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Abstract 

 
Parallel changes are becoming increasingly 

prevalent in the development of large scale software 
system. To further study the relationship between 
parallel changes and faults, we have designed and 
implemented an algorithm to detect semantic 
interference between parallel changes. To evaluate the 
effectiveness and efficiency of this analyzer, we 
designed an exploratory case study in the context of an 
industrial project. We first mine the change and 
version management repositories to find sample 
versions sets of different degrees of parallelism. We 
investigate the interference between the versions with 
our analyzer. We then mine the change and version 
repositories to find out what faults were discovered 
subsequent to the analyzed interfering versions. We 
use the match rate between semantic interference and 
faults to evaluate the effectiveness of the semantic 
interference detection tool. We also evaluate its 
efficiency by the lapse for finding (an average of 150 
days) and fixing the faults associated with those 
samples. The case study shows that the analyzer is 
most effective in detecting non-pointer variable 
interference in adaptive changes with a high degree of 
parallelism. Further, the analyzer is both efficient 
(averaging less than two minutes) and scalable 
(requiring only the local context).  
 
1. Introduction 
 

Parallel development has become a common 
phenomenon in the development of large scale 
software systems. Multiple developers work on the 
same module or program at the same time. The need 
for parallel development has come about for a variety 
of reasons: 

• the size of the software systems, 
• time to market also brings pressure to develop new 

features or new products in a very short time, 
• code ownership management is too expensive, 

• the increase of globalization, and 
• the geographical distribution of developers. 

While parallel development increases productivity, 
it also causes problems. When developers work in 
parallel, it is likely that their changes may 
unintentionally interfere with each other. 

In our earlier work [12] [13], we showed the 
problems related to parallel changes.  In a subsystem 
of Lucent Technologies’ 5ESS Telephone Switching 
System, high degrees of parallelism happened at 
multiple levels. To disclose the relationship between 
parallel changes and faults, we studied prima facie 
conflicts at the textual level, checking the overlap 
between the lines changed by different developers. We 
found two important results:  1) 3% of the changes 
made with in 24 hours by different developers 
physically overlapped each others’ changes; and 2) 
there was a linear correlation between the degree of 
parallelism and the likelihood of a defect in the 
changes.  

Our initial investigations focused on explicit 
syntactic conflicts.  We believe that there are also 
conflicts at the semantic level. To explore this 
hypothesis, we designed a semantic interference 
detection algorithm [21] [22], based on data 
dependency analysis and program slicing. 

To investigate the effectiveness and efficiency of 
this algorithm, we have built a semantic conflict 
analyzer (SCA) based on this algorithm, designed a 
rigorous exploratory case study, and executed it in the 
same industrial context as our previous empirical 
studies. 

In Section 2, we give an overview of the semantic 
interference detection algorithm. The context for this 
study is discussed in Section 3. Section 4 presents the 
case study design and its results. We discuss validity 
issues in Section 5, and compare our work to related 
research in Section 6. Finally, we summarize our study 
and propose future work in Section 7. 



2. Semantic interference detection 
Our algorithm combines data dependency analysis 

and program slicing. With the data dependency 
analysis, we can learn about the semantic structure of 
the program. And the program slicing can identify 
which semantic structures are impacted by changes. By 
comparing the overlap of the impacted parts of the two 
versions, we can learn if they are in conflict. 

v. 1 v. 2 

1: a = 0;   1: a = 0;   

2:  2: p = &a;   

3:  3: *p = 2;   

4: j = a * 3;   4: j = a * 3;   

2.1. Semantic analysis of change impact  
Semantic analysis of change impact is the basis for 

the semantic interference detection algorithm. 
Semantic program analysis discloses internal 
dependencies within programs. Although there are 
many aspects to program semantic analysis, this 
algorithm only focuses on the local data flow 
dependencies related to variable def-use pairs. Because 
we are only concerned with the change impact on local 
behavior, the semantic analysis is at the statement 
level. 

Figure 1 illustrates the semantic analysis of change 
impact. Suppose there is a change from Version v1 to 
v2. At first, we will analyze the semantic dependencies 
in the two versions. In v1, Line 3 uses the value of 
variable a defined in Line 1. So, there is a dependence 
between Line 1 and Line 3 according to variable a. For 
the same reason, Line 4 has a dependency on Line 2 
according to variable b, Line 5 has a dependency on 
Line 3 according to variable i, and Line 5 has another 
dependency on line 4 according to variable j. In Figure 
1, the variable def-use dependency is represented as 
solid arrow and the variable names are on the lines. 

 

5: k = i + j;  5: k = i + j;  

Figure 1 Changes in direct variable def-use 
dependencies 
 

We use a triple (var: def, use) to represent a 
dependency, where var is the variable on which the 
dependence is built, def is the line that defines variable 

var, and the use line uses the variable defined at def 
line. So the dependences in Version v1 are {(a: 1, 3), 
(b: 2, 4), (i: 3, 5), (j: 4, 5)}.  

Figure 2 Changes in indirect variable def-
use dependencies

From the variable use-def dependency analysis of 
the two versions, we calculate the change impact by 
forward slicing from the changed statements. In this 
example, the change from v1 to v2 modified Line 1 
from “a = 0” to “a = 1”. According to the variable def-
use chains, {(a: 1, 3), (i: 3, 5)}, we learn that Line 3 
and 5 will be impacted.  So the impact of this change is 
Impact (v1->v2) = {3, 5}. 

Not all the  variable def-use dependencies are easily 
identified as the direct dependencies shown above. 
There many other indirect dependences that are based 
on structure, pointer (in C/C++) or reference (in Java 
and C#) type variables. In Figure 2, adding Line 2 and 
3 in Version v2 introduced an implicit dependency on 
Line 3 and Line 4 based on variable a’s aliasing, *p. 
The semantic change impact analysis will become 
more complex and difficult when branches are 
involved. In this study, we evaluate both the direct and 
indirect dependencies. 

v. 1 v. 2

2.2. Semantic Interference Detection  
We give a brief introduction to the semantic 

interference algorithm; a detailed explanation can be 
found in [21] and [22]. 

This algorithm combines static program slicing and 
data flow analysis to detect semantic interference. 
Given two changes to be checked,  

1) Calculate the data dependence graph and collect 
the variable def-use pairs for each version in the 
changes; 

2) Depending on the textual difference between the 
two versions in a change, identify variable def-use 
pairs affected by the change; 

1: a = 0;   1: a = 1;   

2: b = 0;   

3: i = a + 2;   

4: j = b * 3;   

5: k = i + j;  

a 
b 

j 

i 

2: b = 0;   a 

3: i = a + 2;   
b

4: j = b * 3;   i

j 
5: k = i + j;  



3) With the affected variable def-use pairs as slicing 
criterion, do forward slicing to get the program 
fragments impacted by the change; 

4) Compare the impacted fragments of the two 
changes. The overlapping parts are their 
interference fragments. 

 

Figure 3 illustrates the semantic interference 
detection algorithm. Suppose there are two adjacent 
changes: d1 and d2 where d1 changed the program 
from Version v1 to Version v2, while d2 changed the 
program from v2 to v3.   

1) For each version, calculate data dependence 
graph and identify variable def-use pair. The 
results are:  for v1, the dependency in is {(a: 1, 
3), (b: 2, 4), (i: 3, 5), (j: 4, 5)}; Version v2 is {(a: 
1, 3), (b: 2, 4), (i: 3, 5), (j: 4, 5)}, and Version v3 
is {(a: 1, 3), (b: 2, 4), (i: 3, 5), (j: 4, 5)}; 

2) For each change, identify the changed lines. In 
d1, Line 1 was changed and in d2, Line 2 was 
changed,  

3) Calculate the semantic impact of the two changes 
by forward slicing from the changed lines. So, 
Impact (d1) = {3, 5} and Impact (d2) = {4, 5}; 

4) Compare impacted lines of the two changes. In 
this example, Impact (d1) = {3, 5} and Impact 
(d2) = {4, 5}. The two impact sets overlapped on 
Line 5. This means Change d1 and d2 have a 
semantic interference at Line 5. 

3. Study context 
In this study, the data repository and our previous 

study constitute the base environment to evaluate the 
semantic interference detection algorithm. We present 
the description about them in this section. 

3.1. Change & Version Mgmt Repositories 
This case study is based on one subsystem of 5ESS, 

a successful industrial project with high degree of 
parallel changes. 5ESS is a telephone switch project 
developed by Lucent Technologies [8]. 5ESS has 

about 100,000,000 lines of C and C++ code and 
another 100,000,000 lines in header files and 
makefiles. Its organization contributed to the high 
degree of parallel changes during the development 
process. In thw subject subsystem, the number of 
developers reached 200 at its peak and dropped to a 
low of 50. Two products, one for US and one for 
international customers, were developed separately 
although some files are common for both of them. 

The history data for our case study comes from the 
change management system of 5ESS. In Lucent 
Technologies, the evolution of 5ESS is managed by a 
two-layered system: a change management layer, 
ECMS [23], to initiate and track changes to the 
product, and a configuration management layer, SCCS 
[16], to manage the versions of files needed to 
construct the appropriate configurations of the product. 
In 5ESS, the changes are recorded in a layered 
hierarchy: Feature, Initial Modification Request (IMR), 
Modification Request (MR) and delta. A feature is the 
fundamental unit of extension to the system, and each 
feature is composed of a set of IMRs that represent 
problems to be solved. All changes are handled by 
ECMS and are initiated using an IMR, which may 
have one or more MRs (each of which represents a 
solution to part of the IMR’s problem), whether the 
change is for fixing a fault, perfecting or improving 
some aspect of the system, or adding new features to 
the system. Each functionally distinct set of changes to 
the code made by a developer is recorded as a MR by 
ECMS. For each MR, the developer usually writes a 
short abstract to describe its purpose. In [9], MRs are 
classified into 4 categories according their purposes: 
Corrective (B), Inspective (I), Adaptive (N), and 
Perfective (C). When a change is made to a file in the 
context of an MR, SCCS keeps track of the actual lines 
added, changed, or deleted.  This set of changes is 
known as a delta.  For each delta, ECMS records its 
date, the developer who made it, and the MR to which 
it belongs.  So, from ECMS and SCCS, we can get 
both the actual changes on the source code and the 
purpose for the changes. 

SCCS is a pessimistic version control system. At a 
given time only one developer can check out and 
modify a program. Changes representing different 
MRs are often interleaved with each other, providing a 
sequential set of changes but which represent logically 
parallel changes.  We extend our definition of logically 
parallel changes further to include those changes made 
independently and committed by different developers 
within a short time interval. 

v. 2 v. 3v. 1 

1: a = 0;   

2: b = 0;   

3: i = a + 2;   

4: j = b * 3;   

5: k = i + j;  
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Figure 3 Semantic interference detection procedure 



3.2. Parallel changes in this repository 
We chose the 5ESS subsystem to evaluate our 

semantic interference detection tool to provide 
continuity with out previous studies [12] [13], where 
we found the following: 

• There are multiple levels of parallel development. 
Each day, there is ongoing work on multiple MRs 
by different developers solving different IMRs 
belonging to different features within different 
releases of two similar products aimed at distinct 
markets. 

• The activities within each of these levels cut 
across common files. 12.5% of all deltas are made 
by different developers to the same files within a 
day of each other and some of these deltas 
interfere with each other. 

• Over the interval of a particular release, the 
number of files changed by multiple MRs is 60% 
that are concurrent with respect to that release.  
These parallel MRs may result in interfering 
changes – though we would expect the degree of 
awareness of the implications of these changes to 
be higher than those made within one day of each 
other. 

Furthermore, our study [12] [13] also found that 
there is a significant correlation between files with a 
high degree of parallel development and the number of 
faults.  Using PCmax, the maximum number of parallel 
MRs per file in a day, as the measure of the degree of 
parallel changes, our analysis showed that high degrees 
of parallel changes tend to have more faults. The 
analysis of variance strongly indicates that, even 
accounting for the faults correlated with lifetime, size 
and numbers of deltas, parallel changes were a 
significant factor (p < .0001). 

In this repository we found high degrees of parallel 
changes and a direct correlation between parallel 
changes and faults. We believe that this repository  
serves well to adequately evaluate the utility and 
effectiveness of the methods, techniques and tools that 
detect interference between parallel changes. 

The focus in [12] and [13] was on textual conflict. 
It showed that only 3% of the deltas made within 24 
hours by different developers physically overlap 
another’s change. The ineffectiveness of textual 
conflict detection is one of the major reasons to 
develop the semantic level interference detection 
algorithm and conduct empirical studies of its 
effectiveness using industrial/historical data.  

3.3. Implementation issues 
In [21] and [22], there are two distinct analyses of 

semantic interference provided for: between adjacent 
versions and between non-adjacent versions. In this 
study, we implemented and evaluated the adjacent 
analysis. The non-adjacent analysis needs an extra 
assumption: the second change should start from a 
tested and accepted version. According to our 
knowledge about the 5ESS history, this is difficult to 
guarantee and may not be feasible in practice. To make 
our study sound, we used the adjacent analysis which 
does not require that assumption.  

Although checking direct variable def-use 
dependency is enough to detect the semantic 
interference [21], we extend the application of this 
algorithm to indirect interference caused by pointer 
variables because the indirect variable def-use is 
implicit and difficult to be noticed in source code 
inspection. From the analysis on the 5ESS code and 
personal industrial experience, pointer variables are 
very common in real projects. Studies involving 
pointers may improve the algorithm or provide 
knowledge about when the algorithm is applicable  

The implementation of the data dependency 
calculation and program slicing is based on 
GrammaTech’s CodeSurfer [1]. For the pointer 
analysis, we select the option that distinguishes 
individual fields in the structure. This will use the most 
precise pointer analysis in Codesurfer. The C compiler 
is Visual C++ 6.0.  

The C language used in 5ESS did not confirm to 
ANSI C. For example, the macro “#feature” is not 
supported by standard C compilers. We made textual 
changes on them so that the program can be compiled 
by Visual C++. Our preprocessing does not change the 
semantics of the studied programs. 

The study is done on a Pentium III 800MHz PC 
with 256M RAM and Microsoft Windows 2000.  

4. Study and Results 
From the observation and implications from the 

previous study, we proposed 3 hypotheses in this 
evaluation: 

1) The semantic conflict analyzer is effective in 
detecting semantic interference;  

2) Semantic interference is more likely in higher 
degrees of parallel changes;  

3) With lightweight overhead, semantic interference 
detection can save time in fault detecting and 
fixing. 



We prepared three sets of changes that have 
different degrees of parallelism. We ran the semantic 
conflict analyzer on each set. We compared the results 
from the three sets to evaluate the effectiveness of the 
detection algorithm on different degrees of parallel 
changes. We also estimated the overhead by 
considering the execution time consumed in running 
the analyzer. 

Our study has 5 steps. We introduce the results and 
their analyses according to those steps. 

4.1. Versions and the degree of parallelism 
 In this step, we prepared changes to be studied. To 

supply changes of differing degrees of parallelism, we 
constructed three sets of parallel changes from the 
change and version histories of 5ESS:  

1)  For the control set, we randomly selected 
versions that have no parallel changes with 
respect to a particular release – that is, the interval 
between the versions are so long, greater than 1 
month, that they can not be viewed as a parallel 
changes. 

2)  For the low degree of parallelism set, we 
randomly selected versions that are logically 
parallel with a reasonable amount of interval time 
(from 1 week to 1 month).  In this case, the 
developers have sufficient time to understand the 
implications of the changes made by others.  

3)  For the high degree of parallelism set, we 
randomly selected versions that are logically 
parallel with a very short interval time, less than 1 
week. In this case, it is difficult for the developers 
to understand the changes made by others in such 
a short time. 

 

Table 1  the three set of changes 

Table 1 shows the three sets we selected. To 
maximize internal validity, we added the following 
controls while composing the three sets.  We made 
each set as nearly identical with respect to the 
distribution of different change purposes (N, B, C, or I 
type), average size of changes (in number of changed 

lines), and average size of source file (in line of code, 
LOC). 

4.2.  Calculate semantic interferences 
In each set of parallel versions, we use the semantic 

interference detection algorithm to calculate the 
conflictions between changes. We compare the density 
of interference versions in the three sets. The result is 
in Table 2.  

Set Versions Interference 
versions 

Interference 
density 

high  46 19 41.3% 
low 27 8 29.6% 

control 17 2 11.8% 

Table 2 the semantic interference in three sets 
 

The high interference density in high degree 
parallel change sets supports Hypotheses 1 and 2: SCA 
is effective and interference is more likely where there 
are high degrees of parallelism. 

4.3. Identify the relevant faults 
To study the relationship between semantic 

interference and faults, we need to identify the faults 
following the interference changes. We use the code 
fragments that are changed in Corrective (B type) MRs 
to represent faults. For each set of parallel versions 
(each with its set of semantic interferences), we first 
mine the change management history to look for 
Corrective (B type) MRs subsequent to these versions. 
Then we mine the version management system to get 
the changed code fragments in these Corrective MRs.  

4.4.  Evaluate analyzer effectiveness  
The effectiveness of the detection algorithm is 

based on the match between semantic interference and 
faulty code. We checked the accuracy of the analyzer 
by checking the defect MRs written against those 
versions with interference. We also studied the 
semantic properties of evaluation results.  

Set Versions N-
type 

B-
type 

C-
type 

Avg Size 
(LOC) 

File size 
(LOC) 

Control 46 35 5 6 45 1.64K 

Low 27 19 4 4 53 1.51K 

High 17 11 3 3 48 1.34K 

4.4.1. Match: semantic interference & faults 

For each of the three sets, we compare the semantic 
interference fragments got in Step 2 with the faulty 
code fragments got in Step 3. Classify the results into 3 
groups: 

•  Hit - the detected interferences that overlapped 
with some faulty code fragments; 



• False positive – the detected interferences that 
have no faulty code fragments overlap with them; 

•  Miss – faulty code fragments that no detected 
interference overlapped with them. 

Table 3  Match: interference and faults 

Table 3 shows the match between the interference 
and faults. So, if we use the interference detection 
algorithm to predict faults, the hit rate in high degree 
parallel changes is much higher than that in the low 
degree. 

 To check the soundness of the comparison, we also 
studied the density of fault-related changes in each set. 
The fault-related changes are deltas that have 
dependencies [14] with the following corrective MRs, 
that is, the code fragments changed in these deltas 
overlapped with the code fragments changed in the 
later corrective MRs. Table 4 shows that, for the three 
sets, the distribution of fault related versions are very 
similar. 

 
Table 4  Density of fault-related versions 
 
4.4.2. Semantic analysis on the hit, false positive 
and false negative 

Besides the above comparisons, we also analyzed 
the semantic properties of the 3 groups according to 
the classification of errors found in [20]. 

1) For Group 1, all the 10 matched interference are 
non-pointer variable faults. For example,  
<  i = pos_no;   
>  i = pos_no++;  

In a more specific error classification, all of them 
are incorrect variable used faults. Eight of the 10 
faults are path selection faults. This means an 

error in variable usages cause a fault in the 
computation and the program selects a wrong 
path. Two of  the 10 are computation faults, which 
means the incorrect variable usage generates error 
outputs.  

Set Versions Interference Matched 
with faults  

False 
positive 

high  46 19 8 57.9% 

low 27 8 2 75.0% 

control 17 2 0 100.0% 

2) Group 2 represents false positives in our 
interference detection. Because the noise level is 
very critical for a static analysis tool like ours, we 
provide a further classification on the 19 false 
positives: 

a) Eight of  the19 are variable or type rename cases  
< quote_ptr->osps_aq.acronym[i] 
=msg_ptr-> 
text.my_mgacqs.htl_acrnym[i]; 

> quote_ptr->tsps_aq.acronym[i] = 
msg_ptr-> 
text.my_mgacqs.htl_acrnym[i]; 

b) Five of the 19 are bug-fixing cases 

This kind of semantic interferences is intentionally 
introduced. 

c) Three of the 19 are false identification of change  
< (CRoaddrtbl[cid.crindx]->ospsff & 
0xfffffffe) | ((DMUNLONG) 1); 

>( CRoaddrtbl[cid.crindx]->ospsff & 
0xfffffffe) | 

>          ((DMUNLONG)1); 

This kind false positive comes from the incorrect 
identification of same vertex in two versions. In this 
detection algorithm, the corresponding vertex in the 
two versions is identified by its type and the 
associated text. So, in the change above, we view 
the two statements as different, although only space 
characters were added in the second version. We 
did not use semantic equivalence evaluation as 
found in [24] because it is too expensive to compute 
in a real project. 

Set Versions Fault-
related 

Fault-
related  
density 

high  46 25 54.3% 
low 27 16 59.3% 

control 17 10 58.8% 

3) Group 3 represents faults invisible to our 
interference detection algorithm. We classify the 
17 false negatives according to their semantic 
properties. This can guide a users to utilize our 
interference detection approach in effective ways.   

a) Eight of  the 17 are control flow faults 
<  if ( i < 5) 
>  if ( i <= 5)  

b) Five of the 17 are pointer variable faults. 

In the programs we studied, some pointer 
arithmetic operations changed the target objects of 



pointers. But such changes are ignored in our 
algorithm because Codesurfer assumes that 
pointer arithmetic will not change the pointer-to 
set.  

c) Four of the 17 are basically other faults.  

In summary, semantic interferences may represent 
either intended or unintended interference.  For 
unintended interference, SCA detects them and notifies 
the developer.  For the intended interference (i.e., the 
false positives), the developer can easily  and quickly 
determine that they are in fact not faults but intentional 
changes to the system. 

4.5. Evaluate the analyzer efficiency 
In Step 4, we also calculated the time to be saved if 

the semantic interference detection algorithm is used to 
predict faulty code. The saved time will include two 
parts: the delay in fault detection and the elapse in 
fault-fixing. The delay part is measured by the interval 
between the commit time of the changed version and 
the beginning of the MR that corrects the fault. The 
elapse time for fault-fixing is measured by the elapse 
time of the corresponding Corrective (B type) MRs. 

From the change history of 5ESS, we learned that 
the average for fault-delay is 150 days, with delays 
ranging from 59 to 262 days, and the average for fault-
fixing elapse is 3 days, with elapse times ranging from 
1 to 13 days.   The fault delay is eliminated 
completely, but the amount of elapse time saved 
depends on the amount of time needed to find the fault 
to be fixed (which is what would be eliminated here). 

But, compared with the times that could be saved, 
the overhead in calculating semantic interference is 
relatively very small: the average is about 2 minutes. 
In this overhead, 83% is spent on the program 
dependency analysis with CodeSurfer, and the time for 
the calculating and detecting interferences is even 
smaller than the time compiling the program.  

Because the overhead is much smaller than the 
saved time, this step supports Hypothesis 3: With 
lightweight overhead, semantic interference detection 
can save time in fault detecting and fixing. 

5. Validity analysis 
To analyze the soundness of this case study, we 

discuss its construct, internal, and external validity. 

5.1. Construct validity 
We focus on a specific and well-defined form of 

semantic interference between versions.  Given that 
there are multiple levels of parallelism in a large-scale 

development, we feel that our distinction between 
high, low and no degrees of parallels justified for this 
study evaluating the efficiency and effectiveness of our 
analyzer.  We also claim the delay time construct is 
well defined and justified as well: the time from the 
version commit until the opening of the fault MR.  The 
problematic time construct is the fix time.  First, one 
should view that as a maximum possible time where 
only a portion of that time is actually spent finding and 
fixing the fault.  Second, only a portion of the actual 
time is spent finding the problem; it is this time that 
would be saved by our analyzer. 

5.2. Internal validity 
In the evaluation of the effectiveness and efficiency 

of the interference detection algorithm, we used the 
comparisons among sets of different degree of 
parallelism. To filter out factors other than parallelism, 
we have checked the similarity among the sets in 
distribution of changes of different purpose, the file 
size, the change size, and the density of fault-related 
changes.  We argue that the equivalence of these 
factors rules out confounding variables. 

We believe that our results our consistent with what 
one would intuitively expect about parallel changes 
and what is supported with out earlier studies: highly 
parallel changes do not allow time for developers to 
adequately understand the implications of changes and 
hence are more prone to faults as a result of their 
changes.  Our current results are consistent with our 
earlier results: there is a significant correlation between 
the degree of parallelism, interferences and faults.  The 
new and interesting results here also agree with ones 
intuition about adaptive changes: there are likely to be 
more changes made to add new functionality than in 
correcting faults, or improving existing functionality. 

5.3. External validity 
Although our study is based on the history data in a 

pessimistic version control system, SCCS, this 
approach can be easily extended to optimistic version 
control system, such as Concurrent Versions System 
(CVS), which is widely used in open source projects. 
CVS can supply the same kinds of data as SCCS for 
our semantic interference detection algorithm. The 
only variation in the evaluation process is the use of 
non-adjacent version of the interference detection 
algorithm. This because, in CVS, the sequential order 
introduced by check-in time at SCCS will not be valid.  

A threat to our study is that 5ESS is a very large 
scale real-time project with a large number of 
developers, geographically distributed. We argue that 



the subsystem we studied is perhaps more 
representative of a typical large project. The critical 
factor, however, is the issue of parallel changes to the 
same files by different people – i.e., feature ownership 
rather than code ownership. 

6. Related work 
In this section, we discuss the work related to our 

semantic interference detection algorithm and the 
empirical evaluation on software tools with history 
repositories.  

6.1. Program Slicing 
Program slicing is an important technique in 

analyzing properties of a program, where on the basis 
of some interesting points, or criteria, it computes the 
affected program entities. [6] proposed the 
combination of a program dependency graph and 
program slicing for conflict detection.  Although we 
use both the program slicing and semantic interference 
detection, the different purpose between our work and 
theirs induced a significant difference in utilizing 
slicing.  

The goal of their detection research is for merging, 
so they check if the changes made in two versions are 
to be kept in the merge version. Our goal is to check if 
the later version semantically impacts the earlier one. 
So we do not need to compose a “merged” version 
before checking for interference.  Further in our 
algorithm, only one pair of deltas is needed to check 
interference because the order of the versions breaks 
the symmetry between the two versions.  

In the semantic analysis, we only focus on variable 
def-uses rather than the whole dependency graph. 
While such a simplification means we do not catch all 
possible faults, it does make our SCA a lightweight 
tool that is both feasible and effective in real projects. 
The results of Step 5, the efficiency evaluation of the 
detection algorithm, gives strong support for our 
simplification.  

Yang [24] proposed semantic preserving 
transformations that increases the soundness of 
semantic conflict detection. Given two versions, this 
approach can detect the vertices that are equivalent 
semantically but different textually. This approach can 
discover some of the false positives that we miss.  But 
the computation to identify vertices with equivalent 
execution behavior is expensive and would degrade  
efficiency in real applications.  Thus, in SCA we use 
identify vertices textually.  

6.2. Change impact analysis 
[15], [17], and [19] propose change impact analysis 

based on atomic change classifications, and associate 
them with test cases. In our detection algorithm, we 
also check for the effect of changes but differ in three 
ways:  

1) Category: They combine static and dynamic 
analysis and we focus on static analysis.  

2) Granularity: They work at the method level, and 
compare two abstract syntax trees providing more 
precision but paying a higher overhead. We work 
at the statement level, comparing the vertices by 
variable def-uses and associated text. Ours is more 
narrowly focused with significantly less overhead. 

3) Goal: They build affect-relationships between test 
cases and atomic changes. This facilitates defect 
localization by minimizing the related test cases. 
We focus on lightweight static analysis that can 
detect interference between versions and detect 
possible defects. 

6.3. Fault-inducing change localization  
In our study, the matching between interference 

fragments and faults has some similarity with the fault-
inducing change localization approaches. [18] 
identifies changes from the version management 
system and bug database, and correlates them as fault-
inducing changes. We similar identify changes, but 
differ in how we identify fault-inducing changes. Our 
approach is based on the semantic analysis on the 
changes and their interference, while [18] focuses on 
mining version histories and bug databases.  

 [25] uses passed and failed test cases to filter out 
non-related test cases and to select possible fault-
inducing changes. Their work focuses on the 
localization of fault-inducing change by running test 
cases, while ours focuses on the prediction of faults 
with static analysis of changes that semantically  
interfere. 

Program chopping [5] is used in debugging to 
minimize possible fault-inducing code fragments. 
Compared with static program slicing we use, dynamic 
slicing can improve the precision for pointer analysis 
and reduce false positives in semantic interference 
detection. But compiling programs and running test 
cases are required beforehand. From our experience 
with 5ESS and its highly parallel software 
development, these preparation steps will take 
significant amount of time. How to effectively 
incorporate such dynamic approaches to improve the 



soundness of our approach is a challenge for future 
work. 

6.4. Tools evaluations with version control 
repositories 

There are an increasing number of empirical studies 
using version control repositories to evaluate tools. 
The information from version management systems 
can provide useful  information from the real projects, 
non-intrusively, such as fine grained source code 
changes, complete histories of all the changes, etc.  

[2] uses change history and an effort estimation 
model in [4] to calculate the effort that has been saved 
with the version editor. The quantitative results are 
strong evidence showing the efficiency of the software 
tool. But for our static semantic interference analysis 
approach, the number of false positives is a primary 
concern for real applications. Thus, as an exploratory 
study, we mainly focus on the effectiveness, and only 
use the time to estimate its efficiency. As we have 
positive results in this step, we will use the effort 
estimation model in this paper to quantify the saved 
effort using our tool.  

Compared with [3], we are similar in mining 
changes history to predict faults. But their granularity 
is large: the number of changes on a file, or the number 
of lines changed in a period of time. They do not 
consider interference between changes, whether at the 
textual level or the semantic level.   

[26] also searches for association relationships 
between changes by mining change histories and 
predicts possible changes in the future. But their 
granularity is also different from ours. They focus on 
structure-related entities, such as fields or functions in 
a file, or files in a directory, and predict faults from the 
incomplete changes.   We, on the other hand, focus on 
the semantics of the code, detecting faults from 
semantic interference. 

7. Conclusion and future work 
We have done an empirical study on the semantic 

interference detection algorithm in the context of a 
large industrial project.  The results of our exploratory 
case study are as follows: 

1) Interference is significantly higher in adaptive, 
highly parallel changes; 

2) Our approach detects a significant portion of the 
faults in these changes; 

3) This approach is effective on non-pointer variable 
faults; 

4) Compared with the time saved for fault detection 
and fix, the overhead of our approach is very low; 

5) Preciseness of pointer analysis and identification 
on variable rename and control-flow change are 
the major factors that affect the effectiveness of 
this tool; and 

6) We believe that the false positive interferences can 
be can be easily dealt with by developers. 

The results from our case study also suggest ways 
of combining our approach with others to improve the 
effectiveness and efficiency of semantic interference 
detection: 

1) Increase semantic interference detection 
completeness. Our tool is sound in detecting the 
interferences related to data dependencies, but it 
misses the interferences related to control flow 
and pointer analysis that contribute to many the 
faults in our study.  We will explore ways to 
incorporate these issues in our analysis. 

2) Identify false positives in semantic interference 
detection. Although it is not very difficult for 
developers to manually discern the false positives, 
automated identification of intended interference 
will reduce the noisiness of our analyses.  We will 
employ dynamic analysis techniques, such as 
dynamic slicing [5] or symbolic execution [7], to 
identify interferences more precisely. 

3) Reduce the workload for semantic analysis. In this 
Reduce the workload for semantic analysis. In 
SCA, all the versions should pass compilation 
before data dependency analysis. It is not always 
the case in real projects. Island grammar [10] [11] 
can be a light weight tool to analysis the semantic 
dependency without requirement on compilation. 
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