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Abstract∗ 
Software Product Lines (SPL), Component Based 
Software Engineering (CBSE) and Customer Off The 
Shelf (COTS) components provide a rich supporting base 
for creating software architectures.  Further, they promise 
significant improvements in the quality of software 
configurations that can be composed from pre-built 
components. Software architectural styles provide a way 
for achieving a desired coherence for such component-
based architectures. This is because the different 
architectural styles enforce different quality attributes for 
a system. If the architectural style of an emergent system 
could be predicted in advance, a System Integrator could 
make necessary changes to ensure that the quality 
attributes dictated by the system requirements were 
satisfied before the actual system was deployed and 
tested. In this paper we propose a model for predicting 
architectural styles based on use cases that need to be met 
by a system configuration.  Moreover, our technique can 
be used to determine stylistic conformance and hence 
indicate the presence or absence of architectural drift 

1. Introduction and Scope 
Software architecture styles represent a cogent form of 
codification [1, 2, 3] of critical aspects to which an 
architecture is expected to conform.  They differ from 
patterns in that patterns are the result of a discovery 
process, not a constraint process.  Of course, patterns may 
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play an important role in the creation and specification of 
a style: commonly occurring patterns provide a useful 
basis for codification.  Part of the confusion comes from 
the fact that styles can be viewed both prescriptively (i.e., 
as a complex constraint that must be satisfied) and 
descriptively (i.e., as a description of what exists). 

In 1997 Mary Shaw and Paul Clements proposed a 
feature-based classification of architectural styles [3]. 
They proposed that different architectural styles can be 
discriminated among each other by focusing on the 
following feature categories. 
 Constituent Parts i.e. the components and connectors 
 Control Issues i.e. the flow of control among 

components  
 Data Issues i.e. details on how data is processed 
 Control/Data Interaction i.e. the relation between 

control and data 
 Type of Reasoning: Analysis techniques applicable 

to the style 
Even after years of software engineering research, 

the relationship between software components and 
architectural styles hasn’t been adequately explored. This 
in fact is surprising given the attention Component Based 
Software Engineering (CBSE) has received in the recent 
past. However, if we explore the motivation of these two 
disciplines, we would realize that the relationship may 
not be obvious.  

The focus of CBSE is to build software systems 
using pre-existing components thus reducing software 
costs and delivery time. The focus of this area has mostly 
been directed towards understanding and resolving 
integration issues between the various components and 
establishing a common vocabulary for facilitating the 
integration. The focus of Software Architecture, on the 
other hand, is concerned with the initial structure and 
constraints of complex software systems.  

The critical question is: when designing software 
systems from components, should we leave the emerging 
architectural styles of a software system to pure chance or 
should we investigate what the component characteristics 
that need to be understood are, to enforce an architectural 



style by choice. Since different architectural styles 
support distinct sets of quality attributes, the benefit of 
evaluating components for suitability to an architectural 
style is obvious, as the quality attributes for a system are 
often dictated by the system requirements. Software 
Quality Attributes are essentially the benchmarks that 
describe a system’s intended behavior within the 
environment for which it was built. It includes system 
characteristics such as performance, security, availability, 
usability etc. The ability to determine the architectural 
style for a system configuration will help us predict 
whether the desired quality attributes will be satisfied by 
the system prior to actual deployment.  

In this paper we propose a model for documenting 
component specifications and demonstrate how we can 
reason over the specifications to determine the emergent 
architectural style a-priori. We analyze the different 
feature categories proposed by Shaw and Clements and 
identify the component attributes that would help 
determine the architectural style, in a system 
configuration. Section 2 of the paper provides the 
background for our proposal while in Section 3 we 
perform the feature category analysis. Section 4 outlines 
the steps for architectural style determination. Section 5 
outlines the proposal for the validation of our approach 
while in Section 6 we document related work. Section 7 
concludes the paper.  

2. Background 

The context for the proposed research is outlined in this 
section. We start with the assumption that there exists a 
component repository in which software components 
relevant for a particular domain have been specified using 
our asset specification model (briefly explained here) 
against our architectural specification. A System 
Integrator identifies a deployment use-case or usage 
scenario (consisting of a list of services that needs to be 
delivered by the system) that needs to be implemented 
using pre-built components.  For identifying the 
configuration of components that are needed to satisfy the 
use case, the System Integrator queries the repository for 
the available components that can potentially be used to 
satisfy the targeted scenario. The architectural style 
related reasoning that we are proposing will be done on 
the set of components returned by the component 
repository based on the system integrator’s query. The 
envisioned reasoning capabilities will facilitate i) 
determining whether the set of components returned by 
the repository conform to any specific architectural style, 
ii) identifying a set of components that conform to a 
desired architectural style and hence support the desired 
set of quality attributes. 

Before we begin, we briefly explain our specification 
approach which will be leveraged for the style related 
reasoning. 

Our specification model captures an architecture in 
terms of architectural elements. These elements are 
essentially the components and connectors that are 
relevant for the application domain and enable functional 
partitioning as well as introduce the notion of object 
orientation. Figure 1 shows the structure of architectural 
element specification. 

 
Architectural 

Element Specs
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Figure 1: Architectural Element Specification 

 
A key aspect of our model, the separation of the 

functional specs from the non functional specs, is 
elaborated in Figure 2 and Figure 3. 
 

Figure 2: The Architectural Functionality Specs 
 
In the above diagram, the  
• Interface Spec captures the interface information for 

the services provided by the architectural element 
• Attribute Map captures the domain data supported by 

the architectural element 
• Behavioral Map captures the state transitions 

supported  
 
The Architectural non-functional specs are specified 

as in below 



 
Figure 3: Architectural Non-Functional Specifications 

 
For the architectural non-functional Specs, the 

Quality Attributes Constraints are shown in Figure 4 
while the Deployment Constraints are shown in Figure 5. 
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              Figure 4: Quality Attribute Constraint 
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Figure 5: The Deployment Constraints 

 
Each entity in the Quality Attribute constraints and 

the Deployment Constraints are further characterized by a 
set of attributes. Since the list of attributes is quite 
detailed, we do not elaborate them here. 

With the above model for architectural element, we 
next explain the asset component specification. Asset 
components are the software components that have 
independent existence and are essentially the pre-built 
components that we mentioned at the beginning of this 
paper. The specification of the asset components are 
shown in Figure 6 

 
Asset Component 

Specs

Functionality 
Specs

Non 
Functional 

Specs

Certification 
Specs

 
Figure 6: Asset Component Specification 

 
We model the asset components using the same 

model as the architectural elements so that the asset 
components can be easily evaluated for an architecture 



instantiation. We partition our specification exactly as we 
partitioned our architectural model - Functionality Specs 
[details of which are similar to the Architectural 
Functionality Specs in Figure 2] and Non-Functional 
Specs [similar to the Architectural Non-functional Specs 
elaborated in Figures 3, 4 and 5]. There is one additional 
element in the specification: a certification spec. When 
specifying asset components it is important to capture 
some notion of dependability of a software component. 
The Certification Spec captures information about the 
maturity of the development process, product and process 
related metrics and verification and validation data from 
the component development. With the above model for 
specification of asset components, we start our 
exploration for identifying attributes necessary for doing 
architectural style based reasoning.  

3. Feature Category Analysis 
With the specification model in place, we analyze the 
various feature categories proposed by Shaw and 
Clements to ensure the information needed for 
architectural style reasoning is captured in our model and 
elaborate our approach for determining the feature 
categories for a given configuration of components. We 
start with the constituent elements of a configuration. 
Then we explore the Control Issues followed by Data 
Issues. Finally, we investigate the Control/Data 
interactions. 

3.1 Constituent Elements 
Components: From a study of the identified 
classifications, components are classified into stand-alone 
programs, Transducers, Procedures, Managers, Processes 
and filters. Thus the components in the Pipes and Filter 
architectural Styles are transducers whereas in the batch 
sequential architectural style the components are stand 
alone programs. Hence the need for classifying the 
components during the specification process, as one of 
the component types mentioned above, becomes obvious. 
The Component Type attribute associated with the Asset 
Component Specs [Figure 6] captures whether a 
component is a Stand alone program, a transducer, a 
procedures, a managers, a processes or a filter. This piece 
of information will be captured when a component 
provider specifies a component using our model. The tool 
that is being built to facilitate the specification process 
will provide guidance for the component provider to 
classify the component accurately. 
 
Connectors: Connectors are usually distributed over 
many system components and often do not correspond to 
discrete elements of a software system. The different 

types of connectors identified in the classification include 
static calls, dynamic calls, shared representations, remote 
procedure calls, message-passing protocols, data streams, 
ASCII stream, batch data, signals, transaction streams and 
direct data access. This information is captured by 
attributes in the Interaction Constraints of the 
Deployment Constraints explained in Figure 4. Thus 
during the specification process, the Connector Type 
attribute of the Interaction Constraints will capture the 
connector used by the component as one of the  different 
types of connector identified in the Shaw Clements 
classification.  

Though the components and connectors are the 
primary discriminators among styles, identifying the 
components and connectors often do not uniquely 
identify the style. Data and control issues and their 
interactions affect style distinctions. Hence we next 
consider the Control Issues 

3.2 Control Factors 
The Control Factors helps understand the temporal flow 
of control between the various components in a 
configuration. The feature based classification focuses on 
Topology, Synchronicity and Binding Time 
 
Topology: Topology is the geometric form of the control 
flow of a system. The identified control topologies are 
Linear, Acyclic, Arbitrary, Hierarchical and Star. For 
example a Batch Sequential Data flow architecture has a 
linear control topology while a Data centered Blackboard 
style has a Star topology. The information for 
determining the topology of a system configuration is 
captured in the Asset Functionality Specs [analogous to 
the Architectural Functionality Specs for Architectural 
elements elaborated in Figure 2]. Below we develop the 
algorithm for determining the control topology for a set 
of co-operating components in a configuration 

The initial selection of the set of components for the 
configuration is done based on the usage scenario or use 
case specified by the system integrator that needs to be 
satisfied by the target configuration. For specifying a 
scenario, the system integrator selects services from the 
Architectural Functionality Specs [Figure 2] of the 
application domain. Note that during the specification 
process for asset components, we capture the Services in 
the architectural component that the component satisfies 
in the Provided Service Spec of the asset component 
[analogous to the Provided Service Spec for architectural 
elements elaborated in Figure 2].  Thus, we can identify 
the ‘best-fit’ components “registered” (i.e. supports the 
service specified in the architectural element) to the 
services of the scenario by searching the component 
repository for the component with the highest value of the 



Service Compliance Metrics [16] (the details of the 
metrics defined as part of this research is excluded from 
here due to constraints of space). Similarly, we can 
identify the set of components that are needed to satisfy 
all the services for the System Integrator’s use case. For 
services for which no asset components can be found in 
the repository, notional components will be 
recommended.  

Next we explain the algorithm for determining the 
control topology. From step 1 to step 7, we build the 
Control Flow List (CF List) while in steps 8 to 12, we 
identify the topology. The CF List is an ordered list of 
components for execution of the scenario. 
 
Step 1: Select service from the service list of the scenario 
Step 2: If the selected service is the last service in the 
scenario, go to Step 8 
Step 3: Pick a component from the repository that is 
registered to the selected service and has the highest 
value of Service Compliance Metric 
Step 4: Add the component to the Control Flow (CF) List 
Step 5: For all the events in the Input Event Specs of the 
service delivered by asset component identified in Step 3, 
identify the asset components that generate the 
corresponding events (captured in the Output Event 
Specs).  If the identified list of components is not already 
in the CF List, add the components to the CF List before 
the component under consideration. The ordering of the 
event generators are done based on the pre-condition and 
post-condition dependencies among themselves. 
Step 6: For all the events in the Output Event Specs of the 
service delivered by asset component identified in Step 3, 
identify the asset components that consume the 
corresponding events (captured in the Input Event Specs).  
Add the components to the CF List after the component 
under consideration. The ordering of the event consumers 
are done based on the pre-condition and post-condition 
dependencies among themselves. 
Step 7: Select next service from Scenario and go to Step 2 
Step 8: If all components occur only once in the CF List, 
then Control Topology is Linear. Exit program.  
Step 9: If the components in the CF List follow a tree- 
pattern, the Control Topology is Hierarchical. Exit 
program. 
Step 10: If the components in the CF List follow a ‘hub-
and-spoke’ pattern, the Control Topology is Star. Exit 
program. 
Step 11: If the first component in the CF List is different 
from the last, the Control Topology is Acyclic. Exit 
program. 
Step 12: The Control Topology is Arbitrary 
 

The determination whether the ordered list of 
components in the CF list follow a tree-shaped pattern or 

a hub and spoke pattern are ignored for now as 
implementation details. 
 
Synchronicity: Synchronicity is the nature of the 
dependence of the component’s action upon each other’s 
control state. Shaw and Clements have classified 
synchronicity into Batch Sequential, Synchronous, 
Asynchronous and Opportunistic. We leverage the 
Control Flow List developed for determining the control 
topology for determining the synchronicity of the set of 
components. 

The determination of synchronicity is explained by a 
4 step process. 

 
Step 1: In the Control Flow List, if the output events of 
one component are the same as that of the input-events of 
the next component, the synchronicity is Sequential 
Step 2: If at any point while traversing the Control Flow 
List, the list of output events of all preceding components 
exactly match the input events of the next component, the 
synchronicity is Synchronous 
Step 3: In the Control Flow List, if the input events for all 
components corresponds to only output events of services 
supported by the same component and does not match the 
output events generated by services of any other 
component, the synchronicity is Opportunistic. Examples 
of this are autonomous agents that work completely 
independently from each other in parallel. 
Step 4: If the synchronicity of a configuration couldn’t be 
determined by any of the three previous steps , the 
synchronicity is Asynchronous. 
 
Though the usage of events to determine the control flow 
may not seem obvious, the generation and consumption 
of events can be used as an indicator of passage of 
control from one control to another  
 
Binding Time: Binding time is the time of establishing of 
the identity of a collaborating component for transfer of 
control. Typical control transfers are determined at 
program-write time, compile time, or invocation time. 
Given our level of treatment of components, at this time 
we do not think that the Binding Time can be identified 
from the component interaction. 

3.3 Data Factors 
Data factors investigate the movement of data in the 
system. It focuses on the topology of the data movement, 
the continuity of data flow, the mode and the binding 
time. In this section we elaborate our approach for 
determining the data topology and the data continuity 
 



Topology: Data topology explores a system’s data flow 
graph, the different classifications being the same as 
those for the control topology, namely Linear, Acyclic, 
Arbitrary, Hierarchical and Star. Examples of the star 
topology are the Blackboard and the Repository 
architectural style while the Batch Sequential and Pipe 
and Filter architectural styles represent a linear data 
topology. A hierarchical data topology is demonstrated 
by the layered architecture. 

We can derive the data topology for the collaborating 
set of components using the Input Data Specs and the 
Output Data Specs associated with the Service Data Spec 
for the selected asset component. The derivation of the 
data topology is explained below.  

Just as in the Control Topology determination, we 
use the system integrator’s scenario/use-case to determine 
the Data Topology. Steps 1 to 7 builds the Data Flow List 
(DF List) which is analogous to the Control Flow List 
used for determining the Control topology. The 
subsequent steps  help with the classification. 
 
Step 1: Select service from Service List of Scenario 
Step 2: If the selected service is the last service in the 
scenario go to Step 8 
Step 3: Pick an asset component from the repository that 
is registered to the selected service and has the highest 
value of the Service compliance metric 
Step 4: Add the asset component to the Data Flow (DF) 
List 
Step 5: Build a list of data elements referred to by the 
Input Data Spec for the Service in the selected asset 
component. 
Step 6: For each data element in the list, find the asset 
components which generate the data element (captured in 
the Output Data Specs). If the component is different 
from the one being considered, add it to the DF List 
before the component. The ordering of the data 
generators are done based on the pre-condition and post-
condition dependencies among themselves. 
Step 7: Select next service from Scenario and goto Step 2 
Step 8: If all components occur only once in the DF List, 
then Data Topology is Linear. Exit program.  
Step 9: If the components in the DF List follow a tree- 
pattern, the Data Topology is Hierarchical. Exit program. 
Step 10: If the components in the DF List follow a ‘hub-
and-spoke’ pattern, the Data Topology is Star. Exit 
program. 
Step 11: If the first component in the DF List is different 
from the last, the Data Topology is Acyclic. Exit program. 
Step 12: The Data Topology is Arbitrary 
Step 13: Exit Program 

As in the Control Topology determination, whether 
the ordered list of components in the DF List follow a 
‘star-shaped’ pattern or a ‘hub and spoke’ pattern is 

ignored as implementation details for now. With the 
algorithm mentioned above, the data topology of most 
configurations can be determined. The main distinction 
between the approaches for determining the control 
topology and the data topology lies in the fact that for the 
control topology we need to identify all the asset 
components that generate the input events for a service as 
well as all the asset components that consume the output 
events of a service, and include them in the configuration. 
This is because if any event is not satisfied or consumed, 
the overall system may not perform to specifications. 
This is not true for the determination of the Data 
topology. For the Data Topology, we need to ensure that 
we include only the asset components that generate or 
produce the data that is needed by the service in the 
system integrators scenario. Without all the data 
elements, the desired service may not function 
satisfactorily. However it is not necessary to ensure that 
the output data generated by the service in the usage 
scenario gets consumed, unlike the output events for the 
control topology.  
 
Continuity: Continuity is a measure of the flow of data 
through the system. While in a continuous flow system, 
new data is available at all times, in a sporadic flow 
system, new data is generated at specific intervals. The 
further categorization of data continuity into high volume 
and low volume will not be used for our discrimination, 
as the high and low categorization seems too subjective 
and does not lend themselves to any objective 
measurement. 
We propose the following algorithm for determining 
whether data continuity is continuous or sporadic. 

For all service in the scenario (except the first and 
last in the DF List), if the asset component identified for 
supporting the scenario, requires a set of Input Data for 
executing the service, and generates output data as a 
result of executing the service, we call the system of 
components continuous, else we call the system sporadic. 
Or in other words if there is generation and consumption 
of data at every service it is likely that the data continuity 
is continuous. Note that the first and last services in the 
DF List are not considered, because the first service not 
requiring any input data and the last service not 
generating any output data is a plausible deviation from 
the necessity of requiring input data and generating 
output data for the services in the scenario. 
 
Mode:  Data Mode refers to how the data is made 
available throughout the system. The identified modes 
include passed (for an object system), shared (for all data 
shared systems), copy-out-copy-in, broadcast, and 
multicast. Given our level of reasoning for the 
components, we do not use mode for our style distinction. 



 
Binding Time: Analogous to the binding time for 
Control Factors, binding time for data issues is the 
discrimination on the time when the identity of a partner 
in a transfer of control is identified. Just as the binding 
time for control issues, binding time for control issues is 
not used for our classification. 

3.4 Control/Data Interaction 
Control/Data Interaction describes the relationship 
between the data and control factors 
 
Shape: The Shape for Control & Data interaction is an 
indicator of whether the control and data topologies are 
similar. If they are, the topologies are said to be 
isomorphic. A number of architectural styles have their 
data and control topologies isomorphic, examples include 
Batch Sequential, Data Flow Network and Call based 
client server architectural style. Some styles are not 
isomorphic. This includes the Blackboard architectural 
style and the main program-subroutine call & return 
architectural style. 

If the control and data topologies identified using the 
algorithms developed earlier are the same, we determine 
the shape of the control and data interactions to be 
isomorphic. 
 
Directionality: Directionality is an indicator of whether 
the direction of flow is the same for the control and data 
for isomorphic configurations, or not. Directionality is 
irrelevant for non-isomorphic data and control topologies. 
We do not consider Directionality for our classification. 
 

This concludes our feature category analysis. With 
the approach defined for determining each of the feature 
category attributes for a configuration of components, we 
would be able to perform analysis for a component 
configuration’s compliance to an architectural style. 
 

4. Architectural Style 
Determination 
Based on the feature category attributes determined in the 
previous section, we can predict the emergent 
architectural styles.  

We represent the value of the different feature 
category attributes and the corresponding architectural 
styles in a table format. This table was developed by 
Shaw and Clements as part of their approach for 
classifying  architectural style 

With the knowledge captured in Table 1 above we 
determine the architectural style that the set of 
components identified from the usage scenario conforms 

to. As is obvious the prediction is based on the values of 
the feature category attributes determined using the 
approach developed in Section 3. 

The step-by-step process for predicting the emergent 
architectural style is outlined below: 
Step 1: The System Integrator specifies a use 
case/scenario for which a software configuration needs to 
be built from the services specified in the Architectural 
Functionality Specs. 
Step 2: For each service in the use case, we identify the 
best fit candidate from the component repository i.e. the 
component with the highest value of the Service 
Compliance Metric [25] and build the Base Component 
List.  
Step 3: For each component in the Base Component List, 
we make a note of its Component Type Attribute. If all 
the components are not of the same type, we consider the 
component type of the set of components to be the one 
that is most common. 
Step 4: For each component in the Base Component List, 
we make a note of the Connector Type attribute in the 
Data Transport Spec. If all the connectors are not of the 
same type, we consider the connector type of the 
configuration of components to be the one that is most 
common. 
Step 5: We determine the Control Topology of the set of 
components by developing the Control Flow List (details 
outlined in Section 3) 
Step 6: We determine the Control Synchronicity of the 
configuration of the components (details outlined in 
Section 3) 
Step 7: The Data Topology of the configuration of 
components is determined by developing the Data Flow 
List (details outlined in Section 3) 
Step 8: The Data Continuity of the configuration is 
determined (details outlined in Section 3) 
Step 9: We determine whether the Control and Data 
Topologies are isomorphic (details outlined in Section 3) 
Step 10: From the feature category attributes derived in 
Steps 3 to Step 10, we reference the Table 1 to determine 
the Architectural Style of the set of components. If no 
clear conclusion can be drawn, we try to determine the 
most probable architectural style by considering the 
maximum number of feature category attributes that can 
be used in making a prediction that is consistent with the 
classification shown in the table.  



 

Table 1: Architectural Style Classification
 

The Conformance Confidence Index (CCI) described 
below provides an objective measure of how close a 
configuration of components corresponds to a given style. 
Higher the value of CCI, the more compliant is the 
configuration to the corresponding architectural style. 
 
CCI for a given style, s, is calculated as in below 

∑
∈

=
)( |)(|

*
sFCAfc

fcfc

sFCA
VwCCI  

Where 
 FCA(s): The set of feature category attributes 

relevant for a given style s. In our case FCA(s) = 
[Components, Connectors, Control Topology, 
Synchronicity, Data Topology, Data Continuity, 
Isomorphic Shapes] for all styles by the Shaw 
Clements classification.  

 wfc = the weight of the feature category attribute in the 
determination of the style. This factor can be ignored 
if empirical analysis shows that all the feature 
category  attributes have equal weighting. If they are 
found relevant (as likely they will be), the values 
have to be determined individually for each style 

 Vfc = 1 if our approach reveals that the corresponding 
feature category for a configuration matches the 
Shaw Clements classification for the given style, 0 
otherwise 
In all likelihood it is the value of CCI that will guide 

system designers to the emergent architectural style as a 
perfect match of all feature category attributes is quite 
improbable.  

5. Validation of Approach 

Having developed the approach for predicting the 
architectural style for a configuration of components, in 
this section we explore methods for validating our 
approach.  

Popular Textbooks on metrics [5] recommend 
separation of concerns about the two typical types of 
systems for which metrics are often used 
 
• Measures or measurement systems, which are used to 

assess an existing entity by characterizing one or 
more of its attributes, numerically 

Constituent Parts Control Issues Data Issues Control/Da
ta 

Interaction

Style 

Components Connectors Topology Synchronicity Topology Continuity Isomorphic 
Shapes 

Data Flow Architectural Styles 
Batch Sequential  Stand-alone 

programs 
Batch data Linear Sequential Linear Sporadic Yes 

Data-Flow 
Network 

Transducers Data Stream Arbitrary Asynchronous Arbitrary Continuous Yes 

Pipes and Filter Transducers Data Stream Linear Asynchronous Linear Continuous Yes 
Call and Return  
Main Program/ 
Subroutines 

Procedure Procedure 
Calls 

Hierarchical Sequential Arbitrary Sporadic No 

Abstract Data 
Types 

Managers Static Calls Arbitrary Sequential Arbitrary Sporadic Yes 

Objects Managers Dynamic 
Calls 

Arbitrary Sequential Arbitrary Sporadic Yes 

Call based Client 
Server 

Programs Calls or RPC Star Synchronous Star Sporadic Yes 

Layered - - Hierarchical Any Hierarchical Sporadic Often 
Independent Components 
Event Systems Processes Signals Arbitrary Asynchronous Arbitrary Sporadic Yes 
Communicating 
Processes 

Processes Message 
Protocols 

Arbitrary Any but 
Sequential 

Arbitrary  Sporadic Yes 

Data Centered 
Repository Memory, 

Computations 
Queries Star Asynchronous Star Sporadic Yes 

Blackboard Memory, 
Components 

Direct 
Access 

Star Asynchronous Star Sporadic No 



• Prediction Systems, which are used to predict some 
attribute of a future entity involving mathematical 
models and associated prediction procedures. 

 
Our proposal in this paper regarding the prediction of 

architectural styles falls in the second category as what 
we are doing is essentially trying to predict what the 
architectural style of a configuration of components is 
likely to be. Therefore we go down the path of Prediction 
Systems and try to find a validation approach that will be 
most suitable for our purpose. 

Empirical investigation is the typical tool that is used 
for validating Prediction Systems and the investigative 
techniques used commonly involve surveys, case studies 
or formal experiments.  

Surveys are typically retrospective studies of a 
situation for documenting relationships and outcomes. 
They are conducted after the occurrence of an event. 
Used most frequently for the social sciences, surveys 
have also been used extensively for Software Engineering 
for determining trends and relationships. Given the 
retrospective nature of surveys, we feel that it would not 
be the correct tool for validating the correctness of the 
architectural style predicted by our approach. 

The other two research techniques, case studies and 
formal experiments are usually not retrospective. In a 
case study, we identify the key variables that may affect 
the outcome of an activity and then document the activity 
in terms of its inputs, constraints, resources and output 
whereas in a formal experiment we identify the key 
variables and manipulate them to document their effects 
on the outcome. Both of these research techniques could 
be used to validate our approach. We next investigate 
whether case studies or formal experiments would be 
more suitable. 

It is easy to identify the control variables, which 
would be the feature category attributes in our case. 
However, it is not very likely that we will have a lot of 
control over these variables because they would be 
dependant on the components that are present in the 
repository which have been specified using the 
specification technique mentioned in this paper. Given 
that, the feasibility of the formal experiment decreases 
slightly but given a large enough repository, the ability to 
control the variables may not be completely infeasible. 
The other key aspect to consider, as recommended by 
Fenton and Pfleeger [5], is the replicability of the various 
control parameters. This in our case should be easy as the 
specification of the components that are to be used as a 
part of the experiments would be stored in the repository. 

Therefore we propose a two fold validation, one 
using case studies which will be done in the short term 
and the second to be done in the long term. Once the 
correctness of our approach is established via several case 

studies during the first phase of validation, we propose to 
build a tool to enable automatic identification of the 
architectural style based on the usage scenario of the 
system integrator and the components registered to the 
repository. Using this tool we propose to run various 
formal experiments to ensure that changes to the control 
variables i.e. the feature category attributes, change the 
recommendation of the architectural style. As an 
additional measure we will run the recommendations of 
the tool by two (at a minimum) expert architects to ensure 
the correctness of our approach. We will also empirically 
validate the weights to be used for our preliminary 
proposal of the Conformance Confidence Index. 

So far we have completed one case study. We 
describe the case study in the following paragraphs of 
this section. 

We did a validation of our proposal using a real life 
system that was available to us. The system is involved in 
a complex manufacturing process and essentially 
transforms data originating from the manufacturing 
process, computes a number of indicators, generates 
reports and provides an interface for the end user to view 
the computed results and perform ad-hoc analysis on the 
data. 

The approach we took for the case study was to have 
the key architect of the project specify the components of 
the system using our specification model and then follow 
our algorithms for determining the architectural style of 
the system. No inputs were provided to the subject except 
for clarifications on the model and algorithm details.  

The system was partitioned into 6 architectural 
elements with 35 services and 6 asset components. Each 
of the six asset components mapped uniquely to the six 
architectural components. This was primarily because we 
were reengineering the architecture from the deployed 
system and the architect’s thought process was influenced 
by the system that he was intimately familiar with. The 
services were specified at a significant level of detail 
however some clarifications had to be provided with 
respect to specification of events. The Behavioral 
Specification however was not filled out to any 
significant degree of detail.  Also the architectural non-
functional specifications captured information only to the 
extent that was captured in the project documents. 

The architect was first asked to define a usage 
scenario for performing the architectural style analysis. 
The architect picked the most common use case for the 
system. With the software system specified using our 
abstract model and the key use case identified the study 
then got into the feature category analysis. We had to 
make sure that the use case was defined in terms of the 
services that were already in the specified architecture. 
The architect initially had a lot of questions on the 
classification of the components and connectors as it 



wasn’t obvious what the appropriate component type and 
connector types should be. After some clarifications were 
provided the architect classified 4 of the 6 components as 
transducers, one as a manager and the sixth as a filter. For 
the classification of the connectors, the architect was not 
sure whether to classify them as Data Stream or an ASCII 
stream and eventually decided on the ASCII stream for 
all the 5 connectors. Development of the Control Flow 
List was in fact quite straightforward as the event 
relationships were quite simple. The Control topology 
was clearly linear. Determining the synchronicity was not 
as straightforward though – by the algorithm the 
Synchronicity came out to be Asynchronous though the 
architect grappled with the true implication of 
synchronicity and it seemed that an event based approach 
for determining synchronicity is counter-intuitive. The 
Data Topology turned out to be linear just like the 
Control Topology and the Data Continuity classification 
was Continuous. When we matched up the results against 
the reference table (Table 1), the architectural style was 
predicted to be the Pipe and Filter style. This 
corroborated the architect’s perception of the system.  

There were several interesting lessons from this case 
study. Even though the final results were satisfactory, it 
was obvious that for a more rigorous assessment of our 
proposal, the same individual/team should not be 
involved in the definition of the architecture and the 
specification of the asset components and architectural 
style analysis, more so when the architecture is being 
reverse engineered from a production system. Further it 
became evident that more clarity needs to be provided for 
facilitating the accurate classification of components and 
connectors. It was further not clear whether our case 
study corroborated our approach because the chosen 
system at a high level was a simple one even though the 
transformation algorithms of the transducers were 
extremely complex. We definitely would need to perform 
additional case studies with complex systems that have 
multiple architectural styles to assess the true merits of 
our approach. It seems that in all likelihood, for complex 
systems, classification would never fit exactly into the 
style classification proposed by Shaw and Clements and 
that our Conformance Confidence Index (CCI) would 
play an important role in providing the System Integrator 
with insights into the degree of compliance with a given 
style 

6. Related Work 

In 1989 Perry and Wolf ([20], published in 1992 [1]) 
introduced the notion of software architectural styles and 
demonstrated the concept using the 'multi phased 
architectural style' of a compiler. Garlan and Shaw 
[published in 9] categorized several architectural 

abstractions and demonstrated their applicability in real-
life systems. Then in 1997 Shaw and Clements [3] 
proposed a feature based classification of architectural 
styles. These efforts firmly established the importance of 
architecture styles in software architecture. Along the 
way different research efforts explored formal approaches 
for rigorously defining styles with the intent of enabling 
systematic analysis. Abowd et al. [2] formalized style 
descriptions and proposed a framework for their 
codification using Z. In 1998 le Metayer [17] used graph 
grammar for describing architectural styles and recently 
Bernardo et al. [19] used PI-calculus for the same 
purpose. Communication topologies in the context of 
styles have been explored by the Alfa framework of 
Mehta and Medvidovic [18]. Alfa enables the 
construction of style based software architectures from 
architectural primitives defined along five orthogonal 
characteristics of: Data, Structure, Interaction, Behavior 
and Topology. 

Our work is essentially based on the style 
classification proposed by Shaw and Clements, with our 
contribution being the demonstration of the applicability 
of such classifications in predicting emergent styles 
during component based software construction. It is also 
possible to validate style conformance with our approach. 

7. Conclusion 

In this paper we have developed an approach for 
reasoning about architectural styles using component 
specification and a use case scenario which the system 
integrator desires to satisfy by using a configuration of 
components. We have also outlined the approaches that 
we will use to validate it as part of our ongoing research 
and have shared the findings from one case study. 

With our style prediction proposal, not only will a 
system integrator have the ability to evaluate several 
deployment options but will also have the ability to get a 
sense of the quality attributes of the final system before 
actually building a system. This could prove to be an 
extremely valuable way of assessing the final system 
behavior a-priori.  

Given that we can determine the emerging stylistic 
characteristics of a configuration (whether global or 
“regional”) and determine how close it comes to 
satisfying a particular architectural style, we can also use 
our approach to determine the conformance of that 
configuration to particular style.  This will be particularly 
useful during the evolution of a system to detect either 
architectural drift, or even architectural erosion [1, 20] 

We envision this research to evolve, resulting in 
tools that would make the System Integrator’s job easier 
and more efficient. 



We have not come across any research so far that has 
attempted to bridge the gap between Software 
Architecture and Component Based Software 
Engineering, and in that sense we consider our work to be 
novel.  
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