, however, control is exercised on a
much more frequent basis, especially by such organizations as project and process

management. Moreover, one can certainly see in the current processes and
activities the production of project, process and product information which can be
considered output of a sort --- though different from that of the product itself. If
one permits this sort of output, one gets something more akin to continuous
output that can be assessed and evaluated by the process element controller and
used to regulate the process in a more timely manner during, rather than between,
the transformation of input to output.

This more continuous stream approach raises a side-issue: what determines the
extent of visibility of these project, process and product data? We certainly want to
avoid an information explosion because that is as poor a data modeling technique
as having too many lines of control. In the end, it is the controller that determines
what information is needed if its job of regulation is to be effectively performed.
Thus, the information output (other than the product itself) is precisely that
required by the controller as necessary to properly regulate its process elements
and its sub-elements.

A number of extensions to this model, that may be allowed if one cannot properly
model evolution processes without them, suggest themselves at this point.

• Allow a controller to be recursively decomposable into a collection of subunits

that together define the controller.
• Allow arbitrary input to the controller where now the only input is that which is

produced by the process element and, indirectly, that from the ruling controller.

As with many software engineering analytic tools, the very act of decomposing a
process in a particular fashion may yield substantial dividends, quite apart from
any benefits that may accrue from applying subsequent steps. A very important
kind of dividend is the listing of a regulators' admissible actions and required
inputs. Quite likely one will discover how badly defined the regulators' prerogatives
are, how arbitrarily they are distributed between various regulators, and how little
justification there is for allowing some regulators to do things that are just as
groundlessly denied others. If this hunch proves correct, a very concrete
improvement to many software evolution processes would be instantly available:
the unification of regulators scope under similar (or even more so under identical)
stimuli. Translated into shop-floor terms, one would advise giving similar powers to
people who control similar activities.
This piece of advice is of course trivial; the difference is that with the
decomposition in hand one can flesh out the similar parts of the advice.

The desired result of a fully realized multi-level control model is the identification of
controllers, their settings and their predicted results so that the well-regulated
processes so modeled reach a steady-state --- that is, reach a state of stability and
predictability.

Influence versus Control

On the basis of the OS/360 phenomenology [leh85] and our model, various process
modeling exercises were undertaken to explore the various issues in feedback and
control. The general result was a paucity of feedback control examples. The most
frequently encountered kind of control is that where control changes or redesigns
the controlled process element. Examples of changing process or control element
parameters --- that is of regulation in the classical sense --- were almost impossible
to find. There was, however, anecdotal evidence of several examples of this type of
classical regulation. These examples are discussed in the next section.

Despite the difficulty in identifying predictable control mechanisms, it was clear
that there is a wide variety of feedback effects --- that is, feedback control that is
implicit and unpredictable rather than explicit and well-defined.

There are a number of reasons for this state of affairs:
• first, the fields of software engineering (in general) and process engineering (in

particular) are relatively immature;
• second, there may well be feedback overload in which the various feedback

paths interact in unknown ways and hinder the understanding of individual
feedback and control mechanisms;

• third, process changes as a result of control tend to be step functions, not
regulation; and

• fourth, classical feedback control mechanisms are generally applied to
production. Their applicability to design processes such as software production
and evolution processes have not been widely studied.

Immaturity

As a field, software engineering is relatively young and as a subfield of software
engineering, process engineering is very young. One might characterize most
software evolution processes as being in the ``chitty, chitty, bang, bang'' stage ---
that is, the entire enterprise is just barely held together and all the effort goes just
keep the enterprise afloat. As such, the evolution processes are workable, but only
just, and all the time is spent tuning and repairing the enterprise with no
resources left for more formal feedback and control mechanisms to be put in place.

While the previous description may be somewhat of a caricature, it is undeniable
that there is little theory for software evolution processes, process improvement, or
even of process systems and their architectures [per94, per95]. Because of this
lack of theory, little is known about what controls are available, and if they are
known, virtually nothing is know about what their settings are and what effects
they have.

Clearly, research is needed to establish appropriate theories from which to derive
necessary control mechanisms, and experimentation is needed to establish their
settings and effects.

Feedback Overload

A basic result in linear control theory may provide an explanation of why there is a
lack of readily discernible ``control knobs'' in software evolution processes.7 While
these processes are not linear systems, the analogy is a reasonable initial
approximation.

If a systems' open-loop transfer function (that is, with no feedback) is A and a
fraction of the system output b is fed back (negatively) to the input, then the
system's closed-loop transfer function is A* = A/(1+bA). Thus, in a system where
there is a significant amount of feedback, A* approaches 1 and the transfer
function tends to be merely a function of b more or less independent of A.

While this makes it difficult to find the control knobs in evolution processes, it does
have a possible and very interesting side effect: it is possible for intrinsically poor
software processes to produce good products because the actual process execution
is dominated by the feedback (the set of bs) and not the basic process . This is
observed in practice in software development and evolution processes when a high
degree of corrective feedback is supplied by, for example, capable and experienced
lead developers or project managers.

Step Functions versus Regulation

One of the means of regulation was that of changing or redesigning the controlled
processes. It is this category of control that was found most often in these
explorations. Almost uniformly, however, these process changes represented step
functions rather than control knobs by which a process could be regulated --- that
is, they change the process (often significantly) by improving one or more of its
aspects, not by providing a means of regulation.

Watts Humphrey's Personal Software Process (PSP) [hum95] provides one such
example. PSP is introduced in a series of steps where each step concentrates on a
particular aspect of the personal process. A fundamental part of the process is
measurement of key process factors which provide feedback to the person
executing the process. The key to the personal process is personal defect

7 This explanation was suggested by Ray Offen, Macquarie University, in an informal discussion
about the problems of finding feedback control in software processes.

management in which the yield measure is the most important: yield is the
percentage of defects found and fixed before compilation and testing.

In teaching PSP, the students are given a set of 10 programs that are developed
sequentially as different parts of PSP are introduced. Design and code reviews are
introduced just prior to exercise 7. This introduction represents the major change
in the evolution of PSP from its introduction to a fully fleshed out process. While
there is a slight increase in yield between exercise 1 and exercise 6, there is a
significant jump after the introduction of reviews, causing the average yield to
change from about 8% to about 50%, and thus representing a significant process
improvement. After that through the end of the exercises, there again is some
slight improvement.

This introduction of design and code reviews represents a step function that
improves the process; it does not represent a turnable knob that enables one to
regulate PSP.

Still, this use of step functions is not so different from what happens in other fields
-- for example, economics --- and one sees progress in these fields from applying
principles of feedback control.

Design versus Production

While software production is often considered to be design and implementation
where implementation refers principally to code production, a key insight to
understanding software development and evolution processes is that the entire
design and coding processes are actually design processes; they are not
manufacturing or production processes. Code represents simultaneously the
lowest level of design and the beginning of construction. Building a software
system is like building a new and unique bridge. The notions of control are as
difficult to express there as they are in software processes. How does one apply
feedback to a creative process?

Where, then, is the production part of software processes? It is in the compilation
and linkage of the component parts -- that is, in the production of an executable
version of the system. This production part is, however, entirely automated and
not very interesting from a feedback control standpoint.

As an analogy to software evolution, consider the evolution of a particular brand of
automobile. That evolution is not in the production line. For individual instances
of cars (the ones we own), evolution takes place in the repair shop. But, evolution
of a particular car line takes place in the design laboratory. The governor aspect of
control is not applicable at the design level and feedback at the production level is
orthogonal to design and evolution. The controllers are changed for assembly and

production as a result of design changes. However, evolution of the product line
cannot be explained by its controllers, nor reduced to its controllers.

This analysis suggests that the manufacturing and production process with all the
feedback controllers that go along with it are of little direct interest to studying the
software process. Software processes are more related to invention than to
production and manufacturing. Phenomenological data (for example, figure 1),
however, suggests otherwise and this is something that requires further
investigation

A first insight indicates that, for example, feedback plays a significant role in the
coding and testing part of the processes. One reason for this is that coding and
testing are where one is closest to the non-creative aspects of the process.
Moreover, at a certain distance of abstraction, one can view the design and coding
processes as the transformation of input specifications to output products. It is
this latter view, of course, that suggests the utility of feedback control principles.

Examples of Feedback Control

As mentioned above, the most common kind of feedback control found in these
explorations was that which led to changes in the process. Votta and Zajac [vot95]
describe this type of example in their study of design process waivers. In the
evolution of their large-scale, real-time system, features are the unit of work.
These range in size from several lines of code to multiple thousands of lines of
code. The same design process is used for all features. However, for the smaller
ones, waivers may be submitted to omit various parts of the process, which while
appropriate for large features are inappropriate for smaller ones.

Votta and Zajac acted as the control element of the process and collected a large
set of waivers over a period of time. After collecting these waivers (as outputs from
the design process), they evaluated the various requests and assessed their merits.
The result was a control action to define three separate paths of design dependent
on the estimated size of the feature --- each class of features would have a design
process appropriately scaled to its needs as determined by its size.

In this example, the controller changed the process by introducing several extra
paths through the internal process elements and process units that are governed
by a size switch. While it is an example of feedback control, the control itself is as
creative in its effects as the design process it regulates.

In the search for the more classical regulating control, there is anecdotal evidence
of one such control in the use of code reviews. While there is no specific
documentation, it is a case that is entirely plausible. The regulation works as
follows: if there are too many errors in the code units being produced, extra code

reviews are introduced to reduce the number of errors; if time is critical and the
number of errors is sufficiently low, code reviews are removed from the process to
speed up the process at the expense of an increase in errors.

Summary

This work over the past year8 has been primarily a philosophical or intellectual
exploration of the problems of applying feedback control principles to software
evolution processes. This exploration has been based on the combined industrial
and research experience9 of the authors and those of the various participants in
the FEAST Workshops. As noted in the discussions in the preceding sections,
there is phenomenological evidence that classical feedback control is at work in the
evolution of software systems and that there is a significant amount of feedback
present in these processes. While it is apparent that these various feedback paths
have a variety of effects, the explorations reported here have yielded little that can
be counted as predictable control. It will require extensive scrutiny and modeling
of current industrial processes to determine the actual impact of feedback and
control.

Meanwhile, developers continue to build and evolve software systems. They
continue to make progress in their understanding of those processes though there
is little record of their investigation of feedback paths and its impact.

The agenda of this research is focused on exploiting practical, real world experience
as the basis for understanding and delineating feedback control in software
evolution processes: noticing correlations among feedback and effects, finding
patterns in feedback phenomena, and performing engineering and scientific
experimentation to determine both useful control effects and their underlying
mechanisms.

This research utilizes a three pronged approach: collecting and analyzing system
evolution phenomena, applying systems dynamics modeling, and experimenting
with feedback controls.

The phenomenology of system evolution was one of the starting points for this
research, a phenomenology of a 1960's operating system. There are questions as
to how relevant that phenomenology is today: perhaps it was the result of the
specific application, or perhaps the result of the specific environment or
organization. However, the authors’ intuition is that it is the phenomena of large

8 Note of the editors: The chapter refers to the year 1995.
9Each of the authors has had extensive system development experience in industrial and
commercial settings as well as academic and industrial research experience in software and process
engineering

systems' evolution and independent of the time, application and environment. The
very first data on a 1990s system that the authors have just begun to study10
appears to confirm the earlier observations and support our intuitions.

To understand the complexity of feedback paths, control and their interactions,
systems dynamics models will be created of several currently used evolution
processes. In this way the models can be validated with current project data and
insights gained into the various feedback phenomena that are at work in building
and evolving software systems. Industrial partners are the source of these
processes and data.11

Insights gained into feedback control phenomena will be confirmed and explored
further by means of both engineering and scientific experiments. In this way, the
identifiable impact of feedback controls and their range of effects can be
determined.

The intent of this research, thus, is to extend the science of software evolution and
develop methods, techniques and tools to aid both system evolution and process
improvement.

Acknowledgements

We wish to thank the various participants in the FEAST workshops and our
industrial partners for their insights, questions and discussions on the various
aspects of feedback and control phenomena.

References

[adb91 T. Abdel-Hamid and S. E. Madnick, Software Project Dynamics -- An
Integrated Approach. Prentice Hall, 1991.

[bel72] L. A. Belady and M. M. Lehman, An Introduction to Program Growth
Dynamics. Statistical Computer Performance Evaluation, Academic Press, 1972.
503-511.

[bro86] F. P. Brooks, No Silver Bullet -- Essence and Accidents of Software
Engineering. Proceedings of the IFIP Congress 1986, Dublin, Ireland, 1069-1076
(September 1986, Elsevier Science Publishers.

10 Note of the editors: This is a reference to a financial transaction system. A report of this study is presented in Lehman
MM, Perry DE, Ramil JF, Turski WM and Wernick P, Metrics and Laws of Software Evolution - The Nineties View,
Proc. Fourth Int. Symp. on Software Metrics, Metrics 97, Albuquerque, New Mexico, 5-7 Nov. 97, pp 20-32
11 For results of this investigation see the FEAST website http://www.doc.ic.ac.uk/~mml/feast/ <<as of August 2005>>

http://www.doc.ic.ac.uk/~mml/feast/

[fea1] FEAST Project --- Preprints: FEAST Workshop I, Imperial College, London
UK, 16-17 June 1994

[fea2] FEAST Project --- Preprints: FEAST Workshop II, Imperial College,
London UK, 24-25 October 1994.

[fea3] FEAST Project --- Preprints: FEAST Workshop III, Imperial College,
London UK, 28 February - 1 March 1995.

[hum95] Watts Humphrey, The Power of Personal Data. Software Engineering
Institute, 1995.

[leh69] M. M. Lehman, The Programming Process. In [leh85], 39-83, 1969.

[leh85] M. M. Lehman and L. Belady (eds), Program Evolution -- Processes of
Software Change. Academic Press, 1985. Available from links at
http://w3.umh.ac.be/evol/publication.html <<as of Oct 2005>>

[leh87] M. M. Lehman, Process Models, Process Programs, Programming Support --
Invited Response to a Keynote Address by Lee Osterweil. Proceedings of the 9th
International Conference on Software Engineering, Monterey CA USA 14-16
(March/April, 1987)

[leh95] M. M. Lehman, Software Process Improvement --- The Way Forward.
Proceedings CAiSE 95, LNCS, Springer Verlag, 1-11 (June 1995)

[nau68] P. Nauer and B. Randall (eds), Software Engineering -- Report on a
Conference, Sponsored by the NATO Science Committee. Scientific Affairs
Division, NATO, Brussells, Garmisch 1968. Available online at
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/

[ost87] L. J. Osterweil, Software Processes are Software Too. Proceedings of the
9th International Conference on Software Engineering, Monterey CA USA, 2-13
(March/April 1987)

[per94] Dewayne E. Perry, Issues in Process Architecture. Proceedings of the 9th
International Software Process Workshop, Airlie VA, 138-140 (October 1994)

[per95] David C. Carr, Ashok Dandekar and Dewayne E. Perry, Experiments in
Process Interface Descriptions, Visualizations and Analyses. Software Process
Technology: EWSPT'95, Noordwijkerhout, The Netherlands, 119-137 (April 1995)

[tur86] W. M. Turski, And No Philosophers Stone Either. Proceedings of the IFIP
Congress 1986, Dublin, Ireland, 1077-1080 (September 1986, Elsevier Science

http://w3.umh.ac.be/evol/publication.html

Publishers)[vot95] L. G. Votta and M. L. Zajac, Design Process Improvement Case
Study Using Process Waiver Data. Software Engineering -- ESEC'95, Sitges,
Spain, 44-58 (September 1995.

	Abstract

