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Abstract
The paper presents a reuse-based approach to the model-
ing, specification and analysis of application-specific se-
curity requirements. The method is based on a goal-
oriented framework that addresses malicious goals (called
anti-goals) set up by attackers to threaten security goals.
Threat tree fragments are built systematically through spe-
cializations of attack patterns. Attack patterns abstract at-
tacker’s malicious goals for known attacks. Once special-
ized to a specific vocabulary, they are useful to build a com-
plete threat tree. Indeed, the specialized attack pattern is
then further refined until leaf nodes are derived that are ei-
ther software vulnerabilities observable by the attacker or
anti-requirements implementable by this attacker. New se-
curity requirements are then obtained as specializations of
reusable countermeasures associated with the attack pat-
tern. The method is illustrated with an attack pattern for
replay attacks that is specialized in an e-commerce system
and a mailing system.

1. Introduction
Requirements engineering (RE) is the first step in the sys-
tem life-cycle. RE aims at identifying goals to be achieved
by the system-to-be, operationalizing such goals into ser-
vices and constraints, and assigning responsibilities for the
resulting requirements to agents such as humans, devices,
and software [24].
Reports on software vulnerabilities have increased dramati-
cally [1]. They also have been implicated in a large number
of accidents [17]. Moreover, technologies used by attackers
are rendering software systems incresingly insecure. Iden-
tification of software vulnerabilities can thus have a major
impact on security. The first goal of this paper is to in-
troduce a formal technique to support high quality require-
ments specifications by finding threats, vulnerabilities, ma-
licious goals, and their corresponding countermeasures. By
high quality, we mean complete, accurate, and secure.
Future breakthroughs in requirements engineering produc-
tivity and quality, as well as cost reduction, may well

depend on the ability to reuse existing requirements to
produce new requirements [15]. The current build-from-
scratch techniques that dominate most requirements elicita-
tions must eventually give way to techniques that empha-
size their construction from reusable patterns. If not, re-
quirements engineers may reach a limit in generating large,
high-quality requirements definitions. These definitions are
increasingly important due to a demand for large and com-
plex software systems. The second goal of the paper is to
provide contributions to requirements reuse.
Our general goal is thus to create a systematic technique
to support reuse of requirements in the context of security.
The solution proposed in the paper defines reusable abstract
threat tree fragments for known attacks (e.g., replay, denial-
of-service, password attacks). Once specialized to a specific
vocabulary the attack pattern is used to systematically gen-
erates malicious goals. The resulting threat tree fragment is
then further refined until leaf nodes are derived. Reusable
countermeasures are proposed as well in response to such
goals.
The organization of the paper will be the following: Sec-
tion 2 provides the necessary background; Section 3 intro-
duces attack patterns as reusable models for threat analysis;
Section 4 assesses the technique with an attack pattern for
replay attacks specialized in two case studies (e-commerce
system, mailing system); Section 5 discusses related work;
and Section 6 summarizes contributions, evaluations, and
future directions.

2. Background
Goals are prescriptive statements that capture the rationale
of the envisioned system by answering why the system is
needed. Goals are then operationalized into services and
constraints, thereby answering what the system should do
[21]. The responsibilities for goals are finally assigned
to agents such as humans, devices and software, thereby
capturing how the system will be built. Goals are organized
in hierarchies with high-level goals being coarse-grained
(e.g., “secure transaction”), and low-level goals being



more technical (e.g., “encrypted transaction”). Goals are
elicited through a refinement/abstraction process. AND-
refinements link a goal to a set of subgoals. Satisfying
all subgoals in the refinement is a sufficient condition
for satisfying the goal. OR-refinements link a goal to
an alternative set of reductions. Satisfying one of the
reductions is a sufficient condition for satisfying the goal.
The specification of a goal can be formally expressed in a
realtime linear temporal logic borrowed from [14] using
the following temporal operators [19],
♦ (eventually) � (some time in the past)
� (always in the future) � (always in the past)

and the following epistemic operators [25],
KnowsVag(v) ≡ ∃x : Knowsag(x = v) (knows value)
Knowsag(P ) ≡ Beliefag(P ) ∧ P (knows property)

where Beliefag(P ) means P is among the properties stored
in the local memory of agent ag. Let us illustrate this by a
goal in a mailing system:

Goal Achieve[MailReceivedInTime]
Refines EffectiveSystem
RefinedTo MailAtPostOfficeInTime, MailDispatched-

InTime, MailDeliveredInTime
FormalDef ∀s : Sender, m : Mail, r : Receiver

Posts(s,m, r) ⇒ ♦≤dReceives(r, m)
An object model associated with the goal tree captures
agents (Sender, Receiver), objects (Mail), relationships
between them (Posts, Receives), and their corresponding
invariants. Goals can be refined through instantiations of
generic refinement patterns [3]. The refinement process
ends when every goal is realizable by an agent.
Obstacles can be elicited to identify goal violation scenarios
[20]. An obstacle is a condition whose satisfaction may
prevent a goal from being achieved. More precisely, let
G be a goal assumption and Dom be a set of prescriptive
statements on the environment. An assertion O is said to be
an obstacle to GA iff the following conditions hold:

1. {O,Dom} ` ¬GA (obstruction)
2. Dom 0 ¬O (domain consistency)

Obstacle analysis [27] consists of identifying obstructions
by regressing goal negations through domain theory until
they are assignable to agents. Regression consists of
calculating preconditions from the domain theory for
obtaining the negation of a goal assertion. For example,
a precondition of the MailReceivedInTime goal previously
defined is that the target address should be readable. An
obstructing obstacle can thereby be regressed: Impos-
sibleToReadTargetAddress. The obstruction is resolved
using resolution tactics [27], thereby producing more
robust requirements (e.g., closing postboxes to avoid rain
rendering the target address unreadable).
Obstacle analysis appears to be too limited to capture
attacks that satisfy attacker’s goals based on their capa-
bilities and on the system’s vulnerabilities [25]. Threat

models, on the other hand, capture these malicious goals,
called anti-goals, by (1) systematically negating relevant
specification patterns for Security goals [4] instantiated to
sensitive attributes, (2) elaborating a threat AND/OR tree,
and (3) deriving alternative countermeasures to the threats
found. Let us illustrate this in the mailing example:

SpecPattern Avoid[SensitiveInfoKnownByUnauthorized]
FormalDef ∀a : Attacker, ob : Object

¬Authorized(a, ob.Info) ⇒ ¬KnowsVa(ob.Info)

can be instantiated and negated, yielding:
AntiGoal Achieve[MailKnownByThirdParty]

FormalDef ∀a : Attacker, m : Mail

¬isReceiverOf(a, m.Info) ∧KnowsVa(m.Info)

A Thief agent could benefit from the above anti-goal.
Regression through domain theory and resolution of the
anti-goal are illustrated on Figure 1.

Figure 1. Anti-model for the Mailing System

3. Reusing Attack Patterns
The threat tree building process should be supported by
techniques and tools. One technique is to abstract common-
alities among known attacks from several case studies. This
abstraction results in reusable anti-goals. These are linked
together through refinement links to build an attack pattern.
The result is a reusable threat tree fragment that captures
common objectives of malicious agents for known attacks.
Once specialized to a domain-specific vocabulary, the attack
pattern provides useful domain properties and anti-goals.
The anti-goals of the specialized fragment should then be
further refined until leaf nodes are derived that are either
software vulnerabilities observable by the attacker or anti-
requirements implementable by this attacker. The rationale
of root anti-goals should be understood as well to capture
attacker’s high level intentions.

3.1. Definition of Attack Patterns

Several concepts are important for understanding and
defining attack patterns.
- A specialization is a binary relation between two con-
cepts. IsA(A,B) means that A is a specialization of B.
IsA(A,B) holds iff every instance of concept A is also an
instance of concept B, and there are instances of concept A
that are not instances of concept B [16].
- An instantiation is a binary relation between two concepts.
IsOf(A,B) means that A is a particularized occurrence of
a meta-concept B.
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- A domain can be abstract or concrete. An abstract
domain is an abstracted form of a set of concrete domains.
The abstraction categorizes concrete domains in abstract
domains (for example, the Plane, and the Train domains are
Transportation domains). A concrete domain is therefore a
specialization (isA) of an abstract domain with knowledge
from a real world application area [10].
- Abstract anti-goals, domain properties and predicates are
reusable concepts defined on abstract domains that should
be specialized in concrete domains at reuse time.
- An attack pattern is a fragment of an anti-model defined
on an abstract domain. Attack patterns are built with
abstract anti-goals and abstract domain properties that
can be formalized in linear temporal logic with abstract
predicates. Abstract predicates should be specialized to
a concrete domain in order to generate a fragment of an
anti-model. The generated fragment isA abstract anti-model
fragment.

Figure 2. Attack Pattern for destruction Attacks

For example, the attack pattern for destruction attacks (left
of Figure 2) states that the attacker wants some resource
needed by an agent to be unusable. The refinements provide
a means for rendering the resource unusable by destroying
it. The abstract anti-model fragment is specialized in
two concrete domains: an e-commerce domain, and a
mailing domain. The first specialization states that the
attacker wants a server to be unusable by known clients.
The refinements provide a means for rendering the server
unusable by breaking it. The second specialization states
that the attacker wants a truck needed for transporting mail
to be unusable. The refinements provide a means to make
the truck unusable, by destroying the gas tank.
Let us illustrate one of the regressions of the attack pattern
and its corresponding specializations.

AbsAntiGoal Achieve[UnusableResourceWhenNeeded]

FormalDef ♦∃u : User, r : Resource
NeedsResource(u, r) ∧AuthorizedUser(u, r)∧
�<M¬UsingResource(u, r)

A necessary precondition for a user to use a resource is that
the resource should be available.

AbsDomProp [UsableWhenAvailable]
FormalDef ∀u : User, r : Resource
UsingResource(u, r) ⇒ Available(r)

Instantiating the 1-step regression pattern (above on Figure
2) [3] in order to regress UnusableResourceWhenNeeded
through UsableWhenAvailable yields the following anti-
goal:

AbsAntiGoal Achieve[UnavailableResourceWhenNeeded]
FormalDef ♦∃u : User, r : Resource
NeedsResource(u, r) ∧AuthorizedUser(u, r)∧
�<M¬Available(r)

We can specialize the attack pattern to an e-commerce
system, and a mailing system:
• E-Commerce: Client isA User, WebService isA Re-

source, Accesses isA NeedsResource, KnownClient
isA AuthorizedUser, UsingServer isA UsingResource,
and Reachable isA Available.

• Mailing: Mail isA User, Truck isA Resource, Need-
sTransport isA NeedsResource, WithPostage isA Au-
thorizedUser, isTransportedBy isA UsingResource,
and HasFuel isA Available.

For example, UnusableServerWhenAccessed isA spe-
cialization of UnusableResourceWhenNeeded in the e-
commerce system.

AntiGoal Achieve[UnusableServerWhenAccessed]
Specializes UnusableResourceWhenNeeded
FormalDef ♦∃c : Client, ws : WebService
Accesses(c, ws) ∧KnownClient(c, ws)∧
�<M¬UsingServer(c, ws)

The same abstract anti-goal can be specialized to the mail-
ing system. In that context, TruckUnusableWhenNeeded
isA specialization of UnusableResourceWhenNeeded.

AntiGoal Achieve[TruckUnusableWhenNeeded]
Specializes UnusableResourceWhenNeeded
FormalDef ♦∃m : Mail, t : Truck
NeedsTransport(m, t) ∧WithPostage(m, t)∧
�<M¬isTransportedBy(m, t)

Other abstract anti-goals and abstract domain properties are
specialized similarly. Note that the specialized anti-goals
should be further refined because the specialization gener-
ated only a fragment of anti-model.

3.2. A Library of Attack Patterns

Attack patterns were abstracted from concrete anti-models
defined in case studies (mine pump system, electronic vote
system, e-commerce system, and mailing system) [9]. The
description approach in this paper will proceed instead
from abstract to concrete: first an introduction of abstract
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concepts, and then, specializations of them in application-
specific domains.
Reusable libraries are commonly described as follows [26]:

- How to define a library of reusable elements?
- How to reuse such a library?

The library of abstract domain properties is described with
this structure in the next sections.
3.2.1 Definition of a Library

The library is composed of attack patterns. Attack patterns
are composed of abstract anti-goals and domain properties.

• Model-specific features:
- Context: A set of circumstances in which the at-

tacker might be able to compromise a system. The
circumstances are captured in abstract goals for Se-
curity goals that the attacker may be able to com-
promise. These abstract goals are instances of (isOf)
specification patterns for Security goals [25]. Meta-
variables of specification patterns are instantiated to at-
tributes/associations defined on abstract domains.
For example, UsableResourceWhenNeeded previ-
ously defined isOf ObjectUsableWhenNeededAnd-
Authorized (below) [25], and can be specialized to
UsableWebServiceWhenAccessed (see Figure 3).

SpecPattern Achieve[ObjectUsableWhen-
NeededAndAuthorized]

FormalDef ∀ob : Object, ag : Agent,
Needs(ag, ob) ∧Authorized(ag, ob) ⇒
♦<M¬Using(ag, ob)

- Vocabulary: Concepts used to define the attack pattern.

Figure 3. Context for Attack Patterns

• Goal- and property-specific features: Formal and in-
formal definitions of abstract anti-goals and abstract
domain properties (elements of the attack pattern). Re-
gression of abstract anti-goals through abstract domain
properties to build the model are also discussed.

• Countermeasures: Reusable anti-goal resolutions.

3.3 Reusing the Library
• Retrieve: Get initial anti-goals by negating relevant

abstract anti-goals for Security goals. Then, spe-
cialize the abstract anti-goals with sensitive objects
of the application-specific object model. For exam-
ple, UnusableResourceWhenNeeded is the negation of
an abstract goal and can be specialized to Unusable-
ServerWhenAccessed (see Figure 3).

• Specialize and Adapt: Specialize each abstract vari-
able (e.g., objects, agents, relations) of the attack pat-
tern to the specific application domain and adapt if
necessary. Specializations must satisfy the following
semantic condition:
Condition [X(Spec)/P ] means that the definition of
the abstract atomic formula X specialized through
Spec covers the definition of the concrete atomic
formula P . X is defined on an abstract domain and
P is defined on a concrete domain. The definition of
X(Spec) is said to cover the definition of P when
the set of instances corresponding to the definition
of X(Spec) is a superset of the set of instances cor-
responding to the definition of P .

For example, let us consider the following definitions:

– Resource: An entity that an agent may request
for some usage [2].
• Spec: The usage of the resource.

– Server: A device that a client may request for
obtaining network services.

– Truck: A vehicle that transports goods.
Resource is defined on an abstract domain and can
be specialized through Spec. Specializations in-
clude a resource used for network services or for
transporting goods. In the e-commerce domain,
[Resource(Service)/Server] holds because the def-
inition of a Server covers the definition of a spe-
cialized resource that is used to obtain network
services (Spec=Services). In the traffic domain,
[Resource(Transport)/Truck] holds because the
definition of a Resource covers the definition of a truck
that is used to transport goods (Spec=Transport).

• Specialized Target Usage: Check whether the spe-
cialization is relevant by further refining the generated
anti-goal fragments.

– Ask WHY questions and understand the high-
level motivations of the attacker.

– Ask HOW questions and find out anti-
requirements attributable to attackers and
software vulnerabilities observable by the
attacker.

– Specialize reusable countermeasures to the gen-
erated anti-goals.
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4. Attack Pattern for Replay Attacks
Attack patterns can be defined for every type of attack. To
demonstrate our approach, we use an example of replay at-
tacks, i.e., attacks on an authentication systems by recording
and replaying previously played information [8].

A. Defining the Attack Pattern
A.1 Model-Specific Features
A.1.1 Context
Let us first introduce a definition:

Def An object is replayed if it was played in the past.
FormalDef ∀ob : Object, Replayed(ob) ,
∃ag : Agent, ag′ : Agent, �Plays(ag, ob, ag′)

The specification pattern that attackers may want to com-
promise to replay objects is the following:
SpecPattern Maintain[ReplayedObjectNeverAccepted]

Def Replayed objects should never be accepted by agents.
FormalDef ∀ob : Object, Replayed(ob) ⇒

�¬∃ag : Agent, Accepts(ag, ob)
The specification pattern can be instantiated in a Message
abstract domain:

Definition Instantiates definition of replay.
Def A message is said to be fresh if it was

never sent in the past.
FormalDef ∀m : Mess, Fresh(m) ,
¬∃s : Sender, r : Receiver, �Sends(s,m, r)

AbsGoal Maintain[UnfreshMessageNeverAccepted]
Instantiates ReplayedObjectNeverAccepted
Def An unfresh message should never be

accepted by a receiver.
FormalDef ∀m : Mess, ¬Fresh(m) ⇒

�¬∃r : Receiver, Accepts(r, m)
The specification pattern could also be instantiated in other
abstract domains such as a Ticketing abstract domain. Spe-
cializations for such an abstract domain could be to replay
a used train ticket or a used concert ticket.
In this section, we focus on the Message abstract domain
and build an attack pattern that compromises the Unfresh-
MessageNeverAccepted abstract goal.

A.1.2. Vocabulary
The concepts used to define the attack pattern fragment are
illustrated on the state chart of Figure 4. Note that for space
limitations, some obvious definitions are not provided.
Channel: Channel through which agents communicate.
• Spec: The kind of channel (e.g., LAN, post, phone).

Fresh: Never sent in the past.
• Spec: The kind of message (e.g., packet, mail, voice).

Accepts: Message being accepted by some receiver.
• Spec: The accepting condition (e.g., no virus, fresh).

Records: Message being recorded by some attacker.
• Spec: The kind of message.

Listens: Listening messages on some channel.
• Spec: The kind of channel.

Figure 4. State Chart for Replay Attacks

Forges: Transform a message so that it can be accepted by
a receiver even if it is not fresh.

• Spec: The forging process (e.g., decrypt, modify).

A.2. Goal- and Property-Specific Features
The attack pattern for replay attacks (see Figure 5) is in-
spired from the taxonomy proposed by Syverson [23], and
is consistent with the list of replay attacks proposed by
Gong [6]. By consistent, we mean that the goals of replay
attacks defined in [23] and [6] can be modeled with the pro-
posed attack pattern.

Figure 5. Attack Pattern for Replay Attacks
The root of the attack pattern is the negation of the Unfresh-
MessageNeverAccepted abstract goal:

AbsAntiGoal Achieve[UnfreshMessAcceptedByReceiver]
Def An unfresh message is accepted by some receiver.
FormalDef ♦∃m : Mess, r : Receiver
¬Fresh(m) ∧ ♦Accepts(r, m)

If an attacker wants to replay a message that is accepted
by some receiver, (G1) a legitimate sender has to send a
message to some receiver, (G2) the attacker has to record
that message, (G3) the attacker has to replay the message to
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some receiver, (G4) the receiver has to accept the replayed
message. These four goals are milestones if an attacker
wants to successfully replay a message. Instantiating the
milestone pattern [9] to sensitive objects of the replay
context, we formally refine the UnfreshMessageAccepted-
ByReceiver abstract anti-goal:

AbsAntiGoal Achieve[MessageSentBySender]
Def A message is sent by a sender to some receiver.
FormalDef ♦∃m : Mess, s : Sender,

r : Receiver, Sends(s,m, r)
AbsAntiGoal Achieve[MessageRecordedWhenSent]

Def A message is recorded by an attacker when it is
sent by a sender to some receiver.

FormalDef ∃m : Mess, s : Sender, r : Receiver
Sends(s,m, r) ⇒ ♦∃a : Attacker, Records(a,m)

AbsAntiGoal Achieve[MessageSentWhenRecorded]
Def An attacker sent a message to some receiver

when he recorded it.
FormalDef ∃m : Mess, a : Attacker, r : Receiver

Records(a,m) ⇒ ♦Sends(a,m, r)
AbsAntiGoal Achieve[UnfreshMessAcceptedWhenSent]

Def An unfresh message should be accepted
when an attacker sent it to some receiver.

FormalDef ∃m : Mess, a : Attacker, r : Receiver
Sends(a,m, r) ⇒ ¬Fresh(m) ∧ ♦Accepts(r, m)

Let us now refine the MessageRecordedWhenSent abstract
anti-goal by regression. A necessary precondition for the
target predicate Records(a,m) is that the attacker should
listen messages that are on a channel. This precondition is
stated in the following abstract domain property:

AbsDomProp ChannelListenedWhenMessRecorded
Def An attacker listens some channel on which

messages are transferred if he records a message.
FormalDef ∃m : Mess, a : Attacker

Records(a,m) ⇒ ∃c : Channel
Listens(a,m) ∧On(m, c)

Instantiating the 1-step regression pattern [27] to regress
MessageRecordedWhenSent through ChannelListened-
WhenMessageRecorded yields the following abstract
anti-goal:

AbsAntiGoal Achieve[ChannelListenedWhenMessSent]
Def A channel is listened when a sender

sends a message to some receiver.
FormalDef ∃m : Mess, s : Sender, r : Receiver

Sends(s,m, r) ⇒ ♦∃a : Attacker, c : Channel
Listens(a, c) ∧On(m, c)

Let us now refine the UnfreshMessageAcceptedWhenSent
abstract anti-goal by regression. A necessary precondition
for the acceptance of an unfresh message is that the attacker
can transform the message so that it is accepted by a
receiver (i.e., it can be forged). This precondition is stated
in the following abstract domain property:

AbsDomProp ForgedWhenUnfreshMessageAccepted

Def A message was forged by some attacker in the past
messages if a receiver accepts an unfresh message.

FormalDef ∃m : Mess, r : Receiver
¬Fresh(m) ∧ ♦Accepts(r, m) ⇒
∃a : Attacker, �Forges(m,a)

Instantiating the 1-step regression pattern to regress
UnfreshMessageAcceptedWhenSent through Forged-
WhenUnfreshMessageAccepted yields the following
abstract anti-goal:

AbsAntiGoal Achieve[ForgedMessageWhenSent]
Def A message was forged by an attacker in the past

when he sent a message to some receiver.
FormalDef ∃m : Mess, a : Attacker, r : Receiver

Sends(s,m, r) ⇒ �Forges(m,a)

A.3. Countermeasures
Countermeasures against replay attacks include the follow-
ing [23]: (1) freshness mechanisms (e.g., messages should
be tied with a unique identifier), (2) introduce asymmetry
(e.g., avoid the man-in-the-middle attack due to protocol
symmetry), (3) tying messages to a particular use at a par-
ticular time (e.g., messages should be tied to a particular
protocol run rather than to a particular epoch. Messages
from different protocol runs would therefore be revealed),
(4) authentication of message’s emitter and recipient (e.g.,
cryptographically bind the name of a message originator to
the message).
B. Reusing the Attack Pattern
Let us now illustrate two specializations: an e-commerce
domain (Section B.1) and in the mailing domain (Section
B.2). We also specialized the attack pattern in other case
studies [9] not illustrated in this paper due to space limita-
tions.

B.1. E-Commerce Domain
Let us consider the e-commerce system, and more specifi-
cally the ordering procedure. A client orders a product via a
transaction sent to the account manager. The account man-
ager then chooses to commit or to reject the sent transac-
tion. An objective of the system is to avoid that transactions
are committed twice. A malicious attacker might want to
compromise that goal by replaying a modified transaction
so that a known client pays for his transaction.

B.1.1. Retrieve
The definition of freshness is first specialized to the E-
commerce domain:

Definition Specializes definition of fresh.
Def A transaction is said to be new if it was

never used for an order of some client in the past.
FormalDef ∀t : Trans, New(t) , ¬∃c : Client,

tm : TrManager, �Orders(c, t, tm)
Let us get an initial anti-goal by specializing the
UnfreshMessageNeverAccepted abstract anti-goal to the e-
commerce domain.
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AbsGoal Maintain[OldTransactionsNeverCommitted]
Specializes UnfreshMessageNeverAccepted
Def An old transaction should never be

committed by the transaction manager.
FormalDef ∀t : Trans, ¬New(t) ⇒

�¬∃tm : TrManager, Commits(tm, t)

B.1.2. Specialize and Adapt

The dynamic behavior of the system is illustrated on Figure
6 (Figure 6 isA Figure 4). Specializations of concepts de-
fined in Section A.1.2. are the following:

[Channel(Network)/LAN]
[Accepts(isTransaction)/Commits]
[Records(Transaction)/Sniffes]
[Listens(Network)/Eavesdrops]
[Fresh(Transaction)/New]
[Forges(ModifyTransactionNumber)/Modifies]

Figure 6. Specialized State Chart

The anti-model fragment specialized from the attack
pattern of Figure 5 is illustrated on Figure 7.

Figure 7. Specialized Attack Pattern

The attack pattern was proved once and for all complete.
Specializing the attack pattern is a sufficient condition to
build a complete anti-model fragment. Let us illustrate this
though one regression of Figure 7:

AntiGoal Achieve[TransSniffedWhenClientOrder]
Specializes MessageRecordedWhenSent
Def Transactions that the client sent

for ordering should be sniffed.
FormalDef ∃t : Trans, c : Client, tm : TrManager
Orders(c, t, tm) ⇒ ♦∃a : Attacker, Sniffs(a, t)

A necessary precondition for the fact that the attacker
sniffs a transaction is that he can eavesdrop the LAN where
transactions are transmitted. This precondition is stated in
the following domain property:

DomProp LANEavesdroppedWhenTransactionSniffed
Specializes ChannelListenedWhenMessageRecorded
Def An attacker eavesdrops a LAN where transactions

are transmitted if he sniffs transactions.
FormalDef ∀t : Trans, a : Attacker
Sniffs(a, t) ⇒ ∃l : LAN
Eavesdrops(a, l) ∧ TransmittedOn(t, l)

Instantiating the 1-step regression pattern to regress
TransactionSniffedWhenClientOrder through LAN-
EavesdroppedWhenTransactionSniffed yields the following
anti-goal:

AntiGoal Achieve[LANEavesdropWhenOrderedViaTrans]
Specializes ChannelListenedWhenMessageSent
Def An attacker eavesdrops a LAN where transactions

are transmitted when a client sent a transaction.
FormalDef ∃t : Trans, c : Client, tm : TrManager

Orders(c, t, tm) ⇒ ♦∃l : LAN, a : Attacker
Eavesdrops(a, l) ∧ TransmittedOn(t, l)

B.1.3 Specialized Target Usage
The generated fragment of anti-model must now be further
refined. We must understand why an attacker would want to
replay a transaction, how he would do it, and what are the
countermeasures on such attack.
• Why? An attacker may want the client to pay several

times (e.g., revenge or to smeer the reputation of e-
commerce). He may also want a valid client to pay his
orders.

• How? Normally a machine on a LAN accepts mes-
sages only destined for itself, but when the machine is
in promiscuous mode, it reads all information, regard-
less of its destination. This enables the attacker to read
transactions on the LAN.

• What? (a) Enforce transactions to be certified by a
third party so that the client is sure that the transaction
is not replayed by an attacker. (b) Forbid promiscuous
modes on the LAN (c) Bind transactions to time and
protocol run.
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B.2 Mailing System
Let us consider the mailing system, and more specifically
the dispatching procedure at the post office. An objective of
the system is to avoid dispatching mail of senders that did
not pay their postage.

B.1.1 Retrieve
The definition of freshness is first specialized to the mailing
domain:

Definition Specializes definition of fresh.
Def Postage is said to be paid if a

mail with that postage was never posted in the past.
FormalDef ∀m : Mail, Paid(m.postage) ,
¬∃s : Sender, r : Receiver, p : Post
�(Posts(s,m, r) ∧ InChargeOf(p, m))

Let us get an initial anti-goal by specializing the
UnfreshMessageNeverAccepted abstract anti-goal to the
mailing domain.

AbsGoal Maintain[UnpaidMailNeverDispatched]
Specializes UnfreshMessageNeverAccepted
Def A mail with unpaid postage should never be

dispatched by the post.
FormalDef ∀m : Mail, ¬Paid(m.postage) ⇒

�¬∃p : Post, Dispaching(p, m)

B.1.2. Specialize and Adapt
The dynamic behavior of the system is illustrated on Figure
8 (Figure 8 isA Figure 4). Note that some adaptation was
necessary to match the attack pattern.

Figure 8. Specialized State Chart

The specializations of concepts defined in Section A.1.2 are
the following:

[Channel(PostBox)/PostBox]

[Accepts(isPaid)/Dispatching]
[Records(Mail)/Steals]
[Listens(PostBox)/Opens]
[Fresh(Mail)/Paid]
[Forges(RemovePostage)/Removes ∧¬ Obliterated]

The fragment of anti-model specialized from the attack pat-
tern of Figure 5 is illustrated on Figure 9. Refinements are
similar to those of the attack pattern.

Figure 9. Specialized Attack Pattern
B.1.3. Specialized Target Usage
The generated fragment of the anti-model must now be fur-
ther refined. We must answer the why, how, and what ques-
tions.
• Why? An attacker may want to replay postage for mul-

tiple reasons: don’t pay postage anymore, wants the
postoffice to lose money, want to smeer the reputation
of the postoffice, want to sell the postage to individuals
to make money.

• How? In order to open the postbox, the attacker may
break it, or put his hand in the mail slot. To remove the
postage, the attacker may put the mail in water such as
philatelists do.

• What? (a) Enable companies to pre-pay their mails,
(b) Lock postboxes (c) Postboxes should not be placed
in dangerous streets in order to avoid vandalism, (d)
Use sticking postages (they are more difficult to re-
move without altering them), (e) Raise the price of
postage often (this reduces anti-goal occurrences be-
cause the global value of mails in postboxes is less at-
tractive), (f) Train post employees to see if the postage
are replays.

5. Related Work
The HAZOP (hazard and operability) methodology relies
on a set of seven guidewords [18]. They should be ap-
plied to all the important parameters of the process under
study to identify failure nodes in risk trees. For example,
the guideword MORE means that there is more of any rel-
evant physical property than there should be. Each guide-
word has specializations for particular application domains.
These specializations are called deviations. The main dif-
ferences between their technique and ours is (1) hazards are

8



not regressed through reusable properties, (2) rationale of
hazards is not obvious in HAZOP.
Many desirable properties of requirements specifications
for process control systems have been defined by Jaffe et al.
[12]. These reusable properties are listed in safety check-
lists. The objective is to formally define important prop-
erties that must be reflected in the requirements specifica-
tions. If the properties are satisfied by the current require-
ments, the system is said to be safe. If some properties are
not satisfied, one should determine criteria that would imply
the unsatisfied properties. Properties and their correspond-
ing criteria are reusable. They should be specialized to an
application-specific domain at reuse time. The main differ-
ence between safety checklists and attack patterns is that
lists are not formally structured and that malicious inten-
tions cannot be captured.
Attack trees [22] provide a formal way of describing attacks
that could be done on a system. Basically, one represents
attacks against a system in a tree structure, with the threat
as the root node. Different ways of causing that threat are
represented as leaf nodes. When the tree is constructed,
one should assign boolean values to each node (e.g., possi-
ble/impossible, easy/difficult, expensive/inexpensive, intru-
sive/nonintrusive.) Attack trees can be reused in multiple
contexts and provide a way to think about security. The
main difference between attack trees and our technique is
that (1) attack trees are not goal-anchored, it is therefore
difficult to understand malicious intentions, (2) attack trees
have no support for identifying the root threat node, and (3)
threats used to build the tree are application-specific, they
are thus not meant to be reused.
Threat descriptions are composed with a problem frames
[11] representation of functional requirements, giving vul-
nerabilities [7]. Vulnerabilities are ameliorated by security
requirements. Security requirements are expressed as con-
straints on the functional requirements. They are thereby
a part of the specification process, comparable with other
constraints. The main differences between their technique
and attack patterns is that (1) threat descriptions are not
meant to be reused, (2) they are informally defined, (3) there
is no model of attacker agents, (4) there is no understand-
ing of high-level malicious intentions, and (5) there are no
heuristics for threat derivation.
Cheng et al. [13] describe how an approach similar to archi-
tectural design patterns [5] can be applied to reuse problem
frames [11], and object-oriented models. They term their
reusable patterns requirements patterns. The term require-
ments patterns is confusing because their patterns are akin
to design patterns and not requirements patterns. The main
difference between requirements patterns and our technique
is that requirements patterns are domain-level patterns. At
the other hand, abstract domain properties are defined on an
abstract domain and can be specialized at reuse time.

6. Conclusions
This paper has presented formal reuse-based techniques that
support safe, and secure goal-oriented specifications. Goal-
oriented specifications model systems in terms of concepts
including goals and domain properties. Commonalities be-
tween these concepts have been extracted from several case
studies. The extracted commonalities have been captured in
models defined on abstract domains. The main contribution
has been to build up systematic techniques to reuse these
models in the context of threat analysis. Once specialized
to application-specific vocabulary, these models provide a
useful basis for building high quality specifications, that is,
complete, accurate, and secure specifications. Further, this
paper enriches the KAOS framework through the following
contributions:
• We have developed a description pattern for defining a

library of reusable attack patterns.
• We have proposed an attack pattern for replay at-

tacks. Reusable countermeasures were proposed as
well. Other attack patterns were developed in [9].

• We have assessed the quality of our reusable models
on several case studies.

Attack patterns have the following strengths:
• Obstacle analysis is complete iff we have a complete

set of obstacles. Attack patterns enhance the complete-
ness of a set of obstacles because one can start model-
ing the world with a predefined set of domain proper-
ties that can potentially be specialized.

• Attack patterns are complete because they are derived
using proven complete refinement patterns [27].

• The underlying mathematics for proving completeness
at specialization time are hidden.

• The techniques can improve the effectiveness and time
interval of the requirements elicitation process. In-
deed, one starts the elicitation with predefined attack
patterns.

• For each model, we described the context in which it
should be considered for specialization.

• We defined a semantic matching condition to system-
atically derive specializations from abstract entities,
agents, and relationships.

The presented techniques have, however, the following
weaknesses:
• Abstract domain properties and abstract anti-model

fragments cannot be specialized in all domains and are
not universally applicable for all contexts.

• Reusable specifications are subject to interpretation.
They can lead to confusions and ambiguities.

• There exist assumptions about the specialization, the
context, the domain, or the way obstacles/anti-goals
must be regressed that might not perfectly fit with a
particular real-world problem.
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• Completeness of the definitions is impossible to prove.
They may be insufficient in some contexts, which will
result in overlooking important obstacles/anti-goals.

The techniques presented in [9] require further extensions
in several directions.
• Enlarge the libraries and assess their quality on case

studies.
• Define attack patterns for each anti-goal that compro-

mises a specification pattern for Security goals [25].
• Develop techniques that enable one to automatically

determine if a reusable specification can be specialized
to a specific system.

• Organize abstract attack patterns in categories derived
from high-level malicious intentions. The goal would
be to facilitate reuse.

• Define a list of keywords for theories and abstract anti-
model fragments in order to facilitate reuse.
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