
A Software Architecture for Cross-Layer Wireless Network Adaptations

Soon-Hyeok Choi, Dewayne E. Perry and Scott M. Nettles
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712

{schoi, perry, nettles}@ece.utexas.edu

Abstract

Conventional data networks are based on a layered archi-
tecture. The introduction of wireless networks has created
a need to violate this layered discipline to create cross-
layer designs oradaptations. Ad-hoc implementations of
such cross-layer adaptations reduce the level of modular-
ity and abstraction in the network’s implementation, giving
rise to a significant increase in complexity. We present a
taxonomy of possible cross-layer adaptations which is then
used to derive an architecture for their implementation that
significantly preserves the networks structure. We present
some preliminary implementation results that validate this
architecture in the context of a real wireless network imple-
mentation.

1 Introduction

The IP-based Internetwork has had an impact that its inven-
tors could hardly have imagined. An important underlying
key to the Internet’s success is that its design and imple-
mentation is based firmly on a well established architecture,
commonly referred to as the “hourglass model” [6]. The
hourglass model defines a set of layers, each of which im-
plements some aspect of the network, while leaving other
aspects to higher levels. This architecture is a fundamen-
tal software engineering strategy to manage complexity in
the design and implementation of a very large distributed
hardware and software artifact.

Although the Internet is based on the hourglass model,
for our purposes it is more useful to consider another layer
model of networks, the OSI seven layer model [24], which
for the four layers we will consider somewhat refines the
hourglass model. Fig. 1 shows the layers and how they com-
municate in a conventional network implementation. The
lowest layer is the physical layer, or thePHY. The PHY is
responsible for actually sending data across a wire or ra-
dio frequency (RF) link and must deal with both the analog

Transport

MAC

PHY

Network

Other layers

Transport

MAC

PHY

Network

Other layers

Wired link

Figure 1. Conventional layered architecture

physical world and the digital world of data communica-
tions. The next layer is the link/media access control layer,
or theMAC. The MAC is responsible for managing com-
munication along one single hop in the network, including
coordinating what sender is allowed to use a shared medium
like the RF spectrum. The next layer is the Network layer,
which is responsible for connecting individual links into a
multihop network that can deliver data from a sender to a
receiver that are not directly connected. For our purposes
the final layer is the Transport layer. The transport layer
is responsible for coordinating end-to-end communication
along the connections created by the Network layer. In par-
ticular, reliable transport protocols like the Transport Con-
trol Protocol (TCP) create reliable communication paths us-
ing the inherently unreliable connections provided by Net-
work layer protocols such as the Internet Protocol (IP). The
key point is that each layer implements some key function-
ality with a well defined interface and leaves other function-
ality for the higher layers. Taken together, we refer to the
layers that make up the network as thestack. Fig. 1 shows
that in the conventional architecture each layer of the stack
only communicates with the layer above and below it.

For networks made up of wired links, the networks lay-
ered architecture is remarkably successful and the key as-
sumptions and abstraction boundaries work well. However,
the introduction of wireless links based on RF communica-
tion has revealed that the abstractions are not as cleanly de-

Wireless link

Transport

MAC

PHY

Network

Other layers

Transport

MAC

PHY

Network

Other layers

Figure 2. Cross-layer communication paths

fined as one might expect and that higher layers may make
unwarranted assumptions about lower ones. The classic ex-
ample is when TCP is run over a wireless link [1]. Because
wireless links are subject to transmission errors, sometimes
they drop a packet. Although TCP has no problem retrans-
mitting the lost packet, it also interprets the drop as a sign
that some node in the network is overloaded and dropped
the packet to reduce its load. Thus TCP reacts by slowing
the rate at which it sends data. This is an incorrect choice
when the drop is due to a transmission error and results from
an invalid assumption that TCP makes about the PHY, a
layer that resides several levels down the stack. This is just
one example where there needs to be enhanced communi-
cation across the layers and of late the area of “cross-layer
design” has become a very active one [9, 20, 13].

In general wireless “links” differ from wired ones in a
number of ways. For example, they are lossy and their
bandwidth and latency may vary. In fact, if the power level
or transmission rate is changed, the set of nodes that are di-
rectly connected “neighbors” may even change. This leads
to possible interactions between nonadjacent layers. For ex-
ample, by changing power, a PHY property, the network
layer might cause different routes to be discovered and used.
Even adjacent layers may need to communicate in ways not
possible in the current architecture. Later we will present
an example where the MAC must obtain information from
the PHY that is not part of normal packet processing. Fig. 2
shows some of the ways that information may need to cross
between layers, but in fact decision making processes at any
layer may need information from any other layer or even a
set of other layers. As further shown in Fig. 2, informa-
tion might also be needed from other layers on other nodes,
while the current architecture only allows communication
between peer layers. Thus, in general, cross-layer designs
and implementations (or as we will refer to themadapta-
tions) may need almost arbitrary violation of the basic layer
structure. Our goal is to develop an architecture that can ac-
commodate this without destroying the current layered ar-
chitecture with its advantages of modularity and robustness.
Note that although our examples and research prototype fo-
cus on interaction between the MAC and PHY, our architec-

ture should and will accommodate other interactions, such
as the Transport layer/MAC layer interactions needed to ad-
dress the TCP over wireless problem.

Unfortunately, most of the work on cross-layer design
has proceeded in an undisciplined way and has disregarded
the design and implementation advantages of the layered
network architecture [22, 23, 14]. The result are systems
that are basically spaghetti code with limited structure.
Thus far there has been essentially no general considera-
tion of how to construct cross-layer adaptations in a sys-
tematic and modular manner. Our goal in this paper is to
remedy this by providing a framework for building cross-
layer protocols that maintains to a significant degree the ad-
vantages of modularity and abstraction found in the layered
design. As such our focus in this paper is not on any particu-
lar cross-layer adaptation (except as an example), but rather
on the software engineering issues that arise from the need
to violate layering in general. Our strategy for achieving
this is to first create a taxonomy that allows us to describe
the design space of possible cross-layer adaptations. We
then use this taxonomy as a conceptual framework to define
a conceptual software architecture that allows us to imple-
ment adaptations within this space in a systematic way that
preserves modularity.

We begin in Section 2 with an example adaptation, that
will be used throughout the rest of the paper. Section 3
presents our taxonomy. Section 4 illustrates our architecture
and Section 5 contains our preliminary validation results.
We conclude in Section 6.

2 Example: Cross-Layer Rate Control

We developed and validated our taxonomy and architecture
by considering a wide variety of example cross-layer adap-
tations. Here we motivate our discussion using one of these,
cross-layer rate control [19]. The idea is simple. The rate at
which data can be sent depends on how good the RF con-
nection (orchannel) is between the sender and receiver. Ide-
ally one sends at the highest rate possible, but the quality of
the channel may change from packet to packet. One feasible
solution arises because it is possible to measure the quality
of the channel just before the data is sent. This is because
in MACs such as the DCF mode of IEEE 802.11 [10], prior
to data transmission there is an exchange of control mes-
sages between the sender and receiver to coordinate chan-
nel access. The sender first sends a request-to-send (RTS)
to the receiver, which if it is acceptable to send replies with
a clear-to-send (CTS). The sender’s PHY receives the CTS
and as a side effect can determine the quality of the channel
from the receiver to the sender. The senders MAC can ac-
cess this information and use it to set the transmission rate
of the subsequent data transmission. The need for cross lay-
ering arises because only the PHY knows the channel state,

MAC

Physical

C
T

S 1

D
at

a
pa

ck
et

+
 d

at
a

ra
te

Delivers data rate
by piggyback

3

2 (Calculates data rate)

Obtains channel status
by direct call

Signal
(C

T
S)

Si
gn

al
(D

at
a

pa
ck

et
)

04

Figure 3. Cross-layer rate control

but only the MAC knows which transmissions are control
packets and which are data.

Fig. 3 shows the process in detail. In step 0, the PHY
receives some data and decodes it estimating the channel
quality as a side effect. In step 1, if the data was a CTS, the
MAC makes a call into the PHY to get the channel informa-
tion. In step 2, the MAC calculates the correct rate. In step
3, the MAC communicates the correct rate to the PHY by
actually attaching the rate to the data packet, a process we
refer to aspiggybacking. Finally, in step 4, the PHY uses
the rate to send the packet in the proper manner.

We also consider an additional example [8] that is a
slight refinement of the one above. In the case that the chan-
nel quality from the sender to the receiver is not the same
as in the opposite direction, we use the RTS to measure the
channel quality. In this case, the MAC on the receiver must
read the channel quality from the PHY and then piggyback
that information on the CTS, which eventually results in the
MAC on the sender obtaining the information. Thus this
case require internode communication.

Two other examples that we considered are worth men-
tioning briefly. One is cross-layer protocol reconfigura-
tion [2], which allows a node to switch from using one
wireless protocol to another. Such reconfigurations are not
triggered or coordinated with packet reception or transmis-
sion, but rather occur when a node detects that other nodes
in its vicinity are using different protocol. The second, is
the implementation of cross-layer extensions for the local
agile routing protocol [21]. In this case, nodes monitor the
channel and exchange information between themselves to
assists in creating advantageous routes. For our purposes,
the key aspect of this protocol is that it exchanges informa-
tion between nodes without regard to whether the nodes are
carrying data traffic or not.

3 Taxonomy

We use cross-layer rate control to motivate the development
of our taxonomy. Broadly speaking, the goal of develop-
ing this taxonomy is to characterize the design space of all

Cross-Layer Adaptation

Information Delivery Method Adaptation Process

Status

Control

Out-of-band Synchronous

Role Path Time

Intra node

Range

Inside of
protocol processor

Location

In band Inter node Asynchronous
Outside of

protocol processor

Figure 4. A complete taxonomy of cross-layer
adaptation

reasonable cross-layer adaptations. As importantly, the tax-
onomy also defines a vocabulary that we can use to describe
cross-layer adaptations and their implementation in our ar-
chitecture. Finally, the taxonomy will serve to guide the
creation of our architecture itself.

Considering rate control, we see that there are three pri-
mary constituents involved [18]. First, at its heart there is
some process that actually effects the cross-layer adapta-
tion, in this case, the process that decides the rate given a
channel condition. Second, some information is commu-
nicated across layers, in this case, the channel condition
and the rate itself. Third, there are the delivery mechanisms
that are used to communicate the information to and from
the process, in this case, a direct call to gather the channel
state and piggybacking the rate on the data packet. Fig. 4
shows our complete taxonomy, with these three basic cate-
gories, Information, Delivery Method, and Adaptation Pro-
cess, making up the top-level.

Using our example, we can partially refine each cate-
gory. For information, there is one refinement based on the
role of the information. The two subcategories areStatus
andControl, the roles of which are obvious. For Delivery
Mechanism, our example illustrates a distinction based on
the path the information takes.Out-of-bandinformation,
such as the channel status, takes a path that is different from
the actual packet data, in this case a procedure call from the
MAC to the PHY.In-banddata, such as the rate, takes the
same path as the packet data and can in general be piggy-
backed on the packet, as it is in this case. Finally, we see
two attributes of the Adaptation Process. The first is based
on the time that the adaptation is performed. Our exam-
ple illustrates just one possibility in which the adaptation is
Synchronous. This means that the adaptation is synchro-
nized with the reception or transmission of a packet. In
our example, the rate calculation is triggered by receiving
the CTS and must take place before transmitting the actual
data. The second attribute is based on thelocation of the
adaptation process. Again, our example only illustrates just
one possibility in which the adaptation is actually part of
the MAC implementation itself. In general, we classify this

adaptation as beingInside the protocol processor.
The internode version of rate control gives rise to a addi-

tional distinction for the Delivery Method based onrange.
For the basic protocol, the range isIntra nodeand for the
internode version it isInter node. These distinctions are
important because any mechanism that communicates in-
formation between nodes is inherently more expensive and
failure prone than one that does not.

The final distinctions present in our taxonomy are not
found in our current example, but are present in other exam-
ples we have considered. They concern the adaptation pro-
cess. The timing of the process can also beAsynchronous,
which occurs when the timing of the adaptation is not co-
ordinated with packet transmission or reception. It could
be for example triggered detecting that a new protocol is
currently being used triggering a protocol reconfiguration.
Finally, the location of the adaptation process can beOut-
side the protocol processor. This means that the adaptation
is not part of the packet processing flow. This, for example,
might occur when the process needs to coordinate between
a number of protocol layers.

4 An Architecture for Implementing
Cross-layer Adaptations

Developing the taxonomy allowed us to describe the pos-
sible cross-layer adaptations succinctly. Our goal in devel-
oping an architecture is fundamentally to provide a set of
mechanisms that can be used to implement a wide variety
of cross-layer adaptations. In the sense of [12], our archi-
tecture is a conceptual one, although in practice it can serve
as a concrete one as well. Further, since it describes a range
of systems, in the sense of [17], it is a generic architecture.

We begin by presenting a series of high level goals and
requirements for the architecture [5]. We then present some
key architectural decisions. We then use the rate control ex-
ample to flesh out the details of the architecture. Finally we
motivate aspects of the architecture that were not covered
by the example.

The most important goal of our architecture is to pro-
vide a set of mechanisms that support the implementation
of all reasonable cross-layer adaptations described by our
taxonomy. There are a number of secondary goals, which
are fundamentally motivated by a desire to maintain the ad-
vantages of the existing layered architecture to the extent
possible. The first goal is to preserve the modularity of ex-
isting protocol modules to the greatest extent possible. This
is key, because otherwise we would be free to simply imple-
ment any cross-layer adaptation in an ad-hoc manner. The
next goal is to allow cross-layer adaptations to be imple-
mented in as flexible and extensible a manner as possible
as well as to facilitate implementing multiple adaptations in
a single system. Finally, we want to allow our implemen-

Cross-Layer Adaptation

Information Delivery Method Adaptation Process

Status
and

Control

Out-of-band Synchronous

Role Path Time

Intra node

Range Location

In band Inter node Asynchronous

Outside of
protocol processor

Figure 5. Refinement of our taxonomy based
on architectural decisions

tations to be portable to a variety of protocol implementa-
tions. For example, ideally if we implement rate adaptation
for one particular MAC, it would be easy to move this im-
plementation to some other MAC implementation as long
as it had the basic underlaying structure required.

4.1 Key Architectural Decisions

Fig. 5 shows our taxonomy after we have applied two key
architectural decisions. The first decision is simple. Al-
though functionally different, the implementation of cross-
layer information does not vary based on whether the data
is used as status or control. Thus we can merge these two
categories for the purpose of the architecture.

The other change, the elimination of the “Inside the pro-
tocol processor” location for the Adaptation Process re-
quires more discussion. The motivation is simple, if we
implement an adaptation as part of a protocol module, we
will by necessity make changes that compromise the mod-
ularity of our system. Furthermore because these changes
will be intertwined with the implementation of the base pro-
tocol, flexibility, extensibility, and portability will also be
compromised. Thus the key challenge in creating our ar-
chitecture becomes a question of whether we can achieve
our goal of comprehensive cross-layer adaptation support,
without allowing substantive changes to the protocol mod-
ules themselves.

4.2 Example Driven Architecture

Fig. 6 shows the progression of high level stages that are
required to map our rate control example to our proposed
architecture. We consider each stage in turn, explaining the
architectural features required.

The first stage (Fig. 6(a)) shows the mechanisms needed
to support a synchronous adaptation process outside of the
protocol module. Note that the rate control adaptation has
been placed in a separate cross-layer module. A key re-
quirement is that when the packet moves from the PHY to
the MAC, the adaptation process must be notified if that

�������
�	��
 �
� ���

����� �
���������������!
�#"

Protocol ModuleCross-Layer Module

�$�%�

&('�)

*,+ ��-/.10�2
3547698;:=<�8;>769?�:

@BA
CD
EGF
HC
H I
J

KML
NC
O
P Q
CRS
N F

Notify the CTS
is passing

Notify
synchronous
event

0

12

(a) Components for synchronous process

�������
�	��
 �
� ���

����� �
���������������!
�#"

Protocol ModuleCross-Layer Module

�$�%�

&('�)

*,+ ��-/.10�2
3
 �����546��78� � �

9;:
<=
>@?
A<
A B
C

DFE
G<
H
I J
<KL
G ?

M;N
OQP
RS P
TVU
WX

Y R
WWZ
[O
R \

Length of
Data packet

Get Length and
Channel Status

] ���_^!�
1` �_a
bdcfehgji�k�l

] ��� � am�
�
 � �
bnc�ehg�i�k�l

Channel Status

1

2
Calculate
Data rate

3

(b) Components for out-of-band delivery

�������
�	��
 �
� ���

����� �
���������������!
�#"

Protocol ModuleCross-Layer Module

�$�%�

&('�)

*,+ ��-/.10�2
3
 �����546��78� � �

Set Data rate

9 �:�<;=������>!�
1? �
@
+�AB��78� � �

C �:�<;=�������������
+DAB��78� � �

Data rate

12

3

Notify
synchronous
event Notify

data packet
passing event

4

EGF
HI
JLK
MH
M N
O

PRQ
SH
T
U V
HWX
S K

YGN
T[Z
M\ Z
] V
HW

^ M
HH
SI
T M K

(c) Reusing the components for the rest of process

Figure 6. Architectural solutions for cross-
layer rate control

���������	��

�������
� �����
���
�����

� ���������
�����������������
���

Inter node/In band

Protocol Module

���! �"
#%$'&)(�"*(�+,�

- �"
#%$'&.(/"0(/+,�

132 ���4�5���

687 �9�����*���4�����

Inter node/Out-of band

Intra node/In band

Asynchronous
event handler

Synchronous
event handler

� �����9���
�����������
���
�
���132 ���4�5���

687 �9�����*���4�����

Cross-Layer Module

Intra node/Out-of band

Asynchronous
event handler

Synchronous
event handler

Figure 7. A generic architecture for cross-
layer adaptations in wireless networks

packet is a CTS. Thus we see that in step 0, we have added
a MAC-PHY interceptor module. This module is inserted
between the two existing layers and provides each with the
same interface and thus does not compromise our modular-
ity goal. In general, this interceptor is a kind of connector,
but it will be implemented as a “shim” layer in the stack
and so we do not group it with the other connectors dis-
cussed below. In step 1, the interceptor has detected a CTS
and notifies the synchronous event handler that connects the
protocol module to the cross-layer module. Finally, in step
2 the event handler notifies the rate control process itself.

The second stage (Fig. 6(b)) shows the support needed
for out-of-band delivery. In step 1, the rate control process
communicates to the out-of-band connector that it needs the
length of the packet and the channel status. Notice that un-
like the case where the process is part of the MAC, it needs
to access MAC as well as PHY information. In step 2, the
connector communicates with the getLength and GetChan-
nel adaptors attached to the MAC and PHY. The adaptation
requires that we be able to query the protocol modules, by
structuring these queries in terms of special adaptors we are
able to minimize (but not eliminate) changes to the protocol
modules. Finally, in step 3, the rate control process calcu-
lates the new rate.

The final stage (Fig. 6(c)) shows how we use the existing
mechanisms to complete the rate control process. In step 1
and 2, the interceptor notifies the rate control process that
the data packet is being sent. In step 3 and 4, the rate con-
trol process sets the rate in the PHY using the setDataRate
Adaptor.

4.3 Completing the Architecture

Fig. 7 shows all the details of our architecture. Many as-
pects of this diagram have already been presented, the main
refinement is in the connectors presented and their relation

to whether the cross-layer processer is synchronous or asyn-
chronous. These all are typical software connectors [15].
Disregarding the event handler aspect for now, we see four
kinds of connectors, corresponding to the four delivery
mechanisms in the taxonomy. The Intra-node connectors
are used inside a single node to integrate existing protocol
modules with our architecture [7]. The In-band connector
accesses the data stored in a packet’s internal structure when
the packet passes though an interceptor, while the Out-of-
band connector uses adaptors to access data in the proto-
col modules themselves. The Inter-node connectors require
that any information must be placed in a packet and sent
from one node to another. In the In-band case the infor-
mation can be piggybacked on the protocol packet. Thus
this case is shown intercepting the data in the packet deliv-
ery path. In the Out-of-band case, the information must be
formatted into its own packet and sent independently. Thus
this is shown as a separate communication path. Returning
to the event handlers, we see that the asynchronous versus
synchronous nature of the processes is fundamentally cap-
tured by the type of the event handler. Synchronous event
handlers are driven by the passage of packets through the
interceptors. However, asynchronous events (and thus pro-
cesses) are not triggered by packet passage, but are gener-
ated when the event handler detects a change of information
within a protocol processor.

4.4 Further refinements

If we wish to actually implement an adaptation in a loosely
coupled way, our conceptual architecture can serve as a
concrete one as well. However, in the interest of perfor-
mance, we may wish to use a concrete architecture that has
less overhead. For example, we might merge the intercep-
tors into the layer above or below them, thus reducing the
amount of packet handling. Similarly, the event handlers
may be merged into the protocol processing. For asyn-
chronous handlers this might eliminate the need to poll for
changes. We might even merge the cross-layer processing
into a particular protocol processor, thus eliminating a sub-
stantial amount of communication. Never-the-less, we be-
lieve the existence of the conceptual model should allow us
to make such optimizations in a systematic and disciplined
manner.

5 Validation

Initial validation of our taxonomy and architecture has been
done by careful consideration and paper design of the exam-
ples found in Section 2, as well as others. We are beginning
a more substantial validation using the basic strategy of im-
plementing a number of our examples in a realistic wireless
network testbed. We expect this experience to allow us to

refine our approach, in particular with respect to what con-
crete architectures are desirable.

5.1 Hydra

Our implementation will be done in the context of our Hy-
dra testbed. Hydra is a prototype multihop wireless net-
work, which is designed to allow experimentation with im-
plementations of PHYs, MACs, and cross-layer adapta-
tions, using functional hardware and software, rather than
simulation. Hydra uses an RF frontend, the universal soft-
ware radio peripheral (USRP) [4] from Ettus Research,
which allows experimentation with various frequency bands
and which allows a limited amount of signal processing to
be done using a field programmable gate array. The USRP
connects to the Hydra PHY over USB 2.0. The PHY is
implemented using the GNU Radio framework [3] and all
signal processing is done using the general purpose proces-
sor. Hydra’s MAC interfaces to the PHY using interprocess
communication and is implemented using the Click modu-
lar router infrastructure [16]. Click also provides network
support and interfaces to the Linux TCP/IP stack allowing
full end-to-end application to application experiments.

The current Hydra implementation is similar to
802.11a [11]. It supports orthogonal frequency division
multiplexing (OFDM) at the physical layer, with support
for multiple transmission rates. The MAC is essentially the
802.11 DCF MAC briefly discussed in Section 2. Because
both the MAC and PHY are primarily implemented in C++,
modification of each is straight forward. Hydra is currently
operational. In addition to experiments on cross-layer adap-
tations, the major next implementation step is to add support
for multiple antenna algorithms, principally multiple input
multiple output (MIMO).

5.2 Rate Adaptation

We have implemented the inter-node version of rate control,
both using our fully decoupled architecture and in the ad-
hoc manner that might be considered “conventional.” Both
of these implementations are operational inside of Hydra,
but our experience with them thus far is limited.

The conventional implementation required numerous
changes to the protocol layers. The MAC was modified to
allow it to perform the rate adaptation and to conform to
the new CTS packet format that delivers the channel infor-
mation from the receiver to the transmitter. The interfaces
between the MAC and the PHY were changed because of
data format changes. This was required because the MAC
and PHY are in different address spaces and so packets must
be marshalled and unmarshalled when they move between
them.

Within our architecture, we extended the example shown
in Section 4.2 to the inter-node case. Rate adaptation out-
side the MAC only requires the adaptors for the MAC and
the PHY that allow the connectors to access data length and
channel information and to set the rate. Interceptors trans-
parently change the format of the CTS packet. The key
challenge was that the MAC is implemented using Click
while the PHY uses GNU Radio. This meant that the inter-
ceptors and adaptors needed to be implemented differently
to conform to each implementation environment. Further
the connectors are divided into two levels. Connectors in
Click and GNU Radio manage their interceptors and adap-
tors and communicate with global connectors that provide
cross-layer processors with event notification and data de-
livery. This allows rate adaptation to be independent of the
infrastructures and to freely change its operation without
significant impact on existing layers. Many of the mech-
anisms implemented for this example are reusable across
other adaptations. Our preliminary conclusion is that our
implementation confirms that our architecture substantially
meets its goals.

5.3 Other Examples

The remaining aspects of our architecture that need valida-
tion are the asynchronous event handler and internode ver-
sion of the out-of-band connector. We plan to implement
cross-layer protocol reconfiguration and cross-layer exten-
sions for the local agile routing protocol to explore these
aspects.

Cross-layer protocol reconfiguration [2] can be used to
explore the issues in asynchronous event handling. Since
the adaptation changes the configuration of the layers as
the wireless communication standard in an area changes,
it requires asynchronous processing that is triggered when
a node detects a change of standard. Further reconfigura-
tion of both the protocols and cross-layer adaptations will
be used to show how our architecture addresses flexibility,
extensibility and portability of systems, our main secondary
goals.

Implementing cross-layer extensions for the local ag-
ile routing protocol [21] will allow us to validate intern-
ode version of the out-of-band connector. It acquires chan-
nel conditions for thelocal area to build robust routes that
reach multihop neighbor nodes and thus requires periodic
exchanges of channel information between nodes regardless
of whether packets are being delivered.

6 Conclusion

In a wireless network, it is useful for a wide variety of adap-
tations to violate the networks traditional layered architec-
ture. Unfortunately doing so in an undisciplined way is

likely to result in a poorly structured system and to greatly
increase the complexity of an already complex system. We
presented a taxonomy that describes the design space of
such cross-layer adaptations. Based on this taxonomy, we
derived an architecture that supports the implementation of
cross-layer adaptations in a controlled disciplined manner.
Perhaps the most important design decision in this architec-
ture is for the cross-layer adaptations to be decoupled from
the implementation of the basic protocols, thus minimiz-
ing changes to the basic layered structure of the network.
Finally, we presented some preliminary validation of our
approach using a wireless networking prototype. This vali-
dation suggests that our architecture can indeed achieve its
goals.

References

[1] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz. Im-
proving TCP/IP Performance over Wireless Networks. In
Proceedings of the ACM/IEEE International Conference on
Mobile Computing and Networking (MOBICOM), pages 2–
11, Berkeley, CA, Nov. 1995.

[2] L. Berlemann, R. Pabst, M. Schinnenburg, and B. Walke.
Reconfigurable Multi-mode Protocol Reference Model Fa-
cilitating Modes Convergence. InProceedings of the 11th
European Wireless conference 2005 (EW 2005), pages 280–
286, Nicosia, Cyprus, Apr. 2005.

[3] E. Blossom. GNU Radio, Aug. 2006.
http://www.gnu.org/software/gnuradio/index.html.

[4] E. Blossom. UniversalSoftwareRadioPeripheral, Mar. 2006.
http://comsec.com/wiki?UniversalSoftwareRadioPeripheral.

[5] L. Chung, B. A. Nixon, and E. Yu. Using Non-Functional
Requirements to Systematically Select Among Alternatives
in Architectural Design. InIn Proceedings of ICSE 17 Work-
shop on Software Architecture (WOSS), pages 31–43, Seat-
tle, WA, Apr. 1995.

[6] Computer Science and Telecommunications Board, Na-
tional Research Council.Realizing the Information Future:
The Internet and Beyond. National Academy Press, Wash-
ington, D.C., 1994.

[7] A. Egyed and R. Balzer. Unfriendly COTS Integration
- Instrumentation and Interfaces for Improved Plugability.
In Proceedings of the 16th IEEE International Conference
on Automated Software Engineering (ASE), pages 223–231,
San Diego, CA, Nov. 2001.

[8] N. V. Gavin Holland and P. Bahl. A Rate-Adaptive MAC
Protocol for Multi-Hop Wireless Networks. InProceed-
ings of the ACM/IEEE International Conference on Mobile
Computing and Networking (MOBICOM), Rome, Italy, July
2001.

[9] Z. J. Haas. Design Methodologies for Adaptive and
Multimedia Networks. IEEE Communications Magazine,
39:106–107, Nov. 2001.

[10] IEEE 802.11 Working Group. Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifica-
tion, Nov. 1997.

[11] IEEE 802.11 Working Group. Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) specifica-
tions: High-speed Physical Layer in the 5 GHz Band, Sept.
2000.

[12] R. C. H. Ivan T. Bowman and N. V. Brewster. Linux as a
Case Study: Its Extracted Software Architecture. InPro-
ceedings of the 21st International Conference on Software
Engineering (ICSE’99), pages 555–563, Los Angeles, CA,
May 1999.

[13] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J.-C. Chen.
A Survey of Energy Efficient Network Protocols for Wire-
less Networks.Wireless Networks, 7:343–358, Apr. 2001.

[14] V. Kawadia and P. R. Kumar. A Cautionary Perspective on
Cross Layer Design.IEEE Wireless Communications, 12:3–
11, Feb. 2005.

[15] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards
a Taxonomy of Software Connectors. InProceedings of
the 22nd International Conference on Software Engineering
(ICSE’00), pages 178–187, Limerick, Ireland, June 2000.

[16] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The
Click Modular Router. InSymposium on Operating Systems
Principles, pages 217–231, Kiawah Island Resort, SC, Dec.
1999.

[17] D. E. Perry. Generic Architecture Descriptions for Product
Lines. InProceedings of the Second International ESPRIT
ARES Workshop on Development and Evolution of Software
Architectures for Product Families (ARES II), pages 51 – 56,
Las Palmas de Gran Canaria, Spain, Feb. 1998.

[18] D. E. Perry and A. L. Wolf. Foundations for the Study of
Software Architecture.ACM SIGSOFT Software Engineer-
ing Notes, 17:40–52, Oct. 1992.

[19] D. Qiao, S. Choi, and K. G. Shin. Goodput Analysis and
Link Adaptation for IEEE 802.11a Wireless LANs.IEEE
Transactions on Mobile Computing, 1:278–292, Oct. 2002.

[20] V. T. Raisinghani and S. Iyer. Cross-Layer Design Opti-
mizations in Wireless Protocol Stacks.Computer Commu-
nications, 27:720–725, May 2004.

[21] C. A. Santivanez, R. Ramanathan, and I. Stavrakakis. Mak-
ing Link-State Routing Scale for Ad Hoc Networks. InPro-
ceedings of the 2nd ACM international symposium on Mo-
bile ad hoc networking and computing (MobiHoc), pages
22–32, Long Beach, CA, Oct. 2001.

[22] V. Srivastava and M. Motani. Cross-Layer Design: A Sur-
vey and the Road Ahead.IEEE Communications Manazine,
43:112–119, Dec. 2005.

[23] Q. Wang and M. A. Abu-Rgheff. Cross-Layer Signalling
for Next-Generation Wireless Systems. InProceedings
of IEEE Wireless Communications and Networking Con-
ference (WCNC’03), pages 1084–1089, New Orleans, LA,
Mar. 2003.

[24] H. Zimmerman. The OSI Model of Architecture for Open
Systems Interconnection.IEEE Transactions on Communi-
cations, 28(4):425–432, Apr. 1980.

