

Predicting Architectural Styles from Component Specification

Sutirtha Bhattacharya, Dewayne E. Perry
Empirical Software Engineering Lab (ESEL)

ECE, The University of Texas at Austin
Austin, TX 78712

sutirtha.bhattacharya@intel.com
perry@ece.utexas.edu

Abstract∗
Software Product Lines (SPL), Component Based
Software Engineering (CBSE) and Customer Off The
Shelf (COTS) components provide a rich supporting base
for creating software architectures. Further, they promise
significant improvements in the quality of software
configurations that can be composed from pre-built
components. Software architectural styles provide a way
for achieving a desired coherence for such component-
based architectures. This is because the different
architectural styles enforce different quality attributes for
a system. If the architectural style of an emergent system
could be predicted in advance, a System Integrator could
make necessary changes to ensure that the quality
attributes dictated by the system requirements were
satisfied before the actual system was deployed and
tested. In this paper we propose a model for predicting
architectural styles based on use cases that need to be met
by a system configuration. Moreover, our technique can
be used to determine stylistic conformance and hence
indicate the presence or absence of architectural drift

1. Introduction and Scope
Software architecture styles represent a cogent form of
codification [1, 2, 3] of critical aspects to which an
architecture is expected to conform. They differ from
patterns in that patterns are the result of a discovery
process, not a constraint process. Of course, patterns may

∗ This research is supported in part by NSF CISE grant IIS-0438967.
Please note that any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation

Copyright © 2006 Sutirtha Bhattacharya, Dewayne Perry.
Permission to copy is hereby granted provided the original
copyright notice is reproduced in copies made.

play an important role in the creation and specification of
a style: commonly occurring patterns provide a useful
basis for codification. Part of the confusion comes from
the fact that styles can be viewed both prescriptively (i.e.,
as a complex constraint that must be satisfied) and
descriptively (i.e., as a description of what exists).

In 1997 Mary Shaw and Paul Clements proposed a
feature-based classification of architectural styles [3].
They proposed that different architectural styles can be
discriminated among each other by focusing on the
following feature categories.
 Constituent Parts i.e. the components and connectors
 Control Issues i.e. the flow of control among

components
 Data Issues i.e. details on how data is processed
 Control/Data Interaction i.e. the relation between

control and data
 Type of Reasoning: Analysis techniques applicable

to the style
Even after years of software engineering research,

the relationship between software components and
architectural styles hasn’t been adequately explored. This
in fact is surprising given the attention Component Based
Software Engineering (CBSE) has received in the recent
past. However, if we explore the motivation of these two
disciplines, we would realize that the relationship may
not be obvious.

The focus of CBSE is to build software systems
using pre-existing components thus reducing software
costs and delivery time. The focus of this area has mostly
been directed towards understanding and resolving
integration issues between the various components and
establishing a common vocabulary for facilitating the
integration. The focus of Software Architecture, on the
other hand, is concerned with the initial structure and
constraints of complex software systems.

The critical question is: when designing software
systems from components, should we leave the emerging
architectural styles of a software system to pure chance or
should we investigate what the component characteristics
that need to be understood are, to enforce an architectural

style by choice. Since different architectural styles
support distinct sets of quality attributes, the benefit of
evaluating components for suitability to an architectural
style is obvious, as the quality attributes for a system are
often dictated by the system requirements. Software
Quality Attributes are essentially the benchmarks that
describe a system’s intended behavior within the
environment for which it was built. It includes system
characteristics such as performance, security, availability,
usability etc. The ability to determine the architectural
style for a system configuration will help us predict
whether the desired quality attributes will be satisfied by
the system prior to actual deployment.

In this paper we propose a model for documenting
component specifications and demonstrate how we can
reason over the specifications to determine the emergent
architectural style a-priori. We analyze the different
feature categories proposed by Shaw and Clements and
identify the component attributes that would help
determine the architectural style, in a system
configuration. Section 2 of the paper provides the
background for our proposal while in Section 3 we
perform the feature category analysis. Section 4 outlines
the steps for architectural style determination. Section 5
outlines the proposal for the validation of our approach
while in Section 6 we document related work. Section 7
concludes the paper.

2. Background

The context for the proposed research is outlined in this
section. We start with the assumption that there exists a
component repository in which software components
relevant for a particular domain have been specified using
our asset specification model (briefly explained here)
against our architectural specification. A System
Integrator identifies a deployment use-case or usage
scenario (consisting of a list of services that needs to be
delivered by the system) that needs to be implemented
using pre-built components. For identifying the
configuration of components that are needed to satisfy the
use case, the System Integrator queries the repository for
the available components that can potentially be used to
satisfy the targeted scenario. The architectural style
related reasoning that we are proposing will be done on
the set of components returned by the component
repository based on the system integrator’s query. The
envisioned reasoning capabilities will facilitate i)
determining whether the set of components returned by
the repository conform to any specific architectural style,
ii) identifying a set of components that conform to a
desired architectural style and hence support the desired
set of quality attributes.

Before we begin, we briefly explain our specification
approach which will be leveraged for the style related
reasoning.

Our specification model captures an architecture in
terms of architectural elements. These elements are
essentially the components and connectors that are
relevant for the application domain and enable functional
partitioning as well as introduce the notion of object
orientation. Figure 1 shows the structure of architectural
element specification.

Architectural

Element Specs

Architectural
Functionality

Specs

Arch non-
functional

Specs
Figure 1: Architectural Element Specification

A key aspect of our model, the separation of the

functional specs from the non functional specs, is
elaborated in Figure 2 and Figure 3.

Figure 2: The Architectural Functionality Specs

In the above diagram, the
• Interface Spec captures the interface information for

the services provided by the architectural element
• Attribute Map captures the domain data supported by

the architectural element
• Behavioral Map captures the state transitions

supported

The Architectural non-functional specs are specified

as in below

Figure 3: Architectural Non-Functional Specifications

For the architectural non-functional Specs, the

Quality Attributes Constraints are shown in Figure 4
while the Deployment Constraints are shown in Figure 5.

Quality Attribute
Constraints

Runtime
Constraints

Static Constraints

Reliability
Constraints

Availability
Constraints

Performance
Constraints

Usability
Constraints

Modifiability
Constraints

Portability
Constraints

Reusability
Constraints

Integrability
Constraints

Testability
Constraints

Security
Constraints

 Figure 4: Quality Attribute Constraint

D eploym ent
Constraints

Core
Infrastructure

Constraints

Interaction
Constraints

Com puting
Platform Const

D ynam ic
D isplay Const.

O perating
System s Const.

Runtim e Env.
Const.

Peripheral Const.

N etwork Support
Const

D atabase Const

COTS package
Const

Architectural
Elem ent Const.

R untim e
Libraries Const.

U ser Interface
Const.

Installation
Const.

Perform ance
M onitor Const.

D ata Transport
Const.

Figure 5: The Deployment Constraints

Each entity in the Quality Attribute constraints and

the Deployment Constraints are further characterized by a
set of attributes. Since the list of attributes is quite
detailed, we do not elaborate them here.

With the above model for architectural element, we
next explain the asset component specification. Asset
components are the software components that have
independent existence and are essentially the pre-built
components that we mentioned at the beginning of this
paper. The specification of the asset components are
shown in Figure 6

Asset Component

Specs

Functionality
Specs

Non
Functional

Specs

Certification
Specs

Figure 6: Asset Component Specification

We model the asset components using the same

model as the architectural elements so that the asset
components can be easily evaluated for an architecture

instantiation. We partition our specification exactly as we
partitioned our architectural model - Functionality Specs
[details of which are similar to the Architectural
Functionality Specs in Figure 2] and Non-Functional
Specs [similar to the Architectural Non-functional Specs
elaborated in Figures 3, 4 and 5]. There is one additional
element in the specification: a certification spec. When
specifying asset components it is important to capture
some notion of dependability of a software component.
The Certification Spec captures information about the
maturity of the development process, product and process
related metrics and verification and validation data from
the component development. With the above model for
specification of asset components, we start our
exploration for identifying attributes necessary for doing
architectural style based reasoning.

3. Feature Category Analysis
With the specification model in place, we analyze the
various feature categories proposed by Shaw and
Clements to ensure the information needed for
architectural style reasoning is captured in our model and
elaborate our approach for determining the feature
categories for a given configuration of components. We
start with the constituent elements of a configuration.
Then we explore the Control Issues followed by Data
Issues. Finally, we investigate the Control/Data
interactions.

3.1 Constituent Elements
Components: From a study of the identified
classifications, components are classified into stand-alone
programs, Transducers, Procedures, Managers, Processes
and filters. Thus the components in the Pipes and Filter
architectural Styles are transducers whereas in the batch
sequential architectural style the components are stand
alone programs. Hence the need for classifying the
components during the specification process, as one of
the component types mentioned above, becomes obvious.
The Component Type attribute associated with the Asset
Component Specs [Figure 6] captures whether a
component is a Stand alone program, a transducer, a
procedures, a managers, a processes or a filter. This piece
of information will be captured when a component
provider specifies a component using our model. The tool
that is being built to facilitate the specification process
will provide guidance for the component provider to
classify the component accurately.

Connectors: Connectors are usually distributed over
many system components and often do not correspond to
discrete elements of a software system. The different

types of connectors identified in the classification include
static calls, dynamic calls, shared representations, remote
procedure calls, message-passing protocols, data streams,
ASCII stream, batch data, signals, transaction streams and
direct data access. This information is captured by
attributes in the Interaction Constraints of the
Deployment Constraints explained in Figure 4. Thus
during the specification process, the Connector Type
attribute of the Interaction Constraints will capture the
connector used by the component as one of the different
types of connector identified in the Shaw Clements
classification.

Though the components and connectors are the
primary discriminators among styles, identifying the
components and connectors often do not uniquely
identify the style. Data and control issues and their
interactions affect style distinctions. Hence we next
consider the Control Issues

3.2 Control Factors
The Control Factors helps understand the temporal flow
of control between the various components in a
configuration. The feature based classification focuses on
Topology, Synchronicity and Binding Time

Topology: Topology is the geometric form of the control
flow of a system. The identified control topologies are
Linear, Acyclic, Arbitrary, Hierarchical and Star. For
example a Batch Sequential Data flow architecture has a
linear control topology while a Data centered Blackboard
style has a Star topology. The information for
determining the topology of a system configuration is
captured in the Asset Functionality Specs [analogous to
the Architectural Functionality Specs for Architectural
elements elaborated in Figure 2]. Below we develop the
algorithm for determining the control topology for a set
of co-operating components in a configuration

The initial selection of the set of components for the
configuration is done based on the usage scenario or use
case specified by the system integrator that needs to be
satisfied by the target configuration. For specifying a
scenario, the system integrator selects services from the
Architectural Functionality Specs [Figure 2] of the
application domain. Note that during the specification
process for asset components, we capture the Services in
the architectural component that the component satisfies
in the Provided Service Spec of the asset component
[analogous to the Provided Service Spec for architectural
elements elaborated in Figure 2]. Thus, we can identify
the ‘best-fit’ components “registered” (i.e. supports the
service specified in the architectural element) to the
services of the scenario by searching the component
repository for the component with the highest value of the

Service Compliance Metrics [16] (the details of the
metrics defined as part of this research is excluded from
here due to constraints of space). Similarly, we can
identify the set of components that are needed to satisfy
all the services for the System Integrator’s use case. For
services for which no asset components can be found in
the repository, notional components will be
recommended.

Next we explain the algorithm for determining the
control topology. From step 1 to step 7, we build the
Control Flow List (CF List) while in steps 8 to 12, we
identify the topology. The CF List is an ordered list of
components for execution of the scenario.

Step 1: Select service from the service list of the scenario
Step 2: If the selected service is the last service in the
scenario, go to Step 8
Step 3: Pick a component from the repository that is
registered to the selected service and has the highest
value of Service Compliance Metric
Step 4: Add the component to the Control Flow (CF) List
Step 5: For all the events in the Input Event Specs of the
service delivered by asset component identified in Step 3,
identify the asset components that generate the
corresponding events (captured in the Output Event
Specs). If the identified list of components is not already
in the CF List, add the components to the CF List before
the component under consideration. The ordering of the
event generators are done based on the pre-condition and
post-condition dependencies among themselves.
Step 6: For all the events in the Output Event Specs of the
service delivered by asset component identified in Step 3,
identify the asset components that consume the
corresponding events (captured in the Input Event Specs).
Add the components to the CF List after the component
under consideration. The ordering of the event consumers
are done based on the pre-condition and post-condition
dependencies among themselves.
Step 7: Select next service from Scenario and go to Step 2
Step 8: If all components occur only once in the CF List,
then Control Topology is Linear. Exit program.
Step 9: If the components in the CF List follow a tree-
pattern, the Control Topology is Hierarchical. Exit
program.
Step 10: If the components in the CF List follow a ‘hub-
and-spoke’ pattern, the Control Topology is Star. Exit
program.
Step 11: If the first component in the CF List is different
from the last, the Control Topology is Acyclic. Exit
program.
Step 12: The Control Topology is Arbitrary

The determination whether the ordered list of
components in the CF list follow a tree-shaped pattern or

a hub and spoke pattern are ignored for now as
implementation details.

Synchronicity: Synchronicity is the nature of the
dependence of the component’s action upon each other’s
control state. Shaw and Clements have classified
synchronicity into Batch Sequential, Synchronous,
Asynchronous and Opportunistic. We leverage the
Control Flow List developed for determining the control
topology for determining the synchronicity of the set of
components.

The determination of synchronicity is explained by a
4 step process.

Step 1: In the Control Flow List, if the output events of
one component are the same as that of the input-events of
the next component, the synchronicity is Sequential
Step 2: If at any point while traversing the Control Flow
List, the list of output events of all preceding components
exactly match the input events of the next component, the
synchronicity is Synchronous
Step 3: In the Control Flow List, if the input events for all
components corresponds to only output events of services
supported by the same component and does not match the
output events generated by services of any other
component, the synchronicity is Opportunistic. Examples
of this are autonomous agents that work completely
independently from each other in parallel.
Step 4: If the synchronicity of a configuration couldn’t be
determined by any of the three previous steps , the
synchronicity is Asynchronous.

Though the usage of events to determine the control flow
may not seem obvious, the generation and consumption
of events can be used as an indicator of passage of
control from one control to another

Binding Time: Binding time is the time of establishing of
the identity of a collaborating component for transfer of
control. Typical control transfers are determined at
program-write time, compile time, or invocation time.
Given our level of treatment of components, at this time
we do not think that the Binding Time can be identified
from the component interaction.

3.3 Data Factors
Data factors investigate the movement of data in the
system. It focuses on the topology of the data movement,
the continuity of data flow, the mode and the binding
time. In this section we elaborate our approach for
determining the data topology and the data continuity

Topology: Data topology explores a system’s data flow
graph, the different classifications being the same as
those for the control topology, namely Linear, Acyclic,
Arbitrary, Hierarchical and Star. Examples of the star
topology are the Blackboard and the Repository
architectural style while the Batch Sequential and Pipe
and Filter architectural styles represent a linear data
topology. A hierarchical data topology is demonstrated
by the layered architecture.

We can derive the data topology for the collaborating
set of components using the Input Data Specs and the
Output Data Specs associated with the Service Data Spec
for the selected asset component. The derivation of the
data topology is explained below.

Just as in the Control Topology determination, we
use the system integrator’s scenario/use-case to determine
the Data Topology. Steps 1 to 7 builds the Data Flow List
(DF List) which is analogous to the Control Flow List
used for determining the Control topology. The
subsequent steps help with the classification.

Step 1: Select service from Service List of Scenario
Step 2: If the selected service is the last service in the
scenario go to Step 8
Step 3: Pick an asset component from the repository that
is registered to the selected service and has the highest
value of the Service compliance metric
Step 4: Add the asset component to the Data Flow (DF)
List
Step 5: Build a list of data elements referred to by the
Input Data Spec for the Service in the selected asset
component.
Step 6: For each data element in the list, find the asset
components which generate the data element (captured in
the Output Data Specs). If the component is different
from the one being considered, add it to the DF List
before the component. The ordering of the data
generators are done based on the pre-condition and post-
condition dependencies among themselves.
Step 7: Select next service from Scenario and goto Step 2
Step 8: If all components occur only once in the DF List,
then Data Topology is Linear. Exit program.
Step 9: If the components in the DF List follow a tree-
pattern, the Data Topology is Hierarchical. Exit program.
Step 10: If the components in the DF List follow a ‘hub-
and-spoke’ pattern, the Data Topology is Star. Exit
program.
Step 11: If the first component in the DF List is different
from the last, the Data Topology is Acyclic. Exit program.
Step 12: The Data Topology is Arbitrary
Step 13: Exit Program

As in the Control Topology determination, whether
the ordered list of components in the DF List follow a
‘star-shaped’ pattern or a ‘hub and spoke’ pattern is

ignored as implementation details for now. With the
algorithm mentioned above, the data topology of most
configurations can be determined. The main distinction
between the approaches for determining the control
topology and the data topology lies in the fact that for the
control topology we need to identify all the asset
components that generate the input events for a service as
well as all the asset components that consume the output
events of a service, and include them in the configuration.
This is because if any event is not satisfied or consumed,
the overall system may not perform to specifications.
This is not true for the determination of the Data
topology. For the Data Topology, we need to ensure that
we include only the asset components that generate or
produce the data that is needed by the service in the
system integrators scenario. Without all the data
elements, the desired service may not function
satisfactorily. However it is not necessary to ensure that
the output data generated by the service in the usage
scenario gets consumed, unlike the output events for the
control topology.

Continuity: Continuity is a measure of the flow of data
through the system. While in a continuous flow system,
new data is available at all times, in a sporadic flow
system, new data is generated at specific intervals. The
further categorization of data continuity into high volume
and low volume will not be used for our discrimination,
as the high and low categorization seems too subjective
and does not lend themselves to any objective
measurement.
We propose the following algorithm for determining
whether data continuity is continuous or sporadic.

For all service in the scenario (except the first and
last in the DF List), if the asset component identified for
supporting the scenario, requires a set of Input Data for
executing the service, and generates output data as a
result of executing the service, we call the system of
components continuous, else we call the system sporadic.
Or in other words if there is generation and consumption
of data at every service it is likely that the data continuity
is continuous. Note that the first and last services in the
DF List are not considered, because the first service not
requiring any input data and the last service not
generating any output data is a plausible deviation from
the necessity of requiring input data and generating
output data for the services in the scenario.

Mode: Data Mode refers to how the data is made
available throughout the system. The identified modes
include passed (for an object system), shared (for all data
shared systems), copy-out-copy-in, broadcast, and
multicast. Given our level of reasoning for the
components, we do not use mode for our style distinction.

Binding Time: Analogous to the binding time for
Control Factors, binding time for data issues is the
discrimination on the time when the identity of a partner
in a transfer of control is identified. Just as the binding
time for control issues, binding time for control issues is
not used for our classification.

3.4 Control/Data Interaction
Control/Data Interaction describes the relationship
between the data and control factors

Shape: The Shape for Control & Data interaction is an
indicator of whether the control and data topologies are
similar. If they are, the topologies are said to be
isomorphic. A number of architectural styles have their
data and control topologies isomorphic, examples include
Batch Sequential, Data Flow Network and Call based
client server architectural style. Some styles are not
isomorphic. This includes the Blackboard architectural
style and the main program-subroutine call & return
architectural style.

If the control and data topologies identified using the
algorithms developed earlier are the same, we determine
the shape of the control and data interactions to be
isomorphic.

Directionality: Directionality is an indicator of whether
the direction of flow is the same for the control and data
for isomorphic configurations, or not. Directionality is
irrelevant for non-isomorphic data and control topologies.
We do not consider Directionality for our classification.

This concludes our feature category analysis. With
the approach defined for determining each of the feature
category attributes for a configuration of components, we
would be able to perform analysis for a component
configuration’s compliance to an architectural style.

4. Architectural Style
Determination
Based on the feature category attributes determined in the
previous section, we can predict the emergent
architectural styles.

We represent the value of the different feature
category attributes and the corresponding architectural
styles in a table format. This table was developed by
Shaw and Clements as part of their approach for
classifying architectural style

With the knowledge captured in Table 1 above we
determine the architectural style that the set of
components identified from the usage scenario conforms

to. As is obvious the prediction is based on the values of
the feature category attributes determined using the
approach developed in Section 3.

The step-by-step process for predicting the emergent
architectural style is outlined below:
Step 1: The System Integrator specifies a use
case/scenario for which a software configuration needs to
be built from the services specified in the Architectural
Functionality Specs.
Step 2: For each service in the use case, we identify the
best fit candidate from the component repository i.e. the
component with the highest value of the Service
Compliance Metric [25] and build the Base Component
List.
Step 3: For each component in the Base Component List,
we make a note of its Component Type Attribute. If all
the components are not of the same type, we consider the
component type of the set of components to be the one
that is most common.
Step 4: For each component in the Base Component List,
we make a note of the Connector Type attribute in the
Data Transport Spec. If all the connectors are not of the
same type, we consider the connector type of the
configuration of components to be the one that is most
common.
Step 5: We determine the Control Topology of the set of
components by developing the Control Flow List (details
outlined in Section 3)
Step 6: We determine the Control Synchronicity of the
configuration of the components (details outlined in
Section 3)
Step 7: The Data Topology of the configuration of
components is determined by developing the Data Flow
List (details outlined in Section 3)
Step 8: The Data Continuity of the configuration is
determined (details outlined in Section 3)
Step 9: We determine whether the Control and Data
Topologies are isomorphic (details outlined in Section 3)
Step 10: From the feature category attributes derived in
Steps 3 to Step 10, we reference the Table 1 to determine
the Architectural Style of the set of components. If no
clear conclusion can be drawn, we try to determine the
most probable architectural style by considering the
maximum number of feature category attributes that can
be used in making a prediction that is consistent with the
classification shown in the table.

Table 1: Architectural Style Classification

The Conformance Confidence Index (CCI) described
below provides an objective measure of how close a
configuration of components corresponds to a given style.
Higher the value of CCI, the more compliant is the
configuration to the corresponding architectural style.

CCI for a given style, s, is calculated as in below

∑
∈

=
)(|)(|

*
sFCAfc

fcfc

sFCA
VwCCI

Where
 FCA(s): The set of feature category attributes

relevant for a given style s. In our case FCA(s) =
[Components, Connectors, Control Topology,
Synchronicity, Data Topology, Data Continuity,
Isomorphic Shapes] for all styles by the Shaw
Clements classification.

 wfc = the weight of the feature category attribute in the
determination of the style. This factor can be ignored
if empirical analysis shows that all the feature
category attributes have equal weighting. If they are
found relevant (as likely they will be), the values
have to be determined individually for each style

 Vfc = 1 if our approach reveals that the corresponding
feature category for a configuration matches the
Shaw Clements classification for the given style, 0
otherwise
In all likelihood it is the value of CCI that will guide

system designers to the emergent architectural style as a
perfect match of all feature category attributes is quite
improbable.

5. Validation of Approach

Having developed the approach for predicting the
architectural style for a configuration of components, in
this section we explore methods for validating our
approach.

Popular Textbooks on metrics [5] recommend
separation of concerns about the two typical types of
systems for which metrics are often used

• Measures or measurement systems, which are used to

assess an existing entity by characterizing one or
more of its attributes, numerically

Constituent Parts Control Issues Data Issues Control/Da
ta

Interaction

Style

Components Connectors Topology Synchronicity Topology Continuity Isomorphic
Shapes

Data Flow Architectural Styles
Batch Sequential Stand-alone

programs
Batch data Linear Sequential Linear Sporadic Yes

Data-Flow
Network

Transducers Data Stream Arbitrary Asynchronous Arbitrary Continuous Yes

Pipes and Filter Transducers Data Stream Linear Asynchronous Linear Continuous Yes
Call and Return
Main Program/
Subroutines

Procedure Procedure
Calls

Hierarchical Sequential Arbitrary Sporadic No

Abstract Data
Types

Managers Static Calls Arbitrary Sequential Arbitrary Sporadic Yes

Objects Managers Dynamic
Calls

Arbitrary Sequential Arbitrary Sporadic Yes

Call based Client
Server

Programs Calls or RPC Star Synchronous Star Sporadic Yes

Layered - - Hierarchical Any Hierarchical Sporadic Often
Independent Components
Event Systems Processes Signals Arbitrary Asynchronous Arbitrary Sporadic Yes
Communicating
Processes

Processes Message
Protocols

Arbitrary Any but
Sequential

Arbitrary Sporadic Yes

Data Centered
Repository Memory,

Computations
Queries Star Asynchronous Star Sporadic Yes

Blackboard Memory,
Components

Direct
Access

Star Asynchronous Star Sporadic No

• Prediction Systems, which are used to predict some
attribute of a future entity involving mathematical
models and associated prediction procedures.

Our proposal in this paper regarding the prediction of

architectural styles falls in the second category as what
we are doing is essentially trying to predict what the
architectural style of a configuration of components is
likely to be. Therefore we go down the path of Prediction
Systems and try to find a validation approach that will be
most suitable for our purpose.

Empirical investigation is the typical tool that is used
for validating Prediction Systems and the investigative
techniques used commonly involve surveys, case studies
or formal experiments.

Surveys are typically retrospective studies of a
situation for documenting relationships and outcomes.
They are conducted after the occurrence of an event.
Used most frequently for the social sciences, surveys
have also been used extensively for Software Engineering
for determining trends and relationships. Given the
retrospective nature of surveys, we feel that it would not
be the correct tool for validating the correctness of the
architectural style predicted by our approach.

The other two research techniques, case studies and
formal experiments are usually not retrospective. In a
case study, we identify the key variables that may affect
the outcome of an activity and then document the activity
in terms of its inputs, constraints, resources and output
whereas in a formal experiment we identify the key
variables and manipulate them to document their effects
on the outcome. Both of these research techniques could
be used to validate our approach. We next investigate
whether case studies or formal experiments would be
more suitable.

It is easy to identify the control variables, which
would be the feature category attributes in our case.
However, it is not very likely that we will have a lot of
control over these variables because they would be
dependant on the components that are present in the
repository which have been specified using the
specification technique mentioned in this paper. Given
that, the feasibility of the formal experiment decreases
slightly but given a large enough repository, the ability to
control the variables may not be completely infeasible.
The other key aspect to consider, as recommended by
Fenton and Pfleeger [5], is the replicability of the various
control parameters. This in our case should be easy as the
specification of the components that are to be used as a
part of the experiments would be stored in the repository.

Therefore we propose a two fold validation, one
using case studies which will be done in the short term
and the second to be done in the long term. Once the
correctness of our approach is established via several case

studies during the first phase of validation, we propose to
build a tool to enable automatic identification of the
architectural style based on the usage scenario of the
system integrator and the components registered to the
repository. Using this tool we propose to run various
formal experiments to ensure that changes to the control
variables i.e. the feature category attributes, change the
recommendation of the architectural style. As an
additional measure we will run the recommendations of
the tool by two (at a minimum) expert architects to ensure
the correctness of our approach. We will also empirically
validate the weights to be used for our preliminary
proposal of the Conformance Confidence Index.

So far we have completed one case study. We
describe the case study in the following paragraphs of
this section.

We did a validation of our proposal using a real life
system that was available to us. The system is involved in
a complex manufacturing process and essentially
transforms data originating from the manufacturing
process, computes a number of indicators, generates
reports and provides an interface for the end user to view
the computed results and perform ad-hoc analysis on the
data.

The approach we took for the case study was to have
the key architect of the project specify the components of
the system using our specification model and then follow
our algorithms for determining the architectural style of
the system. No inputs were provided to the subject except
for clarifications on the model and algorithm details.

The system was partitioned into 6 architectural
elements with 35 services and 6 asset components. Each
of the six asset components mapped uniquely to the six
architectural components. This was primarily because we
were reengineering the architecture from the deployed
system and the architect’s thought process was influenced
by the system that he was intimately familiar with. The
services were specified at a significant level of detail
however some clarifications had to be provided with
respect to specification of events. The Behavioral
Specification however was not filled out to any
significant degree of detail. Also the architectural non-
functional specifications captured information only to the
extent that was captured in the project documents.

The architect was first asked to define a usage
scenario for performing the architectural style analysis.
The architect picked the most common use case for the
system. With the software system specified using our
abstract model and the key use case identified the study
then got into the feature category analysis. We had to
make sure that the use case was defined in terms of the
services that were already in the specified architecture.
The architect initially had a lot of questions on the
classification of the components and connectors as it

wasn’t obvious what the appropriate component type and
connector types should be. After some clarifications were
provided the architect classified 4 of the 6 components as
transducers, one as a manager and the sixth as a filter. For
the classification of the connectors, the architect was not
sure whether to classify them as Data Stream or an ASCII
stream and eventually decided on the ASCII stream for
all the 5 connectors. Development of the Control Flow
List was in fact quite straightforward as the event
relationships were quite simple. The Control topology
was clearly linear. Determining the synchronicity was not
as straightforward though – by the algorithm the
Synchronicity came out to be Asynchronous though the
architect grappled with the true implication of
synchronicity and it seemed that an event based approach
for determining synchronicity is counter-intuitive. The
Data Topology turned out to be linear just like the
Control Topology and the Data Continuity classification
was Continuous. When we matched up the results against
the reference table (Table 1), the architectural style was
predicted to be the Pipe and Filter style. This
corroborated the architect’s perception of the system.

There were several interesting lessons from this case
study. Even though the final results were satisfactory, it
was obvious that for a more rigorous assessment of our
proposal, the same individual/team should not be
involved in the definition of the architecture and the
specification of the asset components and architectural
style analysis, more so when the architecture is being
reverse engineered from a production system. Further it
became evident that more clarity needs to be provided for
facilitating the accurate classification of components and
connectors. It was further not clear whether our case
study corroborated our approach because the chosen
system at a high level was a simple one even though the
transformation algorithms of the transducers were
extremely complex. We definitely would need to perform
additional case studies with complex systems that have
multiple architectural styles to assess the true merits of
our approach. It seems that in all likelihood, for complex
systems, classification would never fit exactly into the
style classification proposed by Shaw and Clements and
that our Conformance Confidence Index (CCI) would
play an important role in providing the System Integrator
with insights into the degree of compliance with a given
style

6. Related Work

In 1989 Perry and Wolf ([20], published in 1992 [1])
introduced the notion of software architectural styles and
demonstrated the concept using the 'multi phased
architectural style' of a compiler. Garlan and Shaw
[published in 9] categorized several architectural

abstractions and demonstrated their applicability in real-
life systems. Then in 1997 Shaw and Clements [3]
proposed a feature based classification of architectural
styles. These efforts firmly established the importance of
architecture styles in software architecture. Along the
way different research efforts explored formal approaches
for rigorously defining styles with the intent of enabling
systematic analysis. Abowd et al. [2] formalized style
descriptions and proposed a framework for their
codification using Z. In 1998 le Metayer [17] used graph
grammar for describing architectural styles and recently
Bernardo et al. [19] used PI-calculus for the same
purpose. Communication topologies in the context of
styles have been explored by the Alfa framework of
Mehta and Medvidovic [18]. Alfa enables the
construction of style based software architectures from
architectural primitives defined along five orthogonal
characteristics of: Data, Structure, Interaction, Behavior
and Topology.

Our work is essentially based on the style
classification proposed by Shaw and Clements, with our
contribution being the demonstration of the applicability
of such classifications in predicting emergent styles
during component based software construction. It is also
possible to validate style conformance with our approach.

7. Conclusion

In this paper we have developed an approach for
reasoning about architectural styles using component
specification and a use case scenario which the system
integrator desires to satisfy by using a configuration of
components. We have also outlined the approaches that
we will use to validate it as part of our ongoing research
and have shared the findings from one case study.

With our style prediction proposal, not only will a
system integrator have the ability to evaluate several
deployment options but will also have the ability to get a
sense of the quality attributes of the final system before
actually building a system. This could prove to be an
extremely valuable way of assessing the final system
behavior a-priori.

Given that we can determine the emerging stylistic
characteristics of a configuration (whether global or
“regional”) and determine how close it comes to
satisfying a particular architectural style, we can also use
our approach to determine the conformance of that
configuration to particular style. This will be particularly
useful during the evolution of a system to detect either
architectural drift, or even architectural erosion [1, 20]

We envision this research to evolve, resulting in
tools that would make the System Integrator’s job easier
and more efficient.

We have not come across any research so far that has
attempted to bridge the gap between Software
Architecture and Component Based Software
Engineering, and in that sense we consider our work to be
novel.

8. Author Biographies
Sutirtha Bhattacharya is a PhD candidate in the Electrical
& Computer Engineering Department at The University
of Texas at Austin. His research interests include
software architecture specification, architectural analysis
and software metrics.

Dewayne E Perry is Professor and Motorola Regents in
Software Engineering in Electrical & Computer
Engineering at The University of Texas at Austin. His
research interests include software architecture and
empirical studies in software engineering. He is a
member of ACM and IEEE Computer Society

9. References
[1] Perry, D. E., Wolf, A. L., “Foundations for the Study

of Software Architectures”, ACM Software
Engineering Notes, 17, 4, October 1992, 40-52

[2] Abowd, G., Allen, R., Garlan, G., “Using style to
understand descriptions of software architecture”,
Proceedings of the 1st ACM SIGSOFT symposium
on Foundations of software engineering, 1993, 9-20

[3] Shaw, M., Clements, P., “A Field Guide to
Boxology: Preliminary Classification of
Architectural Styles for Software Systems”,
Proceedings of the 21st International Computer
Software and Applications Conference, 1997, 6-13

[4] Bass, L., Clements, P., Kazman, R., “Software
Architecture in Practice”, Addison Wesley, 1999

[5] N. E. Fenton, S. F. Pfleeger, “Software Metrics: A
Rigorous and Practical Approach”, PWS Publishing
Company, 1997

[6] Poulin, J. S., “Measuring Software Reuse –
Principles, Practices and Economic Models”,
Addison-Wesley, 1996

[7] Gamma E., Helm R., Johnson R., Vlissides J.,
“Design Patterns Elements of Reusable Object-
Oriented Software”, Addison-Wesley, 2002

[8] Buschmann F., Meunier R., Rohnert H., Sommerlad
P., Stal M., “Pattern Oriented Software
Architecture”, Wiley Series in Software Design
patterns, 2001

[9] Mary, S., Garlan, D., “Software Architecture:
Perspectives on an Emerging Discipline”. Prentice
Hall, 1996

[10] Szyperski, C., “Component Software: Beyond
Object Oriented Programming,” Addison-Wesley,
1999

[11] Bosch, J, “Design & Use of Software Architectures:
Adopting and evolving a product-line approach,”
Addison-Wesley, 2000

[12] Perry, D. E.,”Generic Descriptions for Product Line
Architectures'', ARES II Product Line Architecture
Workshop, Los Palmos, Gran Canaria, Spain,
February 1998

[13] Habermann, A. N., Perry, D. E., “Well Formed
System Composition. Carnegie-Mellon University,
Technical Report CMU-CS-80-117. March 1980

[14] Perry, D. E., ``The Inscape Environment: A Practical
Approach to Specifications in Large-Scale Software
Development. A Position Paper.'' January 1990.

[15] Bhattacharya, S. “Specification and Evaluation of
Technology Components to Enhance Reuse,”
Masters Thesis, The University of Texas at Austin,
July 2000

[16] Bhattacharya, S., Perry, D. E.,. "Contextual
Reusability Metrics for Event-Based Architectures".
Submitted for publication, March 2005

[17] le Metayer, D., “Describing architectural styles using
graph grammars”, IEEE Transactions of Software
Engineering, 24, 1998, 521-533

[18] Mehta, N. R. and Medvidovic, N, “Composing
Architectural Styles from Architectural Primitives”,
Proceedings of the Joint 10th European
Software Engineering Conference and the 11th
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Helsinki, Finland, September
2003

[19]Bernardo, M., Ciancarini, P., Donatiello, L.,
“Architecting families of software systems with
process algebra”, ACM Transactions of Software
Engineering and Methodology, 11, 2002, 386-426.

[20] Perry, D. E., Wolf, A. L., “Software Architecture”,
August1989.http://www.ece.utexas.edu/~perry/work/
papers/swa89.pdf

