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Abstract

The importance of security concerns at requirements engi-
neering time is increasingly recognized. However, little sup-
port is available to help requirements engineers elaborate
adequate, consistent, and complete security requirements.
The paper presents a reuse-based approach for modeling,
specifying, and analyzing application-specific security re-
quirements. The method is based on a goal-oriented frame-
work that addresses malicious goals (called anti-goals) set
up by attackers to threaten security goals. Threat trees are
built systematically through specializations of attack pat-
terns. Such patterns abstract the attacker’s anti-goals for
known attacks. Once specialized to the specific vocabulary
of the application, the patterns are further refined until fine-
grained anti-goals are obtained that are either software vul-
nerabilities observable by the attacker or anti-requirements
implementable by this attacker. New security requirements
are then obtained as specializations of generic countermea-
sures associated with the attack pattern. The method is il-
lustrated with an attack pattern for replay attacks and its
specializations to an e-commerce system and a mailing sys-
tem.

1. Introduction
Reports on software vulnerabilities have increased dramati-
cally [2]. The technologies used by attackers make software
systems increasingly insecure. Early identification of soft-
ware vulnerabilities can thus have a major impact on secu-
rity.
The security guarantee provided by current security tech-
nology is inversely proportional to the “size” of the software
layer at which the technology applies [24]. At the bottom,
the crypto layer offers solid and well-established techniques
for basic services such as encryption/decryption. Above the
crypto layer, the security protocol layer offers a wide range
of standard procedures for services such as secure commu-
nication, authentication or key exchange. Above the secu-

rity layer, the system layer provides standard services, im-
plemented in some programming language, such as remote
file access; services like SSH or SSL, and language tech-
nologies like Active X or Java. The state of the art in these
three layers tells us what can be guaranteed and what is
still vulnerable. The top application layer offers services
such as web-based banking operations that must implement
application-specific security requirements in terms of facil-
ities provided by the lower layers. The state of the art in
security engineering at the application layer is much more
limited [24]. This paper focusses on security engineering at
the application layer exclusively.
A necessary condition for application software to be se-
cure is obviously that all application-specific security re-
quirements be met by the software. Such requirements
must therefore be made explicit, precise, adequate, non-
conflicting with other requirements, and complete. In par-
ticular, application-specific requirements should anticipate
application-specific attack scenarios such as, e.g., attacks
on a web-based banking application that may result in dis-
closure of sensitive information about bank accounts or in
fraudulous money transfer. Two models can be built in par-
allel to anticipate such attack scenarios: (1) a goal refine-
ment graph for the system-to-be that covers both the soft-
ware and its environment, (2) a threat graph, derived from
the goal graph, that exhibits how the system goals could be
maliciously threatened, why and by whom [21].
Building such threat models is a fastidious process. As it
is the case for other software artefacts, such process might
be made easier and more cost-effective if we can partly
reuse existing threat models to produce new ones [15]. The
current build-from-scratch techniques might benefit from
techniques that emphasize threat model construction from
reusable patterns.
The paper focusses on the reuse of threat models and
countermeasures in the context of engineering application-
specific security requirements. Our approach consists in
defining reusable threat trees, abstracted from known at-
tacks such as replay, denial-of-service, or password attacks.



Once specialized to the specifics of the application, the
pattern is used to systematically derive malicious goals.
The resulting threat tree is then further refined until anti-
requirements are derived that match the attacker’s capabili-
ties.
Reusable countermeasures are associated to the patterns.
Their corresponding specialization to the application pro-
duces new requirements as responses to the exposed anti-
requirements and vulnerabilities.
The paper is organized as follows. Section 2 provides some
necessary background. Section 3 introduces attack patterns
as reusable models for threat analysis. Section 4 details our
approach on one pattern for replay attacks and its specializa-
tion to two applications (an e-commerce system and a mine
pump system). Section 5 discusses the current coverage of
our pattern catalog. Section 6 reviews related work whereas
Section 7 summarizes and evaluates our contribution.

2. Background

A goal is a prescriptive statement of intent whose sat-
isfaction requires the cooperation of some of the agents
forming the system [20]. Goals capture the rationale of
the envisioned system; they make it explicit why a new
or modified system is needed. Goals are operationalized
into specifications of services and constraints. These
specifications refer to what the system should do and how
well. The responsibilities for fine-grained goals are to be
assigned to individual agents such as humans, devices and
software. This who dimension results in the definition
of the boundary between the software and the environ-
ment. Goals are organized in hierarchies where high-level
goals are coarse-grained (e.g., “secure transaction”) and
low-level goals are fined-grained (e.g., “card swallowed
after 3 wrong attempts”). Goals are elicited through a
refinement/abstraction process. An AND-refinement links
a goal to a set of subgoals. Satisfying all subgoals in the
refinement is a sufficient condition for satisfying the goal.
An OR-refinement links a goal to alternative subgoals.
Satisfying one of the subgoals is a sufficient condition
for satisfying the goal. The specification of a goal can
be formally expressed in a real-time linear temporal logic
using the following temporal operators,

♦ (eventually) � (some time in the past)
� (always in the future) � (always in the past)

and the following epistemic operators [21],

KnowsVag(v) ≡ ∃x : Knowsag(x = v) (knows value)
Knowsag(P ) ≡ Beliefag(P ) ∧ P (knows property)

where Beliefag(P ) means P is among the properties
stored in the local memory of agent ag. For example, an
obvious goal for a mailing system would be the following:

Goal Achieve[EmailReceivedInTime]
Refines EffectiveMailingSystem
RefinedTo EMailAtServerInTime, EMailDispatched-

InTime, EMailDeliveredInTime
FormalDef ∀s : Sender, e : eMail, r : Receiver

Sends(s, e, r) ⇒ ♦≤dReceives(r, e)
An object model can be derived systematically from the
goal model as a UML class diagram. In our example it
would capture agents such as Sender, Receiver, entities
such as eMail, associations such as Sends, Receives, and
corresponding domain properties as object invariants.
Goals can be refined through instantiations of refinement
patterns [4]. The refinement process ends when every goal
is realizable by an agent.
An obstacle to some goal is a condition whose satisfaction
may prevent the goal from being achieved [22]. A condition
O is said to be an obstacle to goal G if :

1. {O,Dom} ` ¬GA (obstruction)
2. Dom 0 ¬O (domain consistency)
3. O is realizable by agents not involved in G

Obstacle analysis consists in identifying obstacles by
regressing goal negations through the set of available
domain properties until they are assignable to agents [22].
Such regression consists in calculating preconditions for
obtaining the negation of the goal assertion in view of what
is known about the domain. For example, the obstacle
UnreachableServer is easily derived by regression of the
negation of the goal EmailReceivedInTime previously
defined. Obstacles are resolved using resolution operators
[22], to produce more robust requirements (e.g., introduc-
ing a backup server if the main server is out of service).
Obstacle analysis appears too limited for analyzing attacks
to satisfy malicious goals based on the attacker’s capabili-
ties and the system’s vulnerabilities [21]. Threat models are
goal refinement graphs where the goals are malicious goals
(called anti-goals). Threat analysis based on anti-goals
consists in (1) negating specification patterns for security
goals instantiated to sensitive attributes/associations from
the object model, (2) elaborating an anti-goal AND/OR
refinement graph until attacker capabilities and system
vulnerabilities are reached, and (3) deriving alternative
countermeasures to the threats found. Let us illustrate this
in the e-mailing example. The generic goal

GoalPattern Avoid[SensitiveInfoKnownByUnauthorized]
FormalDef ∀a : Agent, ob : Object
¬Authorized(a, ob.Info) ⇒ ¬KnowsVa(ob.Info)

is instantiated and negated which yields

AntiGoal Achieve[EmailKnownByThirdParty]
FormalDef ∃a : Attacker, e : eMail
¬isReceiverOf(a, e.Info) ∧KnowsVa(e.Info)

A Thief, Spy, or Terrorist agent could benefit from the above
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anti-goal. A regression and resolution of the anti-goal are
illustrated in Figure 1.

Figure 1. Anti-model for the e-mailing system

3. Attack Patterns

The process of building threat models should be supported
by techniques and tools. One technique is to reuse threat
models built for known attacks. Commonalities among
such attacks are analyzed from reports and case studies.
The corresponding anti-goals are abstracted and linked
through refinement/contribution links to form an attack pat-
tern. The resulting threat model fragment captures com-
mon objectives of malicious agents for known attacks, that
can be reused in multiple contexts. Once specialized to
an application-specific vocabulary, the attack pattern may
provide useful domain properties and anti-goals. The anti-
goals in the specialized fragment should then be further
refined until leaf nodes are derived that are either soft-
ware vulnerabilities observable by the attacker or anti-
requirements that are realizable by the attacker in view of
his/its capabilities. The higher-level anti-goals capture the
rationale for the attack.

3.1 Attack Patterns as Anti-goal Graphs over
Abstract Domains

Several concepts are important for understanding and defin-
ing attack patterns.
- A specialization is a binary relation between two concepts.
IsA(A,B) means that A is a specialization of B. IsA(A,B)
holds iff every instance of concept A is also an instance of
concept B and there are instances of concept B that are not
instances of concept A.
- An application domain is a concept aggregating finer-
grained concepts that share a common, application-specific
vocabulary.
- An application domain can be more abstract or more con-
crete than others. A domain is more concrete than another
if the former is a specialization (isA) of the latter that brings
specific knowledge from its application area [10]. In gen-
eral, a more abstract domain subsumes multiple more con-
crete domains that specialize it. For example, the Plane and
Train domains are specializations of the Transportation do-
main.

- Abstract anti-goals, domain properties, and predicates are
reusable concepts defined on abstract domains. They are to
be specialized to concrete domains at reuse time.
- An attack pattern is a fragment of an anti-goal graph de-
fined on some abstract domain. It is built in terms of ab-
stract anti-goals and abstract domain properties. The asser-
tions defining them are formalized in linear temporal logic
using abstract predicates. At reuse time, the abstract predi-
cates need to be instantiated to the relevant concrete domain
in order to produce a specialized, application-specific frag-
ment of anti-goal graph. Such instantiation is performed by
replacing the meta-variables occurring in the abstract predi-
cate by application-specific ones that correspond to them in
the considered specialization.
For example, the attack pattern for denial-of-service attacks
(DoS) states that the attacker wants some resource needed
by an agent to be unusable (see top of Figure 2). The
anti-goal refinement provides a means for making the re-
source unusable by making it unavailable. The attack pat-
tern is specialized in two concrete domains: an e-commerce
domain and an air traffic domain. The first specialization

Figure 2. Attack Pattern for DoS Attacks

states that the attacker wants a server to be unusable by
known clients. The specialized refinement provides a means
for making the server unusable by sending many requests.
The second specialization states that the attacker wants traf-
fic information sent by the traffic tower to be unusable when
a plane is landing. The specialized refinement provides a
means for making the communication impossible by emit-
ting disrupting radio waves.
Attack patterns are built systematically by regression of ab-
stract anti-goals through abstract domain properties. For
example, consider the following abstract anti-goal:

AntiGoal Achieve[UnusableResourceWhenNeeded]
FormalDef ♦∃u : User, r : Resource
Needs(u, r) ∧Authorized(u, r)∧
�<M¬Using(u, r)

In the abstract domain of resource management, there is a
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domain property saying that resource availability is a nec-
essary condition for resource usage:

DomProp [UsableWhenAvailable]
FormalDef ∀u : User, r : Resource
Using(u, r) ⇒ Available(r)

A single one-step regression [22] of the above anti-goal
UnusableResourceWhenNeeded through the abstract prop-
erty UsableWhenAvailable yields the following abstract sub-
goal:

AntiGoal Achieve[UnavailableResourceWhenNeeded]
FormalDef ♦∃u : User, r : Resource
Needs(u, r) ∧Authorized(u, r)∧
�<M¬Available(r)

We can now specialize the attack pattern to an e-commerce
system and to an air traffic system as follows.
• E-Commerce: Client isA User, Server isA Resource,

Requests isA Needs, KnownClient isA Authorized, Us-
ingServer isA Using, and Reachable isA Available.

• Air traffic: Plane isA User, TrafficInfo isA Re-
source, NeedsForLanding isA Needs, isEmitterOf-
KnownWaves isA Authorized, Communicating isA Us-
ing, and CommunicationPossible isA Available.

For the e-commerce system, for example, the concrete
anti-goal UnusableServerWhenRequested is derived as a
specialization of the abstract anti-goal UnusableResource-
WhenNeeded:

AntiGoal Achieve[UnusableServerWhenRequested]
Specializes UnusableResourceWhenNeeded
FormalDef ♦∃c : Client, s : Server
Requests(c, s) ∧KnownClient(c, s)∧
�<M¬UsingServer(c, s)

The abstract anti-goal is similarly specialized to the air traf-
fic system. Other abstract anti-goals and abstract domain
properties are specialized similarly.

3.2 Documenting Attack Patterns

Attack patterns are made from abstract anti-goals and do-
main properties. They are documented in a pattern catalog
as follows.
• Attack context

Here come the circumstances in which the attacker
might be able to compromise a system. They are cap-
tured as abstract security goals that the attacker might
consider as a target. For example, UsableResource-
WhenNeeded is such an abstract goal:

Goal Achieve[UsableResourceWhenNeeded]
FormalDef ∀u : User, r : Resource
Needs(u, r) ∧Authorized(u, r) ⇒ Using(u, r)

It is indeed the case that an attacker may want a re-
source to be unusable by an authorized user needing it.

• Vocabulary
The concepts used in the attack pattern are defined
here. These include entities, agents, relationships,
events, operations, etc.

• Pattern building process
Here come the informal and formal definitions of the
abstract anti-goals and domain properties found in the
attack pattern. This section also describes the re-
gression used for deriving lower-level anti-goals from
higher-level ones through the abstract domain proper-
ties.

• Generic Countermeasures to threat
This section lists alternative anti-goal resolutions
based on known tactics.

3.3 Using Attack Patterns

In the process of elaborating the requirements for her ap-
plication, the user has to retrieve relevant attack patterns,
specialize them to the application, adapt the result wherever
appropriate, expand the result to get an entire threat model,
and produce new requirements from the instantiated coun-
termeasures.

• Retrieve relevant patterns
The patterns whose root anti-goal negates a rele-
vant abstract security goal are selected. The root
anti-goals are to be specialized to the sensitive ob-
jects of the application’s object model. For exam-
ple, UnusableResourceWhenNeeded negates Usable-
ResourceWhenNeeded which proves to be relevant. It
can be specialized to UnusableServerWhenAccessed
(Server isA Resource).

• Specialize matching concepts and adapt the result
Each meta-variable in the abstract predicates found in
a selected attack pattern is instantiated to the special-
ized concept matching it in the application. The result-
ing application-specific anti-goal tree is adapted if nec-
essary. A specialized concept P matches an abstract
concept X if the definition of X covers the definition
of P , that is, the set of instances corresponding to the
definition of X is a superset of the set of instances cor-
responding to the definition of P . This condition is
called the [X/P ] matching condition.
For example, let us consider the following definitions:

– Resource: An entity that an agent may request
for some usage [3].

– Server: A device that a client may request for
obtaining network services.

– TrafficInfo: Radio waves that an aircraft is us-
ing to communicate with air traffic controllers.
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The concept of Resource is defined on an abstract
domain. Specializations include a resource used for
network services or for aircraft-controller communi-
cation. In the e-commerce domain, the matching
condition [Resource/Server] holds because the def-
inition of Resource covers the definition of Server.
In the air traffic domain, the matching condition
[Resource/TrafficInfo] holds because the defini-
tion of Resource covers the definition of traffic infor-
mation being used for communication between an air-
craft and air traffic controllers.

• Expand the specialized threat tree
The specialized anti-goal tree fragment is further ab-
stracted and refined.

– WHY questions are asked to find out the higher-
level motivations of the attacker.

– HOW questions are asked to progressively reach
anti-requirements that are realizable by the at-
tacker in view of his capabilities and software
vulnerabilities that are observable by the attacker
in view of those capabilities.

• Derive new requirements from the specialized
countermeasures
The generic countermeasures proposed in the attack
pattern are specialized according to the matching con-
cepts, their adequacy as new application-specific se-
curity requirements is assessed, and the adequate se-
curity requirements are integrated in the application’s
goal graph.

4. Example: Attack Pattern for Replay Attacks

Attack patterns can be defined for every type of attack. To
demonstrate our approach, we detail replay attacks as an
example. These are attacks on an authentication system by
recording and replaying previously played information [8].
We discuss this pattern following the structure proposed in
Section 3.2 and Section 3.3.

4.1 Documenting the Replay Attack Pattern

4.1.1. Attack Context

The context in which an attacker might have a malicious
intention is first introduced with a definition:

Def A message is said to be fresh if it was
never sent in the past.

FormalDef ∀m : Mess, Fresh(m) ,
¬∃s : Sender, r : Receiver, �Sends(s,m, r)

The abstract goal that attackers may want to compromise is
the following:

Goal Maintain[UnfreshMessageNeverAccepted]
Specializes ReplayedObjectNeverAccepted
Def An unfresh message should never be

accepted by a receiver.
FormalDef ∀m : Mess, ¬Fresh(m) ⇒

�¬∃r : Receiver, Accepts(r, m)

4.1.2. Vocabulary

The concepts used to define the replay attack pattern include
the following:
Channel: Channel through which agents communicate.
Fresh: Never sent in the past.
Accepts: Message acceptance by some receiver.
Records: Recording, by some attacker, of a message from
a sender to a receiver.
Listens: Message listening on some channel.
Forges: Message transformation to make it acceptable even
if it is not fresh.

4.1.3. Pattern Building Process

The attack pattern for replay attacks (see Figure 3) is
inspired from the taxonomy proposed by Syverson [19]. It
covers the list of replay attacks proposed by Gong [6].

Figure 3. Attack Pattern for Replay Attacks

The root of the attack pattern is the negation of the abstract
goal UnfreshMessageNeverAccepted :

AbsAntiGoal Achieve[UnfreshMessAcceptedByReceiver]
Def An unfresh message is accepted by some receiver.
FormalDef ♦∃m : Mess, r : Receiver
¬Fresh(m) ∧ ♦Accepts(r, m)

If an attacker wants to replay a message that is accepted
by some receiver, (G1) a legitimate sender has to send a
message to some receiver, (G2) the attacker has to record
that message, (G3) the attacker has to replay the message
to some receiver, (G4) the receiver has to accept the re-
played message. These four goals define milestones for an
attacker to successfully replay a message. Instantiating the
milestone pattern in [9] to the sensitive objects in the replay
context, we obtain the following formal refinement of the
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abstract anti-goal UnfreshMessageAcceptedByReceiver :

AntiGoal Achieve[MessageSentBySender]
Def A message has to be sent

by a sender to some receiver.
FormalDef ♦∃m : Mess, s : Sender,

r : Receiver, Sends(s,m, r)

AntiGoal Achieve[MessageRecordedWhenSent]
Def The message has to be recorded by an attacker

when it is sent by a sender to some receiver.
FormalDef ∀m : Mess, s : Sender, r : Receiver

Sends(s,m, r) ⇒ ♦∃a : Attacker
Records(a,m, r)

AntiGoal Achieve[MessageSentWhenRecorded]
Def The attacker has to send the message to

the receiver after he recorded it.
FormalDef ∀m : Mess, a : Attacker, r : Receiver

Records(a,m, r) ⇒ ♦Sends(a,m, r)

AntiGoal Achieve[UnfreshMessAcceptedWhenSent]
Def The message should be unfresh and accepted

when the attacker sent it to the receiver.
FormalDef ∀m : Mess, a : Attacker, r : Receiver

Sends(a,m, r) ⇒ ¬Fresh(m) ∧ ♦Accepts(r, m)

Let us now refine the abstract anti-goal MessageRecorded-
WhenSent by regression. A necessary and sufficient
condition for the target predicate Records(a,m) is that the
attacker listens messages on a corresponding channel. This
yields the following abstract domain property:

DomProp ChannelListenedWhenMessRecorded
FormalDef ∀m : Mess, r : Receiver, a : Attacker

Records(a,m, r) ⇔ ∃c : Channel
Listens(a,m) ∧On(m, c)

A one-step regression [22] of MessageRecordedWhenSent
through ChannelListenedWhenMessageRecorded yields
the following abstract anti-goal:

AntiGoal Achieve[ChannelListenedWhenMessSent]
Def The communication channel must be listened

when the sender sends a message to the receiver.
FormalDef ∀m : Mess, s : Sender, r : Receiver

Sends(s,m, r) ⇒ ♦∃a : Attacker, c : Channel
Listens(a, c) ∧On(m, c)

The abstract anti-goal UnfreshMessageAcceptedWhenSent
is further refined by regression. A necessary and sufficient
condition for acceptance of an unfresh message is that the
attacker can transform the message so that it is accepted by
a receiver :

DomProp ForgedWhenUnfreshMessageAccepted
FormalDef ∀m : Mess, r : Receiver
¬Fresh(m) ∧ ♦Accepts(r, m) ⇔
∃a : Attacker, �Forges(m,a)

A one-step regression of UnfreshMessageAcceptedWhen-
Sent through ForgedWhenUnfreshMessageAccepted yields
the following abstract anti-goal:

AntiGoal Achieve[ForgedMessageWhenSent]
Def The message had to be forged by the attacker

when it is sent to the receiver.
FormalDef ∀m : Mess, a : Attacker, r : Receiver

Sends(a,m, r) ⇒ �Forges(m,a)

4.1.4. Generic Countermeasures to Threat

Countermeasures against replay attacks include the follow-
ing (see Figure 4):

Figure 4. Generic Countermeasures for
Replay Attacks

• Introduce a freshness mechanisms (e.g., messages
should be tied with a unique identifier),

• Introduce asymmetry (e.g., avoid a man-in-the-middle
attack due to protocol symmetry),

• Tie messages to a particular use at a particular time
(e.g., messages should be tied to a particular protocol
run rather than a particular epoch. Messages from dif-
ferent protocol runs would therefore be revealed),

• Authenticate the message’s emitter and recipient (e.g.,
cryptographically bind the name of a message origina-
tor to the message).

4.2 Reusing the Replay Attack Pattern

The attack pattern for replay attack can be specialized to
different application domains. We illustrate this by taking
two completely different domains: an e-commerce domain
(Section 4.2.1) and to a mine pump domain (Section 4.2.2).
The Replay Attack pattern was reused in several other do-
mains [9] omitted here for space reasons.

4.2.1. Pattern Reuse in an E-Commerce System

Consider the ordering procedure in a e-commerce system.
A client orders a product via a transaction sent to the ac-
count manager. The account manager then chooses to com-
mit or to reject the sent transaction. One objective is to
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avoid that transactions are committed twice. A malicious
attacker might want to compromise that goal by replaying
a modified transaction so that a known client pays for his
transaction.

4.2.1.1. Retrieve Relevant Pattern

The contextual security goal is obtained by specializing
the abstract goal UnfreshMessageNeverAccepted to the e-
commerce domain:

Goal Maintain[OldTransactionNeverCommitted]
Specializes UnfreshMessageNeverAccepted
Def An old transaction should never be

committed by the transaction manager.
FormalDef ∀t : Trans, ¬New(t) ⇒

�¬∃tm : TrManager, Commits(tm, t)
The definition of freshness is specialized to the e-commerce
domain accordingly:

Def A transaction is said to be new if it was
never used for a client order in the past.

FormalDef ∀t : Trans, New(t) , ¬∃c : Client,
tm : TrManager, �Orders(c, t, tm)

4.2.1.2. Specialize Matching Concepts and Adapt
the Result

The following specializations satisfy the matching condi-
tion:

[Channel/Network]
[Accepts/Commits]
[Records/Sniffes]
[Listens/Eavesdrops]
[Fresh/New]
[Forges/ModifiesTransactionNumber]

The threat model fragment specialized from the attack
pattern of Figure 3 is illustrated in Figure 5.

Figure 5. Specialized Attack Pattern

The correctness of attack patterns is established once for all.
[9]. The regressions performed on the abstract model do not
need to be replayed on the specialized one, of course; they

are implicitly obtained by simple instantiation of the cor-
responding meta-variables. For example, consider the spe-
cialized anti-goal:

AntiGoal Achieve[TransSniffedWhenClientOrder]
Specializes MessageRecordedWhenSent
Def Transactions that the client sent

for ordering should be sniffed.
FormalDef ∃t : Trans, c : Client, tm : TrManager
Orders(c, t, tm) ⇒ ♦∃a : Attacker, Sniffs(a, t)

The regression of this specialized anti-goal through the fol-
lowing specialized domain property is obtained for free:

DomProp LANEavesdroppedWhenTransactionSniffed
Specializes ChannelListenedWhenMessageRecorded
Def An attacker eavesdrops a LAN where transactions

are transmitted iff he sniffs the transactions.
FormalDef ∀t : Trans, a : Attacker
Sniffs(a, t) ⇔ ∃l : LAN
Eavesdrops(a, l) ∧ TransmittedOn(t, l)

The reused regression of TransactionSniffedWhenClient-
Order through LANEavesdroppedWhenTransactionSniffed
yields the following formal specification:

AntiGoal Achieve[LANEavesdropWhenOrderedViaTrans]
Specializes ChannelListenedWhenMessageSent
FormalDef ∀t : Trans, c : Client, tm : TrManager

Orders(c, t, tm) ⇒ ♦∃l : LAN, a : Attacker
Eavesdrops(a, l) ∧ TransmittedOn(t, l)

4.2.1.3. Expand the specialized threat tree

The produced threat model fragment must now be com-
pleted. We need to understand why an attacker may want to
replay a transaction, how he would do it. Answering those
questions will result in parent goals and subgoals, respec-
tively, to complete the anti-goal graph.
• Why? An attacker may want the client to pay multiple

times (e.g., for revenge or to smeer the reputation of
e-commerce). He may also want another client to pay
his orders.

• How? A LAN machine normally accepts messages
only destined for itself. However, when the machine
is in promiscuous mode, it may read all information
regardless of destination. This enables the attacker to
read transactions on the LAN.

4.2.1.4. Derive new requirements from the specialized
countermeasures

Specialized countermeasures to consider for reuse might in-
clude the following:

• Enforce transactions to be certified by a third party so
that the client is sure that the transaction is not replayed
by an attacker;

• Forbid promiscuous modes on the LAN;
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• Bind transactions to time and protocol run.

4.2.2. Pattern Reuse in a Mine Pump System

Consider a system to control water level in a mine. The
pump is activated when the water level is too high and dis-
activated when the water level is too low. An alarm should
also be raised when the gas level is too high. A sensor mon-
itoring the environment has to send signals to the software
controller so that it can raise the alarm when needed. One of
the objectives is to make sure that sensor signals are raised
only when critical based on the current gas level.

4.2.2.1. Retrieve Relevant Pattern

The above objective specializes the abstract goal
UnfreshMessageNeverAccepted as follows.

Goal Maintain[AlarmNeverRaisedByOldSignal]
Specializes UnfreshMessageNeverAccepted
Def A signal that does not reflect the current gas level

should never raise the alarm.
FormalDef ∀s : Signal, ¬Current(s.GasLevel) ⇒

�¬∃c : Controller, RaisesAlarm(s, c)
The definition of freshness is specialized to the mine pump
domain accordingly:

Def A signal is said to be current if it
was not sent in the past.

FormalDef ∀si : Signal, Current(s.GasLevel) ,
¬∃s : Sensor, c : Controller
�Signals(s, si, c)

4.2.2.2. Specialize Matching Concepts and Adapt
the Result

The following specializations satisfy the matching condi-
tion:

[Channel/Wire]
[Accepts/RaisesAlarm]
[Records/Saves]
[Listens/CapturesSignalsOn]
[Fresh/Current]
[Forges/ModifiesTime]

The threat model fragment specialized from the attack pat-
tern in Figure 3 is illustrated in Figure 6. Refinements and
regressions are specialized accordingly.

4.2.2.3. Expand the specialized threat tree

The produced threat model fragment must be completed.
We must answer why and how questions to obtain a full
threat model.
• Why? An attacker may want to replay a high gas level

for multiple reasons: the mine to make losses, employ-
ees to have a break, safety to be compromised, etc.

Figure 6. Specialized Attack Pattern

• How? The attacker may compromise the controller or
intercept signals on the wire between the sensor and
the controller.

4.2.2.4. Derive new requirements from the specialized
countermeasures

Specialized countermeasures to consider for reuse might in-
clude the following:

• Instal the controller in a secure location;

• Make wiring inaccessible;

• Introduce freshness mechanism;

• The sensor might authenticate itself when it sends a
signal.

5. A Catalog of Attack Patterns

Attack patterns can be built by abstracting various types of
attacks known from the literature, e.g., [23], and by speci-
fying them according to the structure described in Section
3.2. Grouping these patterns in a catalog provides a system-
atic basis for identifying malicious goals, plans to achieve
such goals, system vulnerabilities, and countermeasures to
introduce as new requirements. Multiple patterns can be
composed within the same application.
The other patterns we have built, specified, and used on
multiple case studies so far include the following [9]:

• An attack pattern for denial-of-service attacks captures
13 reusable anti-goals and their associated counter-
measures. For example, the anti-goal TooManyAllo-
cationsWhenResourceRequestedByAuthorized can
be specialized to BandwidthOverflowWhenServer-
RequestedByClient (e-commerce system), and to
TooManyEmailsInMailBoxWhenNewEmailArrived
(e-mailing system).

• An attack pattern for password attacks covers a wide
spectrum from the classical dictionary attack to so-
cial engineering attacks. The generic countermeasures
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range from creating strong passwords to training naive
employees.

• An attack pattern for critical stimulus/response sys-
tems captures anti-goals such as, e.g., InaccurateStim-
ulusWhenCritical. This anti-goal can be specialized to
the anti-goal SensorLevelLowWhenSystemLevelHigh
in some systems, resulting in the alarm not being raised
when the critical level is reached. In this special-
ization, the stimulus is the reaching of a high level
of some dangerous item, and the response is to raise
the alarm. The same abstract anti-goal can also be
specialized to PulseSensorUnchangedWhenPlaneOn-
Runaway in an autopilot system, resulting in reverse
thrust not being enabled. In this specialization, the
stimulus is a signal from the pulse sensor and the re-
sponse is to enable the reverse thrust.

• An attack pattern for masquerading attacks in which
the attacker masquerades some resource to obtain con-
fidential information. Specializations include the in-
stalling of a fake login screen to obtain passwords or
fake atm screens to obtain secret codes or keyloggers.

6. Related Work

Attack trees [18] provide a convenient way of describ-
ing attacks on a system. The root node corresponds to
some threat; child nodes capture ways of causing the par-
ent node. Annotations can be assigned to nodes (e.g.,
likely/unlikely, easy/difficult, expensive/inexpensive, intru-
sive/nonintrusive). There are several differences with our
technique. (a) Attack trees are not goal-anchored; they
make it difficult to reason about malicious intentions. (b)
No support is provided for identifying the root nodes in a
threat tree. (c) No formal apparatus is available for deriving
the causing child nodes in a systematic way. (d) The threats
represented in a tree are application-specific and thus not
meant to be reused.
The HAZOP technique relies on a set of guidewords for
identifying failure nodes in risk trees [16]. Such guidewords
should be applied to all important parameters of the process
under study. For example, the guideword MORE means that
there is more of some relevant quantity than there should
be. Each guideword has specializations for particular appli-
cation domains. Such specializations are called deviations.
In contrast with our technique, (a) hazards are not regressed
through reusable properties; (b) their rationale is not cap-
tured.
Desirable properties for process control systems can be
listed in safety checklists to be reused from one application
to the other [12]. If the properties are met by the current
requirements, the system is said to be safe. If not, criteria
should be determined to imply the unsatisfied properties.

Properties and their corresponding criteria are reusable.
They are intended to be specialized to application-specific
versions. The main difference between safety checklists and
attack patterns is that (a) checklists are not structured nor
expressed in a form amenable to formal reasoning, and (b)
malicious intentions cannot be captured.
Syverson defined a taxonomy of countermeasures against
replay attacks [19]. The taxonomy is said to be complete
because every type of replay attack can be resolved using
one of the reusable countermeasures. The generic counter-
measures in Section 4 are similar to Syverson’s.
Threat descriptions were composed with a representation
of functional requirements based on problem frames [11]
in order to define system vulnerabilities [7]. The latter
are ameliorated by security requirements expressed as con-
straints on the functional requirements. The main difference
between this technique and attack patterns is that (a) threat
descriptions are not meant to be reused, (b) they are infor-
mally defined, (c) there is no model of attacker agents, (d)
there is no representation of the underlying malicious inten-
tions, and (e) there is no support for threat identification and
refinement.
Massonet describes an analogical reuse technique whereby
goal-based requirements models are reused along a special-
ization hierarchy of abstract domains [17]. Several efforts
were also made to identify domain-specific analysis pat-
terns that can be reused from one application to the other
within that domain. For example, Konrad and Cheng de-
scribes reusable UML diagrams for process control systems
[14] whereas Fowler describes reusable class diagrams for
a variety of management information systems [5].

7. Conclusion

Security is a big concern from the earliest stages of the soft-
ware lifecycle. The definition of an adequate, coherent, and
complete set of precise security requirements, specific to
the application, is a difficult task for which little support is
available. The paper has presented a formal reuse-based ap-
proach aimed at providing some guidance in this task. The
requirements engineer may browse through a catalog of at-
tack patterns, with associated countermeasures, determine
which patterns might be relevant to the application, special-
ize the selected ones, and adapt and expand them as nec-
essary. The patterns are expressed as refinement trees that
exhibit intentional ways of breaking security goals. Com-
monalities among malicious goals, vulnerabilities, and do-
main properties were abstracted from the literature and from
multiple case studies. Those commonalities were captured
in intentional models defined on abstract domains. These
models can be reused systematically for threat analysis by
specializing them to the matching concepts in the applica-
tion. Such specialization has to meet a precise criterion for
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concept matching.
Each pattern is documented in a structured way that high-
lights its rationale for use, the process according to which it
was built, and generic countermeasures. Such information
is important for understanding the pattern, for assessing its
applicability in specific situations, and for adapting its spe-
cializations to make them more adequate.
The attack patterns elaborated so far cover, on abstract do-
mains, replay attacks,denial-of-service attacks, masquerad-
ing attacks, password attacks, and the corruption of accurate
information required in critical stimulus-response systems.
The catalog is obviously not intended to be comprehensive
at this stage. Instead, we focussed on experimentation of
those patterns through multiple specializations in very dif-
ferent domains. These include a realistic e-commerce sys-
tem [1], a mine pump system [13], an e-mail system, and an
air traffic system.
Our patterns were built using refinement and obstruction
patterns proved correct once for all [22]. The underlying
mathematics for establishing refinement completeness are
kept hidden, and the proof is implicitly reused at specializa-
tion time.
While patterns may prove helpful in increasing the robust-
ness and completeness of application-specific security re-
quirements, there is no guarantee of course that they can be
meaningfully applied in any domain for any context. Other
forms of security analysis should complement them in the
requirements engineer’s palette.
Further work needs to focus on increasing the coverage of
the catalog, assessing its effectiveness on a wider scale, and
providing tool support for the retrieve, specialize, adapt, and
expand stages of the reuse process described in the paper.
A first step for increased coverage would be to define ad-
ditional attack patterns for each security goal specification
pattern in [21].
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