
Detecting Semantic Interference in Parallel Changes: An Exploratory Case Study

Danhua Shao, Sarfraz Khurshid and Dewayne E Perry
Electrical and Computer Engineering, The University of Texas at Austin

{dshao, khurshid, perry}@ece.utexas.edu

Abstract

Parallel changes are becoming increasingly

prevalent in the development of large scale software
system. To further study the relationship between
parallel changes and faults, we have designed and
implemented an algorithm to detect semantic
interference between parallel changes. To evaluate the
effectiveness and efficiency of this analyzer, we
designed an exploratory case study in the context of an
industrial project. We first mine the change and
version management repositories to find sample
versions sets of different degrees of parallelism. We
investigate the interference between the versions with
our analyzer. We then mine the change and version
repositories to find out what faults were discovered
subsequent to the analyzed interfering versions. We
use the match rate between semantic interference and
faults to evaluate the effectiveness of the semantic
interference detection tool. We also evaluate its
efficiency by the lapse for finding (an average of 150
days) and fixing the faults associated with those
samples. The case study shows that the analyzer is
most effective in detecting non-pointer variable
interference in adaptive changes with a high degree of
parallelism. Further, the analyzer is both efficient
(averaging less than two minutes) and scalable
(requiring only the local context).

1. Introduction

Parallel development has become a common
phenomenon in the development of large scale
software systems. Multiple developers work on the
same module or program at the same time. The need
for parallel development has come about for a variety
of reasons:

• the size of the software systems,
• time to market also brings pressure to develop new

features or new products in a very short time,
• code ownership management is too expensive,

• the increase of globalization, and
• the geographical distribution of developers.

While parallel development increases productivity,
it also causes problems. When developers work in
parallel, it is likely that their changes may
unintentionally interfere with each other.

In our earlier work [12] [13], we showed the
problems related to parallel changes. In a subsystem
of Lucent Technologies’ 5ESS Telephone Switching
System, high degrees of parallelism happened at
multiple levels. To disclose the relationship between
parallel changes and faults, we studied prima facie
conflicts at the textual level, checking the overlap
between the lines changed by different developers. We
found two important results: 1) 3% of the changes
made with in 24 hours by different developers
physically overlapped each others’ changes; and 2)
there was a linear correlation between the degree of
parallelism and the likelihood of a defect in the
changes.

Our initial investigations focused on explicit
syntactic conflicts. We believe that there are also
conflicts at the semantic level. To explore this
hypothesis, we designed a semantic interference
detection algorithm [21] [22], based on data
dependency analysis and program slicing.

To investigate the effectiveness and efficiency of
this algorithm, we have built a semantic conflict
analyzer (SCA) based on this algorithm, designed a
rigorous exploratory case study, and executed it in the
same industrial context as our previous empirical
studies.

In Section 2, we give an overview of the semantic
interference detection algorithm. The context for this
study is discussed in Section 3. Section 4 presents the
case study design and its results. We discuss validity
issues in Section 5, and compare our work to related
research in Section 6. Finally, we summarize our study
and propose future work in Section 7.

2. Semantic interference detection
Our algorithm combines data dependency analysis

and program slicing. With the data dependency
analysis, we can learn about the semantic structure of
the program. And the program slicing can identify
which semantic structures are impacted by changes. By
comparing the overlap of the impacted parts of the two
versions, we can learn if they are in conflict.

v. 1 v. 2

1: a = 0; 1: a = 0;

2: 2: p = &a;

3: 3: *p = 2;

4: j = a * 3; 4: j = a * 3;

2.1. Semantic analysis of change impact
Semantic analysis of change impact is the basis for

the semantic interference detection algorithm.
Semantic program analysis discloses internal
dependencies within programs. Although there are
many aspects to program semantic analysis, this
algorithm only focuses on the local data flow
dependencies related to variable def-use pairs. Because
we are only concerned with the change impact on local
behavior, the semantic analysis is at the statement
level.

Figure 1 illustrates the semantic analysis of change
impact. Suppose there is a change from Version v1 to
v2. At first, we will analyze the semantic dependencies
in the two versions. In v1, Line 3 uses the value of
variable a defined in Line 1. So, there is a dependence
between Line 1 and Line 3 according to variable a. For
the same reason, Line 4 has a dependency on Line 2
according to variable b, Line 5 has a dependency on
Line 3 according to variable i, and Line 5 has another
dependency on line 4 according to variable j. In Figure
1, the variable def-use dependency is represented as
solid arrow and the variable names are on the lines.

5: k = i + j; 5: k = i + j;

Figure 1 Changes in direct variable def-use
dependencies

We use a triple (var: def, use) to represent a
dependency, where var is the variable on which the
dependence is built, def is the line that defines variable

var, and the use line uses the variable defined at def
line. So the dependences in Version v1 are {(a: 1, 3),
(b: 2, 4), (i: 3, 5), (j: 4, 5)}.

Figure 2 Changes in indirect variable def-
use dependencies

From the variable use-def dependency analysis of
the two versions, we calculate the change impact by
forward slicing from the changed statements. In this
example, the change from v1 to v2 modified Line 1
from “a = 0” to “a = 1”. According to the variable def-
use chains, {(a: 1, 3), (i: 3, 5)}, we learn that Line 3
and 5 will be impacted. So the impact of this change is
Impact (v1->v2) = {3, 5}.

Not all the variable def-use dependencies are easily
identified as the direct dependencies shown above.
There many other indirect dependences that are based
on structure, pointer (in C/C++) or reference (in Java
and C#) type variables. In Figure 2, adding Line 2 and
3 in Version v2 introduced an implicit dependency on
Line 3 and Line 4 based on variable a’s aliasing, *p.
The semantic change impact analysis will become
more complex and difficult when branches are
involved. In this study, we evaluate both the direct and
indirect dependencies.

v. 1 v. 2

2.2. Semantic Interference Detection
We give a brief introduction to the semantic

interference algorithm; a detailed explanation can be
found in [21] and [22].

This algorithm combines static program slicing and
data flow analysis to detect semantic interference.
Given two changes to be checked,

1) Calculate the data dependence graph and collect
the variable def-use pairs for each version in the
changes;

2) Depending on the textual difference between the
two versions in a change, identify variable def-use
pairs affected by the change;

1: a = 0; 1: a = 1;

2: b = 0;

3: i = a + 2;

4: j = b * 3;

5: k = i + j;

a
b

j

i

2: b = 0; a

3: i = a + 2;
b

4: j = b * 3; i

j
5: k = i + j;

3) With the affected variable def-use pairs as slicing
criterion, do forward slicing to get the program
fragments impacted by the change;

4) Compare the impacted fragments of the two
changes. The overlapping parts are their
interference fragments.

Figure 3 illustrates the semantic interference
detection algorithm. Suppose there are two adjacent
changes: d1 and d2 where d1 changed the program
from Version v1 to Version v2, while d2 changed the
program from v2 to v3.

1) For each version, calculate data dependence
graph and identify variable def-use pair. The
results are: for v1, the dependency in is {(a: 1,
3), (b: 2, 4), (i: 3, 5), (j: 4, 5)}; Version v2 is {(a:
1, 3), (b: 2, 4), (i: 3, 5), (j: 4, 5)}, and Version v3
is {(a: 1, 3), (b: 2, 4), (i: 3, 5), (j: 4, 5)};

2) For each change, identify the changed lines. In
d1, Line 1 was changed and in d2, Line 2 was
changed,

3) Calculate the semantic impact of the two changes
by forward slicing from the changed lines. So,
Impact (d1) = {3, 5} and Impact (d2) = {4, 5};

4) Compare impacted lines of the two changes. In
this example, Impact (d1) = {3, 5} and Impact
(d2) = {4, 5}. The two impact sets overlapped on
Line 5. This means Change d1 and d2 have a
semantic interference at Line 5.

3. Study context
In this study, the data repository and our previous

study constitute the base environment to evaluate the
semantic interference detection algorithm. We present
the description about them in this section.

3.1. Change & Version Mgmt Repositories
This case study is based on one subsystem of 5ESS,

a successful industrial project with high degree of
parallel changes. 5ESS is a telephone switch project
developed by Lucent Technologies [8]. 5ESS has

about 100,000,000 lines of C and C++ code and
another 100,000,000 lines in header files and
makefiles. Its organization contributed to the high
degree of parallel changes during the development
process. In thw subject subsystem, the number of
developers reached 200 at its peak and dropped to a
low of 50. Two products, one for US and one for
international customers, were developed separately
although some files are common for both of them.

The history data for our case study comes from the
change management system of 5ESS. In Lucent
Technologies, the evolution of 5ESS is managed by a
two-layered system: a change management layer,
ECMS [23], to initiate and track changes to the
product, and a configuration management layer, SCCS
[16], to manage the versions of files needed to
construct the appropriate configurations of the product.
In 5ESS, the changes are recorded in a layered
hierarchy: Feature, Initial Modification Request (IMR),
Modification Request (MR) and delta. A feature is the
fundamental unit of extension to the system, and each
feature is composed of a set of IMRs that represent
problems to be solved. All changes are handled by
ECMS and are initiated using an IMR, which may
have one or more MRs (each of which represents a
solution to part of the IMR’s problem), whether the
change is for fixing a fault, perfecting or improving
some aspect of the system, or adding new features to
the system. Each functionally distinct set of changes to
the code made by a developer is recorded as a MR by
ECMS. For each MR, the developer usually writes a
short abstract to describe its purpose. In [9], MRs are
classified into 4 categories according their purposes:
Corrective (B), Inspective (I), Adaptive (N), and
Perfective (C). When a change is made to a file in the
context of an MR, SCCS keeps track of the actual lines
added, changed, or deleted. This set of changes is
known as a delta. For each delta, ECMS records its
date, the developer who made it, and the MR to which
it belongs. So, from ECMS and SCCS, we can get
both the actual changes on the source code and the
purpose for the changes.

SCCS is a pessimistic version control system. At a
given time only one developer can check out and
modify a program. Changes representing different
MRs are often interleaved with each other, providing a
sequential set of changes but which represent logically
parallel changes. We extend our definition of logically
parallel changes further to include those changes made
independently and committed by different developers
within a short time interval.

v. 2 v. 3v. 1

1: a = 0;

2: b = 0;

3: i = a + 2;

4: j = b * 3;

5: k = i + j;

a
b

j

i

1: a = 1;

2: b = 0;

3: i = a + 2;

4: j = b * 3;

5: k = i + j;

a
b

j

i

2: b = 5;

3: i = a + 2;

4: j = b * 3;

5: k = i + j;

1: a = 1;

a
b

i

j

Figure 3 Semantic interference detection procedure

3.2. Parallel changes in this repository
We chose the 5ESS subsystem to evaluate our

semantic interference detection tool to provide
continuity with out previous studies [12] [13], where
we found the following:

• There are multiple levels of parallel development.
Each day, there is ongoing work on multiple MRs
by different developers solving different IMRs
belonging to different features within different
releases of two similar products aimed at distinct
markets.

• The activities within each of these levels cut
across common files. 12.5% of all deltas are made
by different developers to the same files within a
day of each other and some of these deltas
interfere with each other.

• Over the interval of a particular release, the
number of files changed by multiple MRs is 60%
that are concurrent with respect to that release.
These parallel MRs may result in interfering
changes – though we would expect the degree of
awareness of the implications of these changes to
be higher than those made within one day of each
other.

Furthermore, our study [12] [13] also found that
there is a significant correlation between files with a
high degree of parallel development and the number of
faults. Using PCmax, the maximum number of parallel
MRs per file in a day, as the measure of the degree of
parallel changes, our analysis showed that high degrees
of parallel changes tend to have more faults. The
analysis of variance strongly indicates that, even
accounting for the faults correlated with lifetime, size
and numbers of deltas, parallel changes were a
significant factor (p < .0001).

In this repository we found high degrees of parallel
changes and a direct correlation between parallel
changes and faults. We believe that this repository
serves well to adequately evaluate the utility and
effectiveness of the methods, techniques and tools that
detect interference between parallel changes.

The focus in [12] and [13] was on textual conflict.
It showed that only 3% of the deltas made within 24
hours by different developers physically overlap
another’s change. The ineffectiveness of textual
conflict detection is one of the major reasons to
develop the semantic level interference detection
algorithm and conduct empirical studies of its
effectiveness using industrial/historical data.

3.3. Implementation issues
In [21] and [22], there are two distinct analyses of

semantic interference provided for: between adjacent
versions and between non-adjacent versions. In this
study, we implemented and evaluated the adjacent
analysis. The non-adjacent analysis needs an extra
assumption: the second change should start from a
tested and accepted version. According to our
knowledge about the 5ESS history, this is difficult to
guarantee and may not be feasible in practice. To make
our study sound, we used the adjacent analysis which
does not require that assumption.

Although checking direct variable def-use
dependency is enough to detect the semantic
interference [21], we extend the application of this
algorithm to indirect interference caused by pointer
variables because the indirect variable def-use is
implicit and difficult to be noticed in source code
inspection. From the analysis on the 5ESS code and
personal industrial experience, pointer variables are
very common in real projects. Studies involving
pointers may improve the algorithm or provide
knowledge about when the algorithm is applicable

The implementation of the data dependency
calculation and program slicing is based on
GrammaTech’s CodeSurfer [1]. For the pointer
analysis, we select the option that distinguishes
individual fields in the structure. This will use the most
precise pointer analysis in Codesurfer. The C compiler
is Visual C++ 6.0.

The C language used in 5ESS did not confirm to
ANSI C. For example, the macro “#feature” is not
supported by standard C compilers. We made textual
changes on them so that the program can be compiled
by Visual C++. Our preprocessing does not change the
semantics of the studied programs.

The study is done on a Pentium III 800MHz PC
with 256M RAM and Microsoft Windows 2000.

4. Study and Results
From the observation and implications from the

previous study, we proposed 3 hypotheses in this
evaluation:

1) The semantic conflict analyzer is effective in
detecting semantic interference;

2) Semantic interference is more likely in higher
degrees of parallel changes;

3) With lightweight overhead, semantic interference
detection can save time in fault detecting and
fixing.

We prepared three sets of changes that have
different degrees of parallelism. We ran the semantic
conflict analyzer on each set. We compared the results
from the three sets to evaluate the effectiveness of the
detection algorithm on different degrees of parallel
changes. We also estimated the overhead by
considering the execution time consumed in running
the analyzer.

Our study has 5 steps. We introduce the results and
their analyses according to those steps.

4.1. Versions and the degree of parallelism
 In this step, we prepared changes to be studied. To

supply changes of differing degrees of parallelism, we
constructed three sets of parallel changes from the
change and version histories of 5ESS:

1) For the control set, we randomly selected
versions that have no parallel changes with
respect to a particular release – that is, the interval
between the versions are so long, greater than 1
month, that they can not be viewed as a parallel
changes.

2) For the low degree of parallelism set, we
randomly selected versions that are logically
parallel with a reasonable amount of interval time
(from 1 week to 1 month). In this case, the
developers have sufficient time to understand the
implications of the changes made by others.

3) For the high degree of parallelism set, we
randomly selected versions that are logically
parallel with a very short interval time, less than 1
week. In this case, it is difficult for the developers
to understand the changes made by others in such
a short time.

Table 1 the three set of changes

Table 1 shows the three sets we selected. To
maximize internal validity, we added the following
controls while composing the three sets. We made
each set as nearly identical with respect to the
distribution of different change purposes (N, B, C, or I
type), average size of changes (in number of changed

lines), and average size of source file (in line of code,
LOC).

4.2. Calculate semantic interferences
In each set of parallel versions, we use the semantic

interference detection algorithm to calculate the
conflictions between changes. We compare the density
of interference versions in the three sets. The result is
in Table 2.

Set Versions Interference
versions

Interference
density

high 46 19 41.3%
low 27 8 29.6%

control 17 2 11.8%

Table 2 the semantic interference in three sets

The high interference density in high degree
parallel change sets supports Hypotheses 1 and 2: SCA
is effective and interference is more likely where there
are high degrees of parallelism.

4.3. Identify the relevant faults
To study the relationship between semantic

interference and faults, we need to identify the faults
following the interference changes. We use the code
fragments that are changed in Corrective (B type) MRs
to represent faults. For each set of parallel versions
(each with its set of semantic interferences), we first
mine the change management history to look for
Corrective (B type) MRs subsequent to these versions.
Then we mine the version management system to get
the changed code fragments in these Corrective MRs.

4.4. Evaluate analyzer effectiveness
The effectiveness of the detection algorithm is

based on the match between semantic interference and
faulty code. We checked the accuracy of the analyzer
by checking the defect MRs written against those
versions with interference. We also studied the
semantic properties of evaluation results.

Set Versions N-
type

B-
type

C-
type

Avg Size
(LOC)

File size
(LOC)

Control 46 35 5 6 45 1.64K

Low 27 19 4 4 53 1.51K

High 17 11 3 3 48 1.34K

4.4.1. Match: semantic interference & faults

For each of the three sets, we compare the semantic
interference fragments got in Step 2 with the faulty
code fragments got in Step 3. Classify the results into 3
groups:

• Hit - the detected interferences that overlapped
with some faulty code fragments;

• False positive – the detected interferences that
have no faulty code fragments overlap with them;

• Miss – faulty code fragments that no detected
interference overlapped with them.

Table 3 Match: interference and faults

Table 3 shows the match between the interference
and faults. So, if we use the interference detection
algorithm to predict faults, the hit rate in high degree
parallel changes is much higher than that in the low
degree.

 To check the soundness of the comparison, we also
studied the density of fault-related changes in each set.
The fault-related changes are deltas that have
dependencies [14] with the following corrective MRs,
that is, the code fragments changed in these deltas
overlapped with the code fragments changed in the
later corrective MRs. Table 4 shows that, for the three
sets, the distribution of fault related versions are very
similar.

Table 4 Density of fault-related versions

4.4.2. Semantic analysis on the hit, false positive
and false negative

Besides the above comparisons, we also analyzed
the semantic properties of the 3 groups according to
the classification of errors found in [20].

1) For Group 1, all the 10 matched interference are
non-pointer variable faults. For example,
< i = pos_no;
> i = pos_no++;

In a more specific error classification, all of them
are incorrect variable used faults. Eight of the 10
faults are path selection faults. This means an

error in variable usages cause a fault in the
computation and the program selects a wrong
path. Two of the 10 are computation faults, which
means the incorrect variable usage generates error
outputs.

Set Versions Interference Matched
with faults

False
positive

high 46 19 8 57.9%

low 27 8 2 75.0%

control 17 2 0 100.0%

2) Group 2 represents false positives in our
interference detection. Because the noise level is
very critical for a static analysis tool like ours, we
provide a further classification on the 19 false
positives:

a) Eight of the19 are variable or type rename cases
< quote_ptr->osps_aq.acronym[i]
=msg_ptr->
text.my_mgacqs.htl_acrnym[i];

> quote_ptr->tsps_aq.acronym[i] =
msg_ptr->
text.my_mgacqs.htl_acrnym[i];

b) Five of the 19 are bug-fixing cases

This kind of semantic interferences is intentionally
introduced.

c) Three of the 19 are false identification of change
< (CRoaddrtbl[cid.crindx]->ospsff &
0xfffffffe) | ((DMUNLONG) 1);

>(CRoaddrtbl[cid.crindx]->ospsff &
0xfffffffe) |

> ((DMUNLONG)1);

This kind false positive comes from the incorrect
identification of same vertex in two versions. In this
detection algorithm, the corresponding vertex in the
two versions is identified by its type and the
associated text. So, in the change above, we view
the two statements as different, although only space
characters were added in the second version. We
did not use semantic equivalence evaluation as
found in [24] because it is too expensive to compute
in a real project.

Set Versions Fault-
related

Fault-
related
density

high 46 25 54.3%
low 27 16 59.3%

control 17 10 58.8%

3) Group 3 represents faults invisible to our
interference detection algorithm. We classify the
17 false negatives according to their semantic
properties. This can guide a users to utilize our
interference detection approach in effective ways.

a) Eight of the 17 are control flow faults
< if (i < 5)
> if (i <= 5)

b) Five of the 17 are pointer variable faults.

In the programs we studied, some pointer
arithmetic operations changed the target objects of

pointers. But such changes are ignored in our
algorithm because Codesurfer assumes that
pointer arithmetic will not change the pointer-to
set.

c) Four of the 17 are basically other faults.

In summary, semantic interferences may represent
either intended or unintended interference. For
unintended interference, SCA detects them and notifies
the developer. For the intended interference (i.e., the
false positives), the developer can easily and quickly
determine that they are in fact not faults but intentional
changes to the system.

4.5. Evaluate the analyzer efficiency
In Step 4, we also calculated the time to be saved if

the semantic interference detection algorithm is used to
predict faulty code. The saved time will include two
parts: the delay in fault detection and the elapse in
fault-fixing. The delay part is measured by the interval
between the commit time of the changed version and
the beginning of the MR that corrects the fault. The
elapse time for fault-fixing is measured by the elapse
time of the corresponding Corrective (B type) MRs.

From the change history of 5ESS, we learned that
the average for fault-delay is 150 days, with delays
ranging from 59 to 262 days, and the average for fault-
fixing elapse is 3 days, with elapse times ranging from
1 to 13 days. The fault delay is eliminated
completely, but the amount of elapse time saved
depends on the amount of time needed to find the fault
to be fixed (which is what would be eliminated here).

But, compared with the times that could be saved,
the overhead in calculating semantic interference is
relatively very small: the average is about 2 minutes.
In this overhead, 83% is spent on the program
dependency analysis with CodeSurfer, and the time for
the calculating and detecting interferences is even
smaller than the time compiling the program.

Because the overhead is much smaller than the
saved time, this step supports Hypothesis 3: With
lightweight overhead, semantic interference detection
can save time in fault detecting and fixing.

5. Validity analysis
To analyze the soundness of this case study, we

discuss its construct, internal, and external validity.

5.1. Construct validity
We focus on a specific and well-defined form of

semantic interference between versions. Given that
there are multiple levels of parallelism in a large-scale

development, we feel that our distinction between
high, low and no degrees of parallels justified for this
study evaluating the efficiency and effectiveness of our
analyzer. We also claim the delay time construct is
well defined and justified as well: the time from the
version commit until the opening of the fault MR. The
problematic time construct is the fix time. First, one
should view that as a maximum possible time where
only a portion of that time is actually spent finding and
fixing the fault. Second, only a portion of the actual
time is spent finding the problem; it is this time that
would be saved by our analyzer.

5.2. Internal validity
In the evaluation of the effectiveness and efficiency

of the interference detection algorithm, we used the
comparisons among sets of different degree of
parallelism. To filter out factors other than parallelism,
we have checked the similarity among the sets in
distribution of changes of different purpose, the file
size, the change size, and the density of fault-related
changes. We argue that the equivalence of these
factors rules out confounding variables.

We believe that our results our consistent with what
one would intuitively expect about parallel changes
and what is supported with out earlier studies: highly
parallel changes do not allow time for developers to
adequately understand the implications of changes and
hence are more prone to faults as a result of their
changes. Our current results are consistent with our
earlier results: there is a significant correlation between
the degree of parallelism, interferences and faults. The
new and interesting results here also agree with ones
intuition about adaptive changes: there are likely to be
more changes made to add new functionality than in
correcting faults, or improving existing functionality.

5.3. External validity
Although our study is based on the history data in a

pessimistic version control system, SCCS, this
approach can be easily extended to optimistic version
control system, such as Concurrent Versions System
(CVS), which is widely used in open source projects.
CVS can supply the same kinds of data as SCCS for
our semantic interference detection algorithm. The
only variation in the evaluation process is the use of
non-adjacent version of the interference detection
algorithm. This because, in CVS, the sequential order
introduced by check-in time at SCCS will not be valid.

A threat to our study is that 5ESS is a very large
scale real-time project with a large number of
developers, geographically distributed. We argue that

the subsystem we studied is perhaps more
representative of a typical large project. The critical
factor, however, is the issue of parallel changes to the
same files by different people – i.e., feature ownership
rather than code ownership.

6. Related work
In this section, we discuss the work related to our

semantic interference detection algorithm and the
empirical evaluation on software tools with history
repositories.

6.1. Program Slicing
Program slicing is an important technique in

analyzing properties of a program, where on the basis
of some interesting points, or criteria, it computes the
affected program entities. [6] proposed the
combination of a program dependency graph and
program slicing for conflict detection. Although we
use both the program slicing and semantic interference
detection, the different purpose between our work and
theirs induced a significant difference in utilizing
slicing.

The goal of their detection research is for merging,
so they check if the changes made in two versions are
to be kept in the merge version. Our goal is to check if
the later version semantically impacts the earlier one.
So we do not need to compose a “merged” version
before checking for interference. Further in our
algorithm, only one pair of deltas is needed to check
interference because the order of the versions breaks
the symmetry between the two versions.

In the semantic analysis, we only focus on variable
def-uses rather than the whole dependency graph.
While such a simplification means we do not catch all
possible faults, it does make our SCA a lightweight
tool that is both feasible and effective in real projects.
The results of Step 5, the efficiency evaluation of the
detection algorithm, gives strong support for our
simplification.

Yang [24] proposed semantic preserving
transformations that increases the soundness of
semantic conflict detection. Given two versions, this
approach can detect the vertices that are equivalent
semantically but different textually. This approach can
discover some of the false positives that we miss. But
the computation to identify vertices with equivalent
execution behavior is expensive and would degrade
efficiency in real applications. Thus, in SCA we use
identify vertices textually.

6.2. Change impact analysis
[15], [17], and [19] propose change impact analysis

based on atomic change classifications, and associate
them with test cases. In our detection algorithm, we
also check for the effect of changes but differ in three
ways:

1) Category: They combine static and dynamic
analysis and we focus on static analysis.

2) Granularity: They work at the method level, and
compare two abstract syntax trees providing more
precision but paying a higher overhead. We work
at the statement level, comparing the vertices by
variable def-uses and associated text. Ours is more
narrowly focused with significantly less overhead.

3) Goal: They build affect-relationships between test
cases and atomic changes. This facilitates defect
localization by minimizing the related test cases.
We focus on lightweight static analysis that can
detect interference between versions and detect
possible defects.

6.3. Fault-inducing change localization
In our study, the matching between interference

fragments and faults has some similarity with the fault-
inducing change localization approaches. [18]
identifies changes from the version management
system and bug database, and correlates them as fault-
inducing changes. We similar identify changes, but
differ in how we identify fault-inducing changes. Our
approach is based on the semantic analysis on the
changes and their interference, while [18] focuses on
mining version histories and bug databases.

 [25] uses passed and failed test cases to filter out
non-related test cases and to select possible fault-
inducing changes. Their work focuses on the
localization of fault-inducing change by running test
cases, while ours focuses on the prediction of faults
with static analysis of changes that semantically
interfere.

Program chopping [5] is used in debugging to
minimize possible fault-inducing code fragments.
Compared with static program slicing we use, dynamic
slicing can improve the precision for pointer analysis
and reduce false positives in semantic interference
detection. But compiling programs and running test
cases are required beforehand. From our experience
with 5ESS and its highly parallel software
development, these preparation steps will take
significant amount of time. How to effectively
incorporate such dynamic approaches to improve the

soundness of our approach is a challenge for future
work.

6.4. Tools evaluations with version control
repositories

There are an increasing number of empirical studies
using version control repositories to evaluate tools.
The information from version management systems
can provide useful information from the real projects,
non-intrusively, such as fine grained source code
changes, complete histories of all the changes, etc.

[2] uses change history and an effort estimation
model in [4] to calculate the effort that has been saved
with the version editor. The quantitative results are
strong evidence showing the efficiency of the software
tool. But for our static semantic interference analysis
approach, the number of false positives is a primary
concern for real applications. Thus, as an exploratory
study, we mainly focus on the effectiveness, and only
use the time to estimate its efficiency. As we have
positive results in this step, we will use the effort
estimation model in this paper to quantify the saved
effort using our tool.

Compared with [3], we are similar in mining
changes history to predict faults. But their granularity
is large: the number of changes on a file, or the number
of lines changed in a period of time. They do not
consider interference between changes, whether at the
textual level or the semantic level.

[26] also searches for association relationships
between changes by mining change histories and
predicts possible changes in the future. But their
granularity is also different from ours. They focus on
structure-related entities, such as fields or functions in
a file, or files in a directory, and predict faults from the
incomplete changes. We, on the other hand, focus on
the semantics of the code, detecting faults from
semantic interference.

7. Conclusion and future work
We have done an empirical study on the semantic

interference detection algorithm in the context of a
large industrial project. The results of our exploratory
case study are as follows:

1) Interference is significantly higher in adaptive,
highly parallel changes;

2) Our approach detects a significant portion of the
faults in these changes;

3) This approach is effective on non-pointer variable
faults;

4) Compared with the time saved for fault detection
and fix, the overhead of our approach is very low;

5) Preciseness of pointer analysis and identification
on variable rename and control-flow change are
the major factors that affect the effectiveness of
this tool; and

6) We believe that the false positive interferences can
be can be easily dealt with by developers.

The results from our case study also suggest ways
of combining our approach with others to improve the
effectiveness and efficiency of semantic interference
detection:

1) Increase semantic interference detection
completeness. Our tool is sound in detecting the
interferences related to data dependencies, but it
misses the interferences related to control flow
and pointer analysis that contribute to many the
faults in our study. We will explore ways to
incorporate these issues in our analysis.

2) Identify false positives in semantic interference
detection. Although it is not very difficult for
developers to manually discern the false positives,
automated identification of intended interference
will reduce the noisiness of our analyses. We will
employ dynamic analysis techniques, such as
dynamic slicing [5] or symbolic execution [7], to
identify interferences more precisely.

3) Reduce the workload for semantic analysis. In this
Reduce the workload for semantic analysis. In
SCA, all the versions should pass compilation
before data dependency analysis. It is not always
the case in real projects. Island grammar [10] [11]
can be a light weight tool to analysis the semantic
dependency without requirement on compilation.

8. Acknowledgements
We greatly thank Harvey Siy, University of

Nebraska, Omaha, for his help on the change
management system of 5ESS and island grammars. We
thank Barbara G. Ryder, Rutgers University, for the
review on the primary results. We thank Xiangyu
Zhang, University of Arizona, for the discussion on
dynamic slicing issues. This work was supported in
part by NSF CISE Grant IIS-0438967

9. References
[1] P. Anderson, and T. Teitelbaum, “Software

Inspection Using CodeSurfer”, Proc. of the First
Workshop on Inspection in Software Engineering
(WISE’01), Paris, France, July 2001, pp. 4-11.

[2] D. Atkins, T. Ball, T. Graves, and A. Mockus.
“Using version control data to evaluate the impact of
software tools: A case study of the version editor”,

IEEE Transactions on Software Engineering, Vol.
28, No. 7, July 2002, pp. 625–637.

[3] T.L. Graves, A.F. Karr, J.S. Marron and H. Siy,
“Predicting Fault Incidence Using Software Change
History,” IEEE Transactions on Software
Engineering, Vol. 26, No. 7, July 2000. pp 653-661.

[4] T.L. Graves, A. Mockus, “Inferring Change Effort
from Configuration Management Databases”, Pro. of
the Fifth International Symposium on Software
Metrics, IEEE, 1998, pp. 267-273.

[5] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating
Faulty Code Using Failure-Inducing Chops”, Proc.
of the 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2005), Long
Beach, California, November 2005, pp. 263-272.

[6] S. Horwitz, J. Prins, and T. Reps, “Integrating non-
interfering versions of programs”, ACM
Transactions on Programming Languages and
Systems, Vol. 11, No. 3, July 1989, pp. 345-387.

[7] S. Khurshid, C. Pasareanu, and W. Visser,
“Generalized Symbolic Execution for Model
Checking and Testing”, Proc. of the 9th
International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS
2003), Warsaw, Poland, Apr 2003, pp. 553-568.

[8] K. Martersteck, and A. Spencer, “Introduction to the
5ESS(TM) Switching System”, AT&T Technical
Journal, Vol. 64, No. 6, part 2, July-August 1985,
pp. 1305-1314.

[9] A. Mockus, and L.G. Votta, “Identifying Reasons
for Software Changes Using Historic Databases”,
Proc. of IEEE International Conference on Software
Maintenance (ICSM'00), San Jose, CA, USA,
October. 2000, pp. 120-130.

[10] L. Moonen, “Generating Robust Parsers Using
Island Grammars”, Proc. of the Eighth Working
Conference on Reverse Engineering (WCRE'01),
Stuttgart, Germany, October. 2001, pp. 13-22.

[11] L. Moonen, “Lightweight Impact Analysis Using
Island Grammars”, Proc. of Tenth International
Workshop On Program Comprehension (IWPC'02),
June 2002, pp. 219-228.

[12] D.E. Perry, and H.P. Siy, “Challenges in Evolving a
Large Scale Software Product”, Proc. of the
International Workshop on Principles of Software
Evolution, the 20th International Software
Engineering Conference, Kyoto, Japan, April 1998,
pp. 251-260.

[13] D.E. Perry, H.P. Siy, and L.G. Votta, “Parallel
Changes in Large Scale Software Development: An
Observational Case Study”, ACM Transactions on
Software Engineering and Methodology, Vol. 10,
No. 3, July, 2001, pp 308-337.

[14] R. Purushothaman, and D.E Perry, “Towards
Understanding the Rhetoric of Small Source Code
Changes”, IEEE Transactions on Software
Engineering, Special Issue on Mining Software
Repositories, Vol. 31, No. 6, June 2005, pp. 511-
526.

[15] X. Ren, F. Shah, F. Tip, B.G. Ryder, and O.
Chesley, “Chianti: A Tool for Change Impact
Analysis of Java Programs”, Proceedings of the 19th
annual ACM SIGPLAN Conference on Object-
oriented programming, systems, languages, and
applications(OOPSLA 2004), October 2004, pp.
432-448.

[16] M.J. Rochkind, “The Source Code Control System”,
IEEE Transactions on Software Engineering, Vol.
SE-1, No. 4, December 1975, pp. 364-370.

[17] B.G. Ryder, and F. Tip, “Change impact analysis for
object-oriented programs”, Proc. of the 2001 ACM
SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, June 2001,
Snowbird, Utah, pp .46-53.

[18] J. Sliwerski, T. Zimmermann, and A. Zeller, “When
do changes induce fixes? On Fridays”, Proc. of
International Workshop on Mining Software
Repositories (MSR), Saint Louis, Missouri, May
2005.

[19] M. Stoerzer, B.G. Ryder, X. Ren, and F. Tip,
“Finding Failure-Inducing Changes using Change
Classification”, Research Report RC 23729, IBM,
September 2005.

[20] K. Tewary and M.J. Harrold, “Fault Modeling using
the Program Dependence Graph”, International
Symposium on Software Reliability Engineering,
November 1994, pp. 126-135.

[21] G.L. Thione, “Detecting Semantic Conflicts in
Parallel Changes”, MSEE Thesis, The Department
of Electrical and Computer Engineering, The
University of Texas at Austin, December 2002.
98pp.

[22] G.L. Thione, and D.E. Perry, “Parallel Changes:
Detecting Semantic Interferences”, The 29th Annual
International Computer Software and Applications
Conference (COMPSAC 2005), Edinburgh,
Scotland, July 2005, pp. 47-56.

[23] P.A. Tuscany, “Software development environment
for large switching projects”, Proc. of Software
Engineering for Telecommunications Switching
Systems Conference, 1987.

[24] W. Yang, S. Horwitz, and T. Reps, “A program
integration algorithm that accommodates semantics-
preserving transformations”, ACM Transactions on
Software Engineering and Methodology, Vol. 1, No.
3, July 1992, pp. 310-354.

[25] A. Zeller, “Yesterday, my program worked. Today,
it does not. Why?” Proc. of Joint 7th European
Software Engineering Conference (ESEC) and 7th
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE-7), Vol.
1687 of LNCS, Toulouse, France, September 1999,
pp. 253-267.

[26] T. Zimmermann, P. Weibgerber, S. Diehl, A. Zeller,
“Mining Version Histories to Guide Software
Changes”, Proc. of the 26th International
Conference on Software Engineering (ICSE 2004),
Edinburgh, UK, May 2004, pp. 563-572

	Introduction
	Semantic interference detection
	Semantic analysis of change impact
	Not all the variable def-use dependencies are easily identi
	Semantic Interference Detection

	Study context
	Change & Version Mgmt Repositories
	Parallel changes in this repository
	Implementation issues

	Study and Results
	Versions and the degree of parallelism
	Calculate semantic interferences
	Identify the relevant faults
	Evaluate analyzer effectiveness
	4.4.1. Match: semantic interference & faults
	4.4.2. Semantic analysis on the hit, false positive and fals

	Evaluate the analyzer efficiency

	Validity analysis
	Construct validity
	Internal validity
	External validity

	Related work
	Program Slicing
	Change impact analysis
	Fault-inducing change localization
	Tools evaluations with version control repositories

	Conclusion and future work
	Acknowledgements
	References

