
Dealing with Security: A Multiple Case Study on
Software Architects

Vidya Lakshminarayanan, WenQian Liu , Charles L Chen, Dewayne E Perry

Empirical Software Engineering Lab (ESEL)
Electrical and Computer Engineering

The University of Texas at Austin, Austin TX
{vidya,clchen,perry}@ece.utexas.edu

Software Engineering
Department of Computer Science

University of Toronto, Canada
wl@cs.toronto.edu

Abstract
While security has long been a significant issue in
military systems, the spread of the internet has
stimulated a growing interest in, and increasing
demand for, secure systems. Understanding how
architects manage security requirements in prac-
tice is a necessary first step in providing repeat-
able processes using effective techniques,
methods and architectural structures. We present
the results of multiple case studies of practicing
security architects: key aspects in security re-
quirements, critical issues in managing security
requirements, essential characteristics of security
architects, the relationship of security with evolu-
tion, and problem solving by security architects.
We conclude with a lessons learned, and a discus-
sion of related and future research.

1 Introduction
Security has long been a major issue in military
and defense systems. Making sure that only the
right people get access to information, that plans
do not land in the wrong hands, and that commu-
nication channels are not compromised are among
the top priorities for national defense. More re-
cently, the internet boom has exacerbated the
problem. By connecting everyone with everyone
else, the internet has greatly enhanced our ability

Copyright © 2006. Lakshminarayanan, Liu, Chen, and
Perry. Permission to copy is hereby granted provided
the original copyright notice is reproduced in copies
made.

to exchange information, but it has also opened
more doors for attackers. With the growing con-
cern over malicious attacks compromising data
integrity and privacy, security in software systems
has become an increasingly important topic and
has led to increased software engineering research
[1][6][7][10]. The increasing demand and impor-
tance of security requirements in systems engi-
neering has created a relatively new engineering
discipline called ‘security engineering’.

Our research goal is to understand how soft-
ware architects view and manage security re-
quirements and architectural designs for secure
systems in practice. Understanding how architects
manage requirements gives us a solid foundation
on which to develop techniques, methods, proc-
esses, and tools to aid architects in managing re-
quirements and transforming them into
architectures. We take an empirical based ap-
proach and use an interview based case study
methodology to carry out our investigations. Case
studies are a specific empirical research method
used to gain a deep understanding of a particular
phenomenon in its real life context. As such, they
are characterized by analytical generalizations,
rather than statistical generalizations – i.e., they
are not to be understood in terms of samples, but
in terms of analyses and comparison of cases [3].
In [8], we describe our process of defining the
case study from preparation to the evidence chain
and evidence trail.

The interviews we conducted are semi-
structured and we used a pre-designed question-
naire with an open-ended set of questions. We
follow a conversation-based approach rather than
a question and answer form. The questionnaire

1

was divided into four parts: part 1 focuses on the
problem domain of the architect, etc; part 2 cap-
tures how architects elicit, view and manage secu-
rity requirements in practice; part 3 focuses on the
architect’s views on the meaning of architecture
and how requirements are transformed into archi-
tectures and implemented; and part 4 is concerned
about how architecture affects, and is affected by,
evolution.

Our study of security architects has taken
place in the context of a larger study of software
architects in general [8] in which a number of our
subjects were either security architects by title or
were involved in security issues as part of their
architectural practice. One of the security archi-
tects has been working in computer security and
data privacy for the last 15 years. Another archi-
tect has been a security architect for the last 10
years and his job entails both product architecture
and solutions architecture. A third has been pri-
marily involved for the last three years in building
security models in software for the auto industry
and had previous experience working at a major
internet search engine/web portal. In addition to
our general architecture interviews, we also con-
ducted follow up interviews with these security
architects to collect more detailed data for further
analysis. To support this part of our study, we
specialized the questionnaire to focus more di-
rectly on the security aspects of requirements and
architecture (see the Appendix).

Our research has shown that security is often
compromised by circumventing security mecha-
nisms within the architecture. These flaws in the
design of security critical systems may become
visible only after years of use. Due to the rapidly
increasing severity of software security threats, it
is imperative that security concerns be addressed
in the early stages of the software development
lifecycle. Security issues must be addressed both
in requirements and architecture with bounded
investments in time and costs.

In this paper, we describe how practicing ar-
chitects view and manage security requirements
and architectural designs for secure systems. Fur-
thermore, we delineate what characteristics and
skills security architects should have to success-
fully manage and implement security require-
ments. We believe understanding current practice
is a necessary step in providing the foundation for
repeatable processes using effective techniques,
methods and architectural structures to satisfy
security requirements.

2 Security and Software Archi-
tecture – Multiple Case Study

In this section, we provide our insights into secu-
rity issues based on the data collected from the
semi-structured interviews with security architects.
We present selected interview data that reflect
how these architects view security and address
related issues in practice.

We present our data and analysis in five parts.
First, we describe the basic perspectives on secu-
rity requirements that caught our attention during
the study. Next, we discuss how the architects
deal with security issues and manage security
requirements in the process of architectural design.
Then, we illustrate the critical characteristics that
security architects possess in common, particu-
larly the skills required for doing the job effec-
tively. Then, we discuss the relationship between
security and evolution. And finally, we provide
some observations on how security architects
solve problems.

2.1 Basic Perspectives
We summarize our interview data in the following
aspects: problem characteristics, maturity and
stability of the domain, and special issues of con-
cern.

2.1.1 Problem Characteristics
Our subjects suggest that security issues in soft-
ware systems typically surface in four domains:
communication, data access/exchange, operating
system, and cryptography. However, specific se-
curity requirements of a system are usually de-
termined with respect to the business context and
user preferences. The definitions of security can
vary from ‘a guard at every physical door’ to
comprehensive data confidentiality, integrity and
availability requirements.

The interview data uncovered three levels in
security related problems. The basic level con-
cerns with authentication and protection of dis-
crete resources against unauthorized access.
Solutions at this level are well established and
widely applied.

The second level is the protection of confi-
dentiality in the presence of inference. Solutions
for these problems are difficult but can often be
found.

2

“[T]he canonical example … is protecting confi-
dentiality of information in a relational database…
because a relational database is basically an engine for
developing lots and lots of aliases for the same
information. [W]hen you get a new reference that you
haven’t seen before, it is difficult to tell whether that
reference applies to information that you have already
protected in some way… therefore, it is difficult to ap-
ply the correct policy. So, inference is known to be a
hard problem [in] preventing unauthorized inference
from a string of queries to a database.”

The third level is on intellectual property re-
lated issues. General solutions are considered im-
possible, and mitigation strategies are used
instead.

2.1.2 Maturity and Stability
One subject indicates that security as a domain is
immature and unstable. The most notable evi-
dence for him is the following:

“You read the newspaper. There is no possibility I
am going to be out of job anytime soon. By my defini-
tion, it means that it’s not a mature domain.”

The reason for this instability may be because
there are no commonly accepted metrics and
much of what is done is based on intuition and
experience.

Another subject argues that part of the secure
domain is mature and has well-established solu-
tions despite the other parts of that domain which
are still immature.

“Security is a huge topic, and there [are] a lot of
things which are immature in security. Like Federation
[Identity Management] is very, very immature. …
There’s both maturity and immaturity within the space.
… Things like the encryption algorithm, pretty mature;
you know how to do it. [For] user-name protection,
figure out what level of protection you need [and] what
are you protecting against, you have… different proto-
cols [to solve them and] each one has pros and cons.”

Some fundamentally flawed ideas can suc-
ceed in the marketplace, and that is another indi-
cation of the domain’s immaturity level.

 “Things like electronic wallets make it easy for the
merchant, but they are fundamentally a bad idea be-
cause it allows you to easily give private information to
people you don’t really know who don’t need that in-
formation… Although [it is] very successful from the
popular money making standpoint.”

2.1.3 Special Issues
Composition is particularly difficult in engineer-
ing secure systems because emergent properties

can cause serious problems while integrating two
or more components. It is possible for individual
components to possess specific security features,
but the combination of these components may
violate the desired level of security.

“[It is unfortunately the case that lots of security
problems [s] do not compose in a mathematical sense.
If X has security property 1, and Y has security [prop-
erty] 1, [then] X+Y does not [necessarily] have security
property 1.”

“The problem is that if I got this ‘-ility’ and I have
got five things I can do about it, if I pick one of these
mechanisms either it is going to be inconsistent with
one of the mechanisms for this other –ility... or it may
open things up, for example if I am doing testability
here and I am adding test interface and things like that
to make it more observable and controllable, that’s
exactly what security doesn’t want. ... So how to pick
the right mechanism is not widely known in industry.”

One of our subjects suggests that a frame-
work approach does not work well for building
secure systems due to an undesired amount of
generality. Specifically, he believes that although
it is theoretically possible to have a formally de-
fined framework that provides both the required
specificity in security and the necessary abstrac-
tion for general applications, practically, it is im-
possible.

Another issue is that security awareness and
understanding is low among the public which
leads to the infeasible requirements and difficulty
in justifying the security levels of systems. How-
ever, damage caused by security holes in existing
systems can help to justify security needs in new
systems.

In the next section, we present how our sub-
jects deal with security issues in architecting
software systems.

2.2 Dealing with Security Issues
We present our data on managing security re-
quirements from three perspectives: establishing
security requirements, prioritizing security re-
quirements and architecting security requirements.

2.2.1 Establishing Security Require-
ments

Some key characteristics of security are funda-
mentally different from other requirements. Per-
formance, for example, is a requirement that can
be tuned incrementally in a variety of ways (typi-
cally to increase performance). Security, on the

3

other hand, is not something that can be adjusted
in the same way.

Reliability and safety are typically imple-
mented with the expectation that there will be
random component failures and accidents. In con-
trast, security is implemented with the expectation
that failures are (most likely) caused intentionally
by capable and motivated adversaries.

Hence, it is important to capture the mali-
cious intentions, motivations and capabilities of
attackers in the security domain. Threat models
are used for these considerations. Threat modeling
is a security analysis methodology that can be
used to identify risks and guide subsequent design,
coding, and testing decisions.

In general, threat modeling involves decom-
posing the system, identifying its key assets or
components, and specifying and categorizing the
threats to each asset or component.

“In security the primary problem is the existence of
a capable and motivated adversary who wants the sys-
tem to fail. This [property] makes security architecture
different from any other discipline.”

“Security architecture is fundamentally based on
the idea of threat models. You have to start off with the
model of the threats you are trying to defend against,
and if the threat model incorporates the possibility of
physical attacks, then you have to pay attention to
physical attacks… In fact, threat analysis do include an
element of characterizing adversaries in terms of capa-
bility, motivation, and desired outcome”

One subject explained the importance of
threat models by pointing out the difficulties en-
countered when people try to analyze security
requirements with use case modeling.

“[U]se cases tend to be more functional than
quality oriented which drives you to only have the one
kind of requirement but not the other kind… But then
the other thing is that they tend to concentrate too much
on ‘This is what the system shall do’ and the actors are
the normal people interacting with the system. And they
therefore ignore the single most important actor in that
kind of situation: the attacker…”

Another subject also commented that security
problems cannot be solved by ontology-based
approaches since those are generally very inade-
quate. A way to approach it is through generaliza-
tion over past attacks and experiences.

“Ontology is the enemy for security. Because as
soon as [you] put together the ontology, by definition
that defines everything there is and therefore everything
else is unthinkable… Unthinkable stuff [is] really bad.”

 “[T]he way security people learn how to think
about things… is by studying past failures. … You look

at the collection of successful attacks on past systems
[and] make sure that none of those work on the current
system. [T]hen… try to identify patterns… and abstract
types of things... that are not specifically the same… but
have some of the same ideas. And then you try all of
those. [I]f you really hit a dead end and want to break
the system, you take somebody who doesn’t have any
assumptions. [They will be] able to enter into the
whole thing because [they will not try to think like the
designers]. Sometimes it is very important to be able to
do that when you are designing security systems.”

Sometimes the requirements and the prob-
lems are not presented in the right form. In such
cases, it is necessary to discover the shape of the
problem and identify the correct form of the re-
quirements in order to proceed.

“If … the customer is putting a twist [on the prob-
lem] we try to shift the customer or the requirements to
the right direction, saying, ‘maybe you should think this
way or maybe you can do the same thing by an alter-
nate way’. Because customers are set in their ways and
they don’t want to change, so they want to do what they
have been doing. … Education helps [at] certain times.
… People seem to have [a] narrow focus sometimes
[and] sometimes you have to broaden them.”

“What [is the] business problem [that] you are try-
ing to solve? Don’t come to me with ‘we have to upload
this spreadsheet’. [Tell me] what are you trying to
solve; what are [you] trying to do. And when [we]
don’t do that [we] just end up in a rat hole.”

There can be situations where it is not possi-
ble to accommodate all the requirements at the
same time. In such cases, architects do the best
they can by assessing the pros and cons.

“When a requirement is outright impossible, we say
that’s impossible. … And sometimes we’re told to do it
anyway. Digital Rights Management is the perfect ex-
ample… it’s just demonstrably the case that you can’t
do Digital Rights Management to meet a set of re-
quirements that people in the entertainment industry
want. … Nevertheless, we enable our systems for DRM
and build DRM mechanisms anyway. Because people
say they want them. … It filters out a number of dumb
attackers. The smart attackers get in and copy things
anyway.”

“There's not a luxury to do everything that we want
to do or everything which is ideal. You have to go with
the requirements, go with the political nature, the busi-
ness requirements, the funding aspects. … So you do a
pros and cons and decide what is the best...”

On top of the intellectual aspects, the physi-
cal aspects of security also play an important role.
It is important for the architect to look at the en-
tire system and not just a particular set of tech-
nologies.

4

“You really can’t afford not to pay attention to
physical aspects of things. It’s sort of like designing the
pressure vessel of a submarine; it only has to leak in
one place for you to have trouble. And if that is in the
physical infrastructure then that’s just as bad a prob-
lem as if you have screwed up some conceptual thing.
[You] have to pay attention to every aspect of how you
might attack a system.”

“Then there [are the] physical [aspects we need to
pay attention to]. How's our data safe? … What hap-
pens if a tornado hits? How secure is that data in any
kind of disaster? ... That’s at the macro level. Then you
get into the application, and they're very sensitive about
different [roles] – people that are designing ad-
drawings don’t need to be looking at the financial in-
formation. … [S]ecurity … cuts across every type of
object in the system.”

 “[Y]ou have things that you do in hardware for se-
curity, in the software for security … in the data for
security, but you also have to deal with physical secu-
rity, you have to deal with the security of your staff and
the people who are interacting with your systems. So
the more you get into this, the more you realize it’s a
larger, more complex issue, and just looking at one tiny
little piece of the problem leads you to a false sense of
security that you’ve handled it when you haven’t.”

2.2.2 Prioritizing Security Require-
ments

Having established a set of requirements, two
situations often arise: (i) there are conflicting re-
quirements, and (ii) the cost of building a system
that satisfies all the requirements is too high.
Hence, there is a need to prioritize the require-
ments to establish which are critical and which are
subordinate.

Priorities could be based on the likelihood of
the risk, cost/benefit analysis, and specific areas
of concern for the stakeholder. It requires the un-
derstanding of the capabilities, resources, motiva-
tion, risk tolerance and level of access of the
likely adversaries. Such an understanding helps to
elicit hidden requirements and to provide a strong
defense and effective recovery mechanism with a
modest cost.

The actual prioritizations are typically done
through negotiation. For functional requirements,
choices can be made through prioritization of fea-
tures.

“[Y]ou get a good feeling for the weight of the re-
quirement… You can generally tell, by the discussion,
what's important to them especially if you push back on
something. [If] it's really important to them, you'll start

getting the messages, the body language, [that they
are] not comfortable…”

It is not practical, and usually impossible, to
achieve complete security. Not only is it expen-
sive, it is unrealistic because there are always
some aspects not anticipated. Vulnerabilities can
be found in even carefully designed products.
New attacks are constantly invented.

Instead, security levels are defined with re-
spect to specific goals; they can either be achieved
or not. Thus, security requirements have to take
precedence without giving any concessions. Aside
from setting the level of security that is acceptable,
there is not much to be adjustable. In other words,
acceptable risk mitigation is attainable even
though security is not achievable at large.

“The attack succeeds or it fails. So [security] is a
difficult property to subject to engineering tradeoffs.
But you can… decide in advance that the system has to
impose some specified work factor on the adversary
and have that as a design goal.”

“You can’t... really continuously tune your level of
security. And this of course pisses off all the other de-
signers in the organization because they are all sitting
around saying, 'Well, you know we can tradeoff a few
clock cycles here for a better user interface here or
something like that' and the security guy is just sitting
in the room and everybody else says, 'So what do you
have to offer?' And the security guy says, ‘Nothing, you
have to do it my way.' ”

However, some factors can trump security, as
in the case of legal issues.

“We had a certain product and it failed because of
the… legal ramification of issuing a certificate. … [I]f
I am issuing a certificate to [you] then I am account-
able for it if [you do] any fraud with that certificate. …
There is a liability [issue] associated with that. So we
spend tons of money on the product, and it was failed.”

2.2.3 Architecting Security Require-
ments

All our subjects expressed that it is important to
consider all requirements in support of security
requirements while building secure systems. We
believe it is because security requirements are
highly integrated with other requirements, and
must be considered from the very beginning of the
development cycle.

We observe that there is a slight disagreement
on how our subjects categorize the supporting

5

requirements1. For example, some of them catego-
rize performance to be functional while others
categorize it to be non-functional. Whether func-
tional or non-functional, it is agreed that a set of
supporting requirements is needed in building
successful secure systems. These include per-
formance, scalability, interoperability, availability,
manageability and maintainability.

“Typically in security the functional requirements
mostly have to do with interoperability mechanism and
with manageability. So it’s a functional requirement
that my VPN client has to be able to talk this bizarre
protocol that is spoken by the mutant VPN server.”

“[A] system administrator [needs] to [be able to]
update the access of everybody in department X by
running a script overnight. [This implies] there’s got to
be an API level interface for the security management
system and it’s got to have certain kinds of authentica-
tion and authorization functions so that we can run it
safely.”

“[P]erformance is frequently a functional require-
ment; you are not allowed to slow down.”
In building secure systems, both functional and non-
functional requirements play a critical role in all
phases.

“The functional aspects are something like the core
aspects of the product… Non-functional are perform-
ance and scalability... [W]e try to give functional re-
quirements more importance because that’s what is
seen [and] marketed. … But non-functional require-
ments are worked in with that because what’s the point
in releasing a product if it doesn’t scale beyond 100
users, or… doesn’t perform. So it goes down [to] all
phases. Whether it is architecture [or] design, you
combine those two things at all points of time and work
towards a cohesive architecture.”

“I don't really feel there's that big a difference be-
tween non-functional and functional. It is just a re-
quirement and somehow you've got to accommodate
it.”
 Security requirements are defined relative to
specific goals capturing known vulnerabilities.
These goals must be accounted for in designing
the system structure. Given that security is em-
bedded in the system structure, it cannot be al-
tered easily.

“[Y]ou can decide in advance that the system has
to impose some specified work factor on the adversary
and have that as a design goal. [Then,] you basically

1 We believe that the disagreement is due to the neces-
sary reification from non-functional requirements to
functional structures.

have to hit that mark or do better. You can’t… really
continuously tune your level of security.”

“We have a great deal of flexibility to adjust and
replace mechanisms. [For example] we can add
stronger cryptography… on the wire protocols... What
it’s much less easy to do is to change the basic struc-
ture of the system in a way that has an impact on secu-
rity. Sometimes we end up having to do that, and it’s a
lot of work.”

Unfortunately, security requirements are of-
ten done separately from the system requirements.
Typically, system requirements are done first and
security is added as an afterthought. This often
leads to significant changes to the architecture.

“One of the number one problems that I often see,
and especially true in security and safety, is you have
got a security team over here and safety team over here
[that] never talk to the requirements people [and]
rarely talk to the architectural people, at least upfront.
... You have the requirements team doing their require-
ments, they don’t understand these guys and these guys
haven’t fed their stuff into here. … And so the actual
real honest requirements end up in the requirements
spec, which drives the architecture. And then later on,
what happens is these guys come in here and say, ‘You
forgot about us’. … And then they try to slather it on
the outside. Well you can’t add some of these major
things to a pre-existing architecture by just adding it
on. Now that doesn’t necessarily mean that it had to be
there from scratch. What it does mean is you have to
have some significant changes to the architecture. …
Which is why it is so critical to make sure that all of the
-ilities are thought of up front, and all of the quality
requirements are fed into the requirements spec.”

However, one of our subjects does not believe
in the importance of security being an integral
part of the design rather than being added in as an
after thought. According to him, it only means
that the security should be the first priority re-
quirement and all the other requirements should
change in order to accommodate security. And
this is important only when designing control
mechanisms for nuclear missiles and not when
designing commercial operating systems.

“Now there are lots of systems which have been
built with security being added which are out there
functioning in the world today. The telephone network
is a good example okay…. Well the fact that security is
added on to Windows XP is not what makes it insecure.
The thing that it makes it insecure is that it is huge and
a mess”.

Security goals must be designed with a far-
seeing vision; the lack of that will lead to failures.

“[T]here was a cellular phone protocol that [de-
pended] for its security on the assumption that bad guys

6

can’t put up a tower … [T]hat’s [definitely] not a good
assumption… [T]hat protocol does not exist in that
form anymore as it turns out it’s not that hard to put up
something that looks to a cell phone handset as if it
were a tower.”

Even though security is an integral part of the
system, we must be able to address the issues of
modularity and externalization. Security needs to
be configurable for different security levels, and it
must be replaceable depending on the context
without breaking the system.

“[It is ideal that] in the production environment
with full on security, various layers of security can be
turned off [and] the system still functions. [Also,] you
can layer more and more security if you want.”

Security requirements often restrict the
choices of other requirements. There is an obvious
tradeoff between security and performance be-
cause extra operations are required in more secure
systems.

“[It] tends to be the case that security trades off
against performance, … because as you harden the
interfaces of the components and isolate it more and
more, you make it more difficult to cross the boundary
between the non-secure portion of the system… and the
part of the system that enforces security.”

In summary, we have seen how architects es-
tablish, prioritize and architect security require-
ments in practice. We observe that (i) architects
must explicitly give considerations to security
issues at the requirements level; (ii) security con-
cerns should not be an add-on but an integral part
of the requirements; (iii) emergent security prop-
erties should be taken into account explicitly in
terms of what should be protected, from whom,
and for how long.

2.3 Characteristics of Architects
During the interviews, our subjects discussed at
length the characteristics required of architects in
designing highly secure systems. We begin with
the general characteristics of architects, then nar-
row down to particular skills required of security
architects.

It is noted that breadth is one of the most im-
portant characteristics. Architects must be gener-
alists so that they understand all the parts of the
system and do not focus on just a single aspect.

“Breadth is very important, to not be just focused
only on security, but being able to know the other as-
pects of software engineering, whether it is perform-
ance, ... hardware, … application [or] whatever it is.”

“Generally, security people are generalists rather
than specialists. They have [to] understand a lot about
different parts of the system and how they work, [and]
enough about each of those parts of the system so that
they can figure out [where] vulnerabilities [can sur-
face].”

“The idea that you can be a software architect and
know nothing about hardware or the rest of the system I
think is a complete misnomer… Safety, Security, Reli-
ability, Robustness, Availability, all of those are system
characteristics, not software characteristics. [So an
architect has] to look at the hardware, the software,
and the data components as well as procedural compo-
nents and… the human beings that are involved.”

Some of the essential personality traits of an
architect are persistence and persuasiveness.
However, if these fail to influence the team, the
architect may need to act the role of a benevolent
dictator to push the progress forward. In general,
an architect needs to possess strong technical,
people, leadership and communication skills.

“[G]ood technical background is the key. Good
people, good leadership skills are very important, be-
cause you are leading a team … a set of people to be-
liev[e] what you think is right, You got to be able to
convince. … If you are a dictator, that’s bad. You got to
be a team player … have some level of leadership skills
and be able to listen. Because if you don’t listen, then
you will be going to your tunnel vision and do what you
think is right, as opposed to what is required for the
job.”

“[An architect needs to be a] politician, diplomat,
nursery attendant, business liaison. You have to be [a]
benevolent dictator. [You] have to be technically savvy,
but more so, sound. ... I don't think you need to know
the latest version of the latest spec [but] good sound
design principles and… learn [quickly].”

There is some debate over whether good ar-
chitects are ‘born-to-be’ or grow out of extensive
training and coaching. One subject suggests that
one can become a good architect through mentor-
ing, but basic talent is still necessary.

“Generally… majority of the security people are
born, but then after that they have to be trained. So it’s
a select from a population that have the right charac-
teristics”

However, another subject suggested that they
can be trained and need not to be born with such
skills.

“I think anybody can do anything in life if you work
hard. That’s my fundamental belief. Having said that…
Yes, some people just don’t get it. … [T]ypically when
we try to grow somebody, the biggest problem we face
is they are very focused in what they know, and they are
not easy to learn the rest of the concepts

7

To manage security requirements effectively,
architects must be able to adopt the mentality of
the attackers.

“The most important qualification to be a security
architect is [being] able to think like the bad guys. … If
you do not have an element of ... malice [or] at least an
appreciation of the beauty of malice … you are just
going to fail.”

Typically, people react to new attacks with
one of three attitudes: (i) reluctant and annoyed,
(ii) excited and motivated, (iii) prohibitive and
dismissive. Only those who welcome the chal-
lenge, as in the second case, are appropriate for a
security architect.

“[The first says] ‘that is really annoying, I can’t
get my job done’. They are fine, they are probably not
dangerous; you could use them to test things or some-
thing. [The next says] ‘oh that is really neat! I wonder
how he did that’. Those will likely be good security
people. [The last says] ‘Well you know, nobody should
be allowed to do that’. They have to be kept far away
from security. They have totally the wrong attitude, they
don’t get the problem, [and] they will never be able to
think that way.”

2.4 Security and Evolution
Evolution is generally driven by changing re-
quirements, usually the result of demands for new
functionality, in most software systems.

However, in security, evolution is often
driven by changing contexts while the require-
ments have remained the same. As one security
architect pointed out, some of the security prob-
lems in Windows is a result of people using Win-
dows in an environment that it was not initially
designed for.

"[Windows] was designed to run a personal com-
puter. ... Nobody knew at the time Windows 3.1 was
designed that it was even going to be networked. ...
Windows was designed to operate as an isolated per-
sonal computer and have a nice interface and be
friendly and everything. And it was designed for other
good characteristics that continue to haunt it from a
security point of view today. So for example it was de-
signed almost from the very beginning to accommodate
people with vision and hearing defects, and what it
meant was you could stick a device driver straight into
the brain of the operating system that would allow you
to operate a Braille device or allow you to operate
something that wasn't a keyboard. And therefore, there
is like no way to assure that you are actually talking to
the real user."

Sometimes the context change can be caused
by something as simple as an increase in comput-

ing power. Encryption algorithms are a good ex-
ample.

"When we make a product we assume that algo-
rithms are good for a certain duration of time. ... Most
of the crypto algorithms have been there since the 70’s,
right? Now at that time the computing power was not
even a millionth of what we have right now. Your desk-
top is probably more powerful than mainframes at that
time."

2.5 Problem Solving
Traditionally, activities are described as a set of
well-defined goals and plans that are determined a
priori. This is known as a plan-based approach. In
her book, Suchman offers an alternative theory,
that of situated actions [5]. She suggests that
“every course of action depends in essential ways
upon its material and social circumstances”. That
is human cognition and subsequent action (in this
case, problem solving) is an emergent property of
the moment-by-moment interaction of an individ-
ual with the physical and social environment.
However, this theory does not imply that plans
cannot or do not exist.

In our study, we find an analogous duality in
our architects in their responses to unanticipated
problems. On the one hand we find architects
who fall back on organizations' well-defined
processes when so confronted. Indeed the major-
ity of the subjects interviewed when asked about
certain kinds of abnormal situations, referred to
“falling back on the defined process” as the means
by which these situations would be handled. A
smaller set of architects, on the other hand, exhib-
ited a “situated action” response in which what
they would do was dependent on the situation and
their experience. In this latter case, experience,
not process, formed the basis of their architect
response in solving these problems.

3 Validity Issues
In this section, we discuss three validity issues
that are important to empirical studies [4]: con-
struct [2], internal and external validity.

There are two perspectives that contribute to
the construct validity in this case study. One is on
the coverage of the questionnaire, and the other is
on the abstractions employed. The goal in design-
ing the questionnaire is to be both thorough and
broad.

The general questionnaire was initially
drafted by one author based on an initial brain-

8

storming session. It then underwent a number of
reviews by each author. Reviews were carried out
among the authors after each interview session
and revisions were applied whenever necessary.
While the questionnaire is not focused specifically
on security, all of the quotes that we have used in
this paper were taken from parts of the interviews
and are focused on security.

The follow on security interviews were based
on questionnaire based on the general one, but
tailored specifically for security architects. The
development, review and evolution cycle fol-
lowed was that we used for the general one.

Semi-structured interviews may suffer from
the problem of leading our subjects. This may
lead to internal validity issues making the data
collected less objective than it should be. How-
ever, we know where this occurs and can mitigate
that problem by being careful in using the results
in these contexts. Moreover, we have all inter-
views transcribed, and when we spot that there is
leading, we will use other data instead or note the
context of the subjects’ comments.

Two of our security architects are from the
same international organization. We recognize
that there may be some unintentional bias intro-
duced by a shared company culture that may lead
to external validity issues. However, these sub-
jects are from different levels of the corporate
hierarchy. Moreover, this work is ongoing, and
we plan to choose subjects that are more diverse
in the future.

4 Conclusions
We summarize lessons learned from the interview
data as well as our own remedies as follows:
Lesson 1: Building secure systems and managing
security requirements effectively depends on es-
tablished software engineering principles and
practices. Though it is not always achieved in
practice, we believe well-engineered systems
should be the foundation for achieving security
goals.

The literature has shown similar evidence. In
his keynote speech, Wolf pointed out that “Secu-
rity engineering is a technical field dependant
upon methods, tools, and models for requirement
analysis, design analysis and implementation
analysis” and concluded that security engineering
really is good software engineering [10].
Lesson 2: Security is a critical domain that re-
quires highly specialized treatment. It relates to a

system’s complexity and connectivity, and thus,
touches all aspects of engineering. The pros and
cons of various security strategies must be
weighed during system architecting and planning
activities.

The software engineering research commu-
nity is starting to take notice of the security do-
main and its unique domain properties. As a result,
new techniques, methods and technologies are
emerging. One noticeable contribution is the anti-
goal models introduced by van Lamsweerde et al.
in capturing malicious obstacles [6][7].
Lesson 3: Good security begins with an aware-
ness of security requirements and implementation
of security features in the architecture of the sys-
tem. To achieve this, security must be included in
the design goals right from the beginning. It
should be treated as a required property that must
be an integral part of the system since it is neither
tunable nor imposable later on.

 Empirical studies are needed to determine
which practices are most effective. However, very
little empirical proof exists for many technical
practices used today for producing secure soft-
ware. In [9], the authors present an empirical view
on security engineering practices. The results are
based on the observations made by three informa-
tion security practitioners. They describe that dif-
ferent application domains have different security
needs which should be frequently updated be-
cause the world is changing and the old security
architectures would no longer work in the new
environments. This need to evolve security archi-
tectures in order to keep up with changing con-
texts mirrors what we observed in our research
and discussed in section 2.4.
Lesson 4: Understanding security problems is an
ongoing challenge. Current security problems are
different from the past or the future. It is impor-
tant that architects understand different threat
models and continuously update on the newest
solutions to prevent new attacks.

As Wolf pointed out, “software threat analy-
sis is a young art” and existing models do not
adequately support the analysis needed [10].
There is much work to be done in the security
domain.
Lesson 5: There is no universal definition for the
term security architecture. In the absence of
agreement, the first thing a security architect usu-
ally does is to describe what relationships are
secure and what are not.

9

 In general, the security architecture must (i)
facilitate proper and efficient security identifica-
tion, authentication and authorization in response
to the access and use of information resources; (ii)
provide a modular approach to authentication,
authorization and accountability; (iii) ensure secu-
rity requirements and associated risks are ade-
quately evaluated when preparing to the support
different needs of an organization; and (iv) be
flexible enough to support integration of new
technologies while maintaining appropriate secu-
rity protection. The evidence in our case study
supports this position.

In conclusion, we believe security specialists
should employ established software engineering
principles and practices to their advantage, and
software engineers must recognize the unique
aspects of the security domain and continue to
provide and to apply appropriate methods to attain
a higher level of software security. It is important
to raise awareness not only among the users but
also among the administrative staff about the im-
portance of security and security architectures.

Several issues have surfaced in our case study,
which require further research: (i) how security
architects should be involved in requirements
elicitation and negotiation; (ii) what frequently
occurring problem and requirement patterns can
be; (iii) what specific modeling tools/methods are
needed for capturing security requirements; (iv)
what evaluation techniques are required to assess
security levels in architecture; and (v) how con-
flicts between security requirements should be
resolved. In cases where more evidence is re-
quired, we will either follow up with the current
subjects or conduct new interviews.

About the Author
Vidya Lakshminarayanan is a MS/PhD student in
Electrical & Computer Engineering at University
of Texas at Austin. Since summer 2004 she has
spent her time in working on the project on
“Transforming Requirements Specifications into
Architectural Prescriptions”. Currently, she is
working as a co-op engineer at Advanced Micro
Devices to gain experience and a better under-
standing of the actual practice.

WenQian (Wendy) Liu is a Ph.D. candidate
in Computer Science at the University of Toronto
and an IBM CAS Student. She received her Hon.
B.Sc. in Computer Science and Mathematics and
M.Sc. in Computer Science both from the Univer-

sity of Toronto. Her primary research interests are
software architectural design and requirements
engineering.

Charles L. Chen is a MS/PhD student in Elec-
trical and Computer Engineering at the University
of Texas at Austin. He obtained his BS degree
from the Department of Electrical and Computer
Engineering from the same institution in 2006.His
research interests includes software architecture,
software evolution, computer security, and com-
puter networks.

Dewayne E Perry is Professor and Motorola
Regents in Software Engineering in Electrical &
Computer Engineering at The University of Texas
at Austin. His research interests include software
architecture, software evolution and empirical
studies in software engineering. He is a member
of ACM and IEEE Computer Society

Acknowledgements
We thank all of our anonymous interviewees for
their participation and contribution. This research
was supported in part by NSF CISE Grant CCR-
0306613 and IBM CAS Fellowship.

5 References
[1] R. Anderson. “Security Engineering - A Guide to

Building Dependable Distributed Systems”. John
Wiley & Sons, Inc. 2001.

[2] D. E. Perry. “An Empirical Approach to Design
Metrics and Judgments”. In New Vision for Soft-
ware Design and Production Workshop. Vandebilt
University, Dec 2001.

[3] Robert K. Yin, “Case Study Research: Design and
Methods”, 3/e. Thousand Oaks, CA: Sage Publica-
tions, 2002.

[4] R. Rosenthal and R. L. Rosnow. “Essentials of
Behavioral Research: Methods and Data Analy-
sis”. McGraw Hill, second edition, 1991.

[5] L. A. Suchman. “Plans and Situated Actions”.
Cambridge: Cambridge University Press, 1987.

[6] A. van Lamsweerde. “Elaborating Security Re-
quirements by Construction of Intentional Anti-
Models”. In Proc. ICSE’04: 26th International
Conference on Software Engineering, 2004.

[7] A. van Lamsweerde et al. “From System Goals to
Intruder Anti-Goals: Attack Generation and Reso-
lution for Security Requirements Engineering”. In
Proc. Requirements for High Assurance Systems
Workshop (RHAS'03), 2003.

10

[8] W. Liu, C. L. Chen, V.Lakshminarayanan, D.E.
Perry, “A Design for Evidence-based Software
Architecture Research”, Workshop on
REBSE'2005, ICSE May 2005.

[9] R.B. Vaughn, R. Henning, K. Fox. “An Empirical
Study of Industrial Security-Engineering Prac-

tices”. In Proc. Journal of Systems and Software,
April 2002.

[10] A. L. Wolf. “Is Security Engineering Really Just
Good Software Engineering?” In Proc. of the
Foundations of Software Engineering, Keynote
speech. 2004.

 Appendix

Interview Questionnaire
1. Goals

To develop a deep understanding of how archi-
tects view, manage and architect security re-
quirements in practice
- What they think the key aspects of security do-
main are
-How do they establish, prioritize and architect
security requirements
- How do they transform these requirements into
security architecture
- How they relate security requirements to general
requirements, detailed design and implementation.

2. Privacy issues

- Anonymity (of both architects and company) is
guaranteed, unless explicit permission is provided
by the interviewee and/or his/her company.
- Access to the recording data is strictly limited to
researchers involved in the project and no one else.
- Company confidentiality will be maintained on
architecting process issues if requested.
- Company confidentiality will be maintained on
IP issues, unless explicit permission is provided
by the interviewee and/or his/her company.

3. Definitions

- Within the context of the system (or subsystem),
architectural design is one that is the most abstract
depiction of the system that enables reasoning
about critical requirements and constrains all sub-
sequent refinements. [Clements et al 2001]
- A good architecture is one that can be built
given the current available resources and uses less
resource during maintenance and easily maintain-
able.
- Architectural drift refers to an evolved system
that is insensitive to the original architecture.

- Architectural erosion refers to an evolved sys-
tem that has taken away the load bearing struc-
tures from and/or violates the architecture.

4. Questionnaire

- Note that the questions below may have overlaps,
please feel free to repeat your answer if appropri-
ate.
- The order of the questions can be altered accord-
ing to the architect’s preference.
Questions may also be skipped.

A. Problem Domain

A1. Describe the problem domain(s) that you
have been working in
- General domain
- Specific domain examples where security was a
critical concern
- Were there any non-software aspects of the sys-
tem that played a role in security in this case?
- Is security the primary focus of the system?
- Do you know of any successful projects with
very poor security? What are the various reasons?
- Do you know of any unsuccessful projects with
very good security? What are the various reasons?

A2. What are the key aspects of the security do-
main?
- General goals of security
- Problem characteristics
- Can you give some examples of kinds of prob-
lems that you encounter?
- Are there any techniques for recognizing these
different kinds of problems? How do you react to
problems that are completely new?

11

- What kinds of effects do security issues have on
requirements and architecture?
- Maturity vs. immaturity

Mature – established business process; well-
defined theory, processing and expected be-
haviors; well understood objects

- Stable vs. unstable
Degree or constancy of change during and af-
ter development

- Sources of difficulties and obstacles

B. Requirements

This section is to capture how security architects
elicit, view and manage security requirements in
practice

B1. What specific modeling tools/methods are
needed for capturing security requirements? Do
you transform requirements into a specific secu-
rity level goal? And if so, how?

B2. Security is not the only requirement in soft-
ware development. What are the other supporting
functional and non-functional requirements? How
do you prioritize these requirements? In case of
conflicts with other requirements, how do you
handle security requirements? Are there conflicts
between security requirements? If there are, how
are they handled?

B3. How is security different from other non-
functional requirements?

B4. Should the security architects be involved in
requirements elicitation and negotiation?

B5. How do you handle security requirements that
are very complex or costly? What about the re-
quirements those are outright impossible?

C. Architecture, Implementation

and Design

This section is to capture the architect’s general
understanding on the meaning of security archi-
tecture, how requirements are transformed into
security architecture and how they are imple-
mented and designed in practice.

C1. How do you define security architecture?

- How detailed should the architecture be?
- How is the architecture communicated to the
stakeholders?
- What are the driving forces of the architecture?
- What should the architectural representation
include?

C2. What are the critical characteristics of a secu-
rity architect?
- Can these architects be trained or must they be
born with such skills?
- Other than these critical characteristics, what are
some general characteristics of security architects?

C3. Are there any specific rules of thumb for de-
veloping secure software?

C4. What factors make security hard to archi-
tect/implement?

C5. How do you recognize which parts of the
software need to be secure?

C6. Is threat analysis/threat modeling important?
How is it defined and practiced? Does this help to
minimize the vulnerability?

C7. How does the problem structure affect your
architecture?

C8. In your opinion, are there any relationships
between the problem structure and a good archi-
tecture? What would it be?
- Are the requirements sufficient to give you a
good understanding of the problem structure? Or
do you need additional domain knowledge to un-
derstand the problem structure?
- Do you use that understanding of the problem
structure in structuring the architecture?

C9. Are there standard architectural structures that
you use for security? Architectural transforma-
tions? Patterns?
- How and when do you apply any of these?
- Is there a problem with composition of security
components? Is so, how do you overcome it?

C10. How do you evaluate the architecture? Are
there any tools/methods? What are your criteria?
- What evaluation techniques are needed to assess
security levels in the architecture?

12

D. Evolution

D1. How do new requirements affect the architec-
ture after the system is built? Especially security
requirements.

D2. How do you handle continuous requirements
change?

D3. How does the architecture evolve during the
system’s lifetime in response to changing re-
quirements?
- How do you deal with architectural drift or ero-
sion?

D4. What measures do you take while designing
the architecture to minimize the impact of change?
- How do you identify and understand the various
effects of requirements changes on the architec-
ture?
- What about the effects of architectural changes
on design and implementation?
- Has maintaining architectures been a useful task?

D5. How do you reuse security architecture?
- How do you make architecture reusable?
- Are you usually concerned with reusability
while designing?
- Do you find common parts that you can reuse?

D6. Should security be an integral part of the sys-
tem? What are the difficulties encountered if se-
curity is added on as an afterthought?

D7.How do you anticipate future security re-
quirements, both in terms of requirements that
have not been requested yet and in terms of brand
new attacks? How much room do you leave in the
design for the requirement changes?

E. Comments

E1. What do you think of the questions?
- Are they relevant or interesting?
- Do they help you to think differently about ar-
chitecture than you did before?
- Do you find this interview a useful exercise? -
Why and how?
- What were your expectations of the interview?
- What values are you looking for from this exer-
cise?
E2. Do you recommend any other security archi-
tects who might have an interest in this work?
- Names and contact info.
E3. Any feedback, future thoughts, suggestions
and contacts, e-mail: vidya@ece.utexas.edu,
perry@ece.utexas.edu.

13

mailto:Vidya@ece.utexas.edu
mailto:perry@ece.utexas.edu

	Abstract(
	Introduction
	Security and Software Architecture – Multiple Case Study
	Basic Perspectives
	Problem Characteristics
	Maturity and Stability
	Special Issues

	Dealing with Security Issues
	Establishing Security Requirements
	Prioritizing Security Requirements
	Architecting Security Requirements

	Characteristics of Architects
	Security and Evolution
	Problem Solving

	Validity Issues
	Conclusions
	About the Author
	Acknowledgements
	References
	Appendix
	Interview Questionnaire

