Design and Validation of a General Security Model with the

Alloy Analyzer

*

Charles L. Chen', Paul S Grisham?, Sarfraz Khurshid?, and Dewayne E. Perry*
!Empirical Software Engineering Laboratory
2Software Verification and Test Group
Department of Electrical and Computer Engineering
The University of Texas at Austin

{clchen,grisham,khurshid,perry:@ece.utexas.edu

ABSTRACT

We define secure communication to require message integrity,
confidentiality, authentication and non-repudiation. This
high-level definition forms the basis for many widely ac-
cepted definitions of secure communication. In order to
understand how security constrains the design of our se-
cure connectors, we have created new logical formulas that
define these security properties. Our novel definitions use
first-order epistemic and modal logics to precisely describe
the constituent properties of secure communications. Our
definitions should be applicable to describe security in the
general case. We subsequently codified our logical formulas
into the Alloy language and executed them using the Alloy
Analyzer to validate that our models are correct. This pa-
per presents the definition of our security model, our Alloy
implementation, and the results of our validation efforts.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Veri-
fication—uwalidation; F.3 [Logics and Meanings of Pro-
grams]|: Specifying and Verifying and Reasoning about Pro-
grams

General Terms

Security, Verification

Keywords
Alloy, Security, Validation, First-Order Logic, Modal Logic

1. INTRODUCTION

Non-functional requirements have a profound impact on soft-
ware architecture and accommodating them often requires

*(Produces the permission block, copyright information and
page numbering). For use with ACM_PROC_ARTICLE-
SP.CLS V2.6SP. Supported by ACM.

First Alloy Workshop06 Portland, Oregon USA

significant changes to the functional architecture. One crit-
ical example is security. In particular, we are interested
in how the functional architecture is affected when security
needs to be included at the architecture design stage.

The Perry/Wolf model of architecture defines an architec-
ture of a system as elements, form, and rationale [15]. The
elements are computational components and connectors be-
tween those components. We are interested primarily in the
notion of secure communication, that is, how components
communicate with each other securely. In this paper, we do
not concern ourselves with intra-component or physical def-
initions of security, as well as denial of service attacks. The
primary insight is that standard connectors between com-
ponents can be replaced with a Secure Connector-type con-
nector, which adds security properties, policies, and proto-
cols to the standard connector’s operational behavior. The
idea is accepted in the WS-Security standard [14], which
transparently adds security properties to Service Oriented
Architecture [13] applications.

Unfortunately, a precise definition of security requirements
at the architecture level has not been generally available.
Security is largely understood in terms of specific kinds of
vulnerabilities. While designing an architecture for security,
it became obvious that we did not have a detailed enough
definition of security to be able to perform rigorous analysis
of our design. In order to enable the kind of analysis that
would allow us to understand the security properties of our
architectural design, we had to create a general definition
of security, and relate that definition to our architectural
elements.

We define secure communication as requiring message in-
tegrity, confidentiality, authentication and non-repudiation.
This high-level definition forms the basis for many widely
accepted definitions of secure communication. In order to
understand how security constrains the design of our se-
cure connectors, we have created new logical formulas that
define these security properties. Our novel definitions use
first-order epistemic and modal logics to precisely describe
the constituent properties of secure communications. Our
definitions should be applicable to describe security in the
general case. We subsequently codified our logical formulas
into the Alloy language and executed them using the Alloy
Analyzer to validate that our models are correct. This pa-
per presents the definition of our security model, our Alloy

implementation, and the results of our validation efforts.

Section 2 describes the epistemic logic we used to define
security as well as the system model and communication as-
sumptions we used. Section 3 presents our working security
model. Section 4 gives an overview of the design of our Al-
loy models, as well as the results of our Alloy analysis and
some discussion of the consequences of our design. Section 5
discusses the application of Alloy to other security concerns
and other approaches to automated validation of security.
Section 6 discusses our plans to extend this work.

2. LOGICS OF SECURITY

We considered several logical systems in order to precisely
define our security model. We describe the semantics of
these systems in this section, as well as a description of the
system models.

2.1 BAN Logic

BAN logic is an epistemic logic used to describe beliefs in
the context of secure authentication protocols [4]. In conven-
tional descriptions of communication protocols, the source,
destination and contents of each message are symbolically
listed. In BAN logic, these descriptions are replaced by
logical formulas which represent an idealized version of the
original message. This idealized version is then annotated
with assertions, which describe the beliefs of the principals
(sender, receiver and other principles trusted by them) at
each step of the protocol. The protocol can then be ana-
lyzed using a set of inference rules.

BAN has shortcomings which made it incomplete for use
with our approach to defining security. The most signif-
icant is that BAN logic was designed primarily for rea-
soning only about authentication protocols. Specifically,
BAN proofs assume confidentiality and integrity are assured
through the use of an effective cryptographic system, which
guarantees that encrypted message contents are secret and
that encrypted messages can not be modified without de-
crypting. BAN requires the assumption that the cryptosys-
tem is not breakable, and that a public key infrastructure
with a trusted certification authority exists. Moreover, BAN
does not provide a general set of invariants or constraints to
define a secure protocol.

BAN is also not directly suitable for non-repudiation pro-
tocols, although some limited success has been reported re-
cently among researchers in using BAN and BAN-like logics
for proofs of non-repudiation [2, 3].

Another shortcoming is that BAN, as originally described,
and as commonly used, does not have precise semantics for
its operations. The semantics are descriptive rather than
definitive, and as such, not entirely appropriate for use with
automated reasoners without providing more precise seman-
tics. Several attempts to more precisely define BAN seman-
tics have been reported [1], though most of them have been
subsumed by extensions to BAN which added additional ex-
pressiveness to the core logic [8].

2.2 Knowledge Logic S5
In order to make up for the shortcomings of BAN in de-
scribing general concepts of knowledge and messaging, we

e Axioms

— Al. All tautologies of propositional calculus

— A2, (Kip AN Ki(p = ¢)) = K;p) (Distribution
Axiom)

— A3. Ki¢ = ¢ (Knowledge Axiom)

— Ad. Kip = K;K;p (Positive Introspection Ax-
iom)

— A5, -K;p = K;—K;p (Negative Introspection
Axiom)

e Inference Rules

— R1. From ¢ and ¢ = ¢ infer ¢ (Modus ponens)

— R2. From ¢ infer K;p (Knowledge Generaliza-
tion)

e Corollaries

— A6. - K false — from Al, A3, and R1
— A7. p = K;—K;—¢ — from A3 and A5

Figure 1: The Logical System S5

decided to use a more general knowledge logic for repre-
senting our general security model. Specifically, we opted
to use S5 [7], which is a sound and complete logic for de-
scribing knowledge. S5 has been previously used to describe
other distributed system problems [16, 9], and is easily ex-
tendible with temporal operators and suitable for use with
automated reasoning systems [17].

The basic operator in S5 is K, which is used in the predicate
Kp(¢) (P knows some fact ¢). The semantics of K derive
from the possible worlds model which refers to the set of
possible worlds (models) that may be true given what a
process knows. In other words, if ¢ is true in all the possible
worlds P considers valid, Kp(¢) holds.

The set of axioms and inference rules that define S5 are
presented in Figure 1. We chose to use the full expressive
power of S5 in constructing our security definitions because
it is sound and complete over the class of models we wanted
to consider for our security model.

2.3 Communication Model

We extended S5 to include a model of process communica-
tion similar to the one used by Chandy and Misra [5]. In
this model, processes learn new facts by communicating. We
allow two new formulas Rcevdp(¢) and Sentp(¢) to describe
the fact that at some time in the past, a process P received
a message containing ¢, or sent a message containing ¢, re-
spectively. In addition, we allow that processes are allowed
to automatically know facts which are local to themselves,
so for instance, Rcvdp(¢) = Kp(Rcvdp(¢)) is an inference
rule in our system.

We make the following assumptions about our communi-
cation model. We view the system as made up of some
finite number of processes or components. We assume reli-
able broadcast messaging semantics, so that if a message

is sent on a channel, all listening processes will eventu-
ally receive the message. Any processes can hear any mes-
sage sent by any other process, but we do not consider
VP : Sentgp = Rcvdp¢ to be interesting in the general
case. We are usually only interested in the receiving process
if the receiving process is the intended receiver or some ma-
licious process attempting to break the security. We believe
that these semantics accurately represent an operating en-
vironment that must be secured against attack.

3. SECURITY DEFINITIONS

We define security to mean the joint characteristics of con-
fidentiality, integrity, authenticity, and non-repudiation. If
a system can enforce these four properties at all times, then
we say that a system is secure.

3.1 Confidentiality

Confidentiality is the concept that messages can only be
read by their intended readers. No other readers may read
the message. By the nature of our communication model,
we allow that these other readers may see the message, but
they may not read, or come to know, the contents of that
message. For a cryptography-based system, this means that
the non-intended readers (those readers who do not possess
the decryption key), cannot deduce any or all of the plaintext
message from the cryptotext.

We did not want to restrict our generalized model of security
to cryptography-based systems, so we created the abstract
notion of a security policy. To express a secured message
M using policy ¢, we use the notation [M];. For a security
policy i, there are a set of processes which have the capabil-
ity to compose or write messages using this policy. That is,
given M, these processes can produce a valid [M];. We say
that these processes have write permission for policy i. We
use the notation Kp([];) to mean that process P possesses
(or knows) write permission on policy 3.

There are also a set of processes which have the capability
to read messages using this policy. That is, given [M];, they
can produce the original M. We say that these processes
have read permission for policy i. We use the notation
Kp([J;7") to mean that process P possesses (or knows) read
permission on policy 1.

Returning to our definition of confidentiality, we wished to
express that a given process which does not have read per-
mission on i cannot add the contents of [M]; to its knowl-
edge after receiving a message containing [M];. In order
to express this, we were forced to use temporal operators e
and o. e modifies the following formula to mean that the
formula held in the prior state, that is before some action
takes place. o modifies the following formula to mean that
the formula holds in the next state, that is after some action
takes place.

To express confidentiality, we use the following formula:
Revdp([M]i) A e=Kp(M) A=Kp([;')
= OﬁKp(M)
This formula expresses the notion that process P received
a message containing a protected message M, it did not
previously know M, nor does it have read permission for

the policy which secured M. As a result, P cannot learn M
from the message.

3.2 Integrity

Integrity captures the notion that a message, once protected,
is considered an atomic unit and cannot be modified in whole
or in part by a process. To change a message in practice re-
quires that a secured message must be read to access its
protected contents, the contents changed while they are un-
protected, and then re-secured using the same policy so that
it appears that which message is original and which is mod-
ified message cannot be determined. In practice, integrity
means that attempts to change the message without write
permission destroy the integrity of the protected message, so
that after reading the contents, the modification can be de-
termined. We have added a predicate, isValid([M];), which
is true exactly when the contents of [M]; can be read (the
message unsecured and M extracted) and those contents are
meaningful and correct.

To express integrity, we use the following formula:
isValid([M);)
= (3P € P: Kp([]:)) A Sentp([M];)

3.3 Authenticity

Authentication is the process of identifying who said what,
or specifically, which process sent a particular message. In
order to accomplish this, several practical mechanisms are
used in the real world. One is the notion of a shared secret,
such as a personal identification number (PIN) for a bank
machine. The bank compares the account number (public
information) against the entered PIN (secret information)
and decides that if the PIN corresponds to the account num-
ber, then the user is an authorized account holder. In pub-
lic/private key encryption systems, the private key is a secret
owned by the sender, and any public-key holder which reads
a valid message can know who the sender was.

Our approach uses a similar technique to the public/private
key encryption method, though we do not specify encryp-
tion as a security policy. Instead we use the notion of write
permission to identify the sender. In our model, a set of
processes may possess write permissions, so our definition
only narrows the identification of the sender to a member of
that set. In the case where a policy has exactly one process
with write permission, our definition gives us exact authen-
tication.

To express authenticity, we use the following formulas:
Revdr([M]:) AisValid([M];)
= Kr(3S € P: Ks([:) A Sents([M];))

3.4 Non-repudiation

Non-repudiation refers to the inability of a process to deny
sending a message it has received or to deny receiving a mes-
sage it has received. Non-repudiation is difficult to express
in both BAN and S5 because knowledge about messages that
have been sent and received are local to the sender and the
receiver respectively. To express non-repudiation, we had to
include the notion of a process knowing about the sending
or receiving, even though for true non-repudiation, another
process does not necessarily know about the sending or the

receiving. Our model works because we do not disallow the
case that the process that knows about the sending or re-
ceiving process is the sender or receiver.

To express non-repudiation on the sending of a message, we
use the following formula:
Kp(Rcvdr(M)) = Revdr(M)

To express non-repudiation on the receiving of a message,
we use the following formula:
Kp(Sents(M)) = Sents(M)

3.5 Other Definitions

In addition to these formulas, which define the four char-
acteristics of security, we needed to add some additional
formulas to make our system useful. The most important of
these formulas we call applicability, and expresses the idea
that a process with read permission can access the contents
of a protected message. Without this formula, no secured
message could ever be read, which would be a perfectly se-
cure system but a practically useless one.

Applicability of a security policy is expressed by the follow-
ing formula:
isValid([M]:) A Revdr([M]:) A Kr([[71)
= Kg (M)

The other property we require is blind propagation, which
expresses the idea that a process may forward or replay a
message it does not have write permission for. Moreover,
the formula expresses that the message was originally sent
by some process which did have write permission. Combined
with integrity and the rules for how knowledge is transmitted
via messages our system is able to express messages that are
echoed, replayed, delayed, re-transmitted, and so on.

Blind propagation of messages is expressed by the following
formulas:
Sents([M]:) A —Ks([li)
=3P e P: Kp([]:) A Sentp([M];)

Similarly, we can also express the idea that the propagating
process initially received the message with the following for-
mula:

Sents([M]:) AN —Ks([]:) = Revds([M]:)

4. ALLOY MODELS

To validate that our definitions of security were consistent
and compatible with each other, we created an Alloy model
for security. This section presents some basic information
about Alloy, the architecture of our Alloy security model, the
rules of this model, the translation of the security definitions
into Alloy, the obstacles to each of these security definitions,
and our results.

4.1 Alloy Basics

The Alloy Analyzer [10] is a constraint solver for analyzing
(verifying and validating) models written in Alloy. It sup-
ports two kinds of automatic analysis: simulation, in which
the consistency of an invariant or operation is demonstrated
by generating a state or transition; and checking, in which a
consequence of the specification is tested by attempting to

generate a counterexample. The analyzer achieves this by
exhaustive search for conforming instances within a space
bounded by user-defined limits on the cardinality of entity
sets. As a result, the analyzer is sound and complete in the
defined scope. The search is accomplished by the construc-
tion of a complete Boolean formula for the model space, con-
verted to Conjunctive Normal Form (CNF), which is passed
to an off-the-shelf SAT solver to find an assignment of values
to the Boolean variables which satisfies the CNF.

We use Alloy by first defining a set of rules to lay the founda-
tion of how messages and knowledge behave in our system.
We then create predicates that model our security defini-
tions and the obstacles which violate these security defini-
tions. We test our model in a three step process. First, we
run the security definitions together to ensure that they are
self-consistent and mutually compatible. Second, we run
the obstacles by themselves to ensure that they are self-
consistent and instantiatable in a system without security.
Finally, we run each security definition against the obsta-
cle that violates it to ensure that such a system would be
inconsistent.

4.2 Alloy Security Model

Our Alloy model has three main sigs: Process, Formula, and
Policy. Processes are the agents in the system. Formulas are
the data; this sig is further extended by generic messages,
protected messages, and information about the state of the
system (such as which processes sent which messages, which
processes have write access to which messages, etc.). Poli-
cies define which processes have read and/or write access to
protected messages.

Our initial model treated the notion of time as simply pre-
and post-states of a learning action. Each process knows a
set of formulas and learns a set of formulas. We chose this
method because of its ease of implementation and perfor-
mance efficiency. However, while this method was adequate
for very abstract reasoning about security, it could not be
used to reason about the steps in a protocol. Because it
could only look at a single action and not a sequence of ac-
tions, we believe it is necessary to create a second version.
Our second version associates a time with the formulas that
a process knows. Learning is shown by a process not know-
ing a formula at time ¢, but knowing the formula at ¢,41.
This second version was more difficult to implement and is
slower than the first for the same scope since there is more
to be analyzed, but it is able to analyze sequences of events.
The code for this second version can be seen in Figure 2.

4.3 Rules

To define the basic rules of our model, we constrain our
model with the following facts:

PolicyRulel It is impossible for there to be a
CanWrite relationship if there is no policy which
supports it. A CanWrite relationship is an ex-
tension of formula, and it states that a particular
process has write access to a particular protected
message. The lack of such a relationship does
not mean that a process cannot somehow still

module security

open util/ordering[Time] as TO

sig Time{}

sig Policy{ hasRead, hasWrite: set Process }
sig Formula{ known_by: set Process->Time }
sig Process{ knows: set Formula->Time }

sig Sent extends Formulaf{
sender: one Process, msg: one Msg }

sig Msg extends Formula {
contents: one Formula, lastWriter: one Process }

sig Protected_Msg extends Msg {
protected_by: one Policy }

sig Recvd extends Formula{
recvr: one Process, msg: one Msg }

sig CanWrite extends Formula{
writer: one Process, msg: one Protected_Msg }

fact PolicyRulel{
no c: CanWrite | c.writer not in c.msg.protected_by.hasWrite ¥

fact MemoryRulel{
all t: Time - TO/last() | let t’ = TO/next(t) |
all p: Process | all m: Msg |
m->t in p.knows => m->t’ in p.knows }

fact MsgRulel{ no m: Msg | m in m.contents }

fact MsgRule2{
all record: Sent | no bad_rec: Sent |
(record.msg = bad_rec.msg) &&
(record.sender != bad_rec.sender) }

fact MsgRule3{
all t: Time | all m:Msg | some r: Process |
(m->t in r.knows) }

fact KnowledgeRulel{
all t: Time | all f: Formula | all p: Process
p->t in f.known_by <=> f->t in p.knows }

fact KnowledgeRule2{
all t: Time - TO/last() | all p: Process
all m: Msg - Protected_Msg | let t’ = TO/next(t) |
m->t in p.knows => m.contents->t’ in p.knows }

fact KnowledgeRule3{
all t: Time - TO/last() |
all p: Process | all m: Protected_Msg |
let t’ = TO/next(t) |
(m->t in p.knows && HasReadAccess(p,m))
=> m.contents->t’ in p.knows }

fact KnowledgeRule4{
all t: Time | all p: Process | all m: Protected_Msg |
p = m.lastWriter => m.contents->t in p.knows }

pred HasReadAccess(p: Process, m: Protected_Msg){
p in m.protected_by.hasRead }

pred HasWriteAccess(p: Process, m: Protected_Msg){
p in m.protected_by.hasWrite }

pred IsSecret(f: Formula){
all u: Msg - Protected_Msg | f != u.contents }

pred IsUnique(f: Formula){ one u: Msg | f = u.contents }

pred IsValid(m: Protected_Msg){ m =m }

pred Confidentiality(){
all t: Time - TO/last() |
all a: Process | all m:Protected_Msg |
let t’ = TO/next(t) | ((m->t in a.knows) &&
(m.contents->t not in a.knows) && (IsSecret(m.contents)) &&
('HasReadAccess(a, m))) => (m.contents->t’ not in a.knows) }

pred Integrity(0{
all m:Protected_Msg | some p: Process

IsValid(m) => (HasWriteAccess(p,m) && m.lastWriter = p) }

pred Authenticity(){
all t: Time | all m:Protected_Msg | all r: Process
one record: Sent | one c: CanWrite | (IsValid(m) &&
(m->t in r.knows)) => (c.writer = m.lastWriter) &&
(c.msg = m) && (c->t in r.knows) &&
(record.sender = c.writer) &% (record.msg = m) &&
(record->t in r.knows) }

pred NonRepudiationReceiverSide(){
all t: Time | all m: Msg | all p,q: Process
all record: Recvd | ((record.recvr = q) && (record.msg = m) &§
(record->t in p.knows)) => (m->t in q.knows) }

pred NonRepudiationSenderSide(){
all t: Time | all m: Msg | all p,q: Process
all record: Sent |
(record.sender = q) && (record.msg = m) &&
(record->t in p.knows) => (m.lastWriter = q) }

pred SecureSystem(){
Confidentiality() and Integrity() and Authenticity()
NonRepudiationReceiverSide() and NonRepudiationSenderSide() }

pred Eavesdropping(){
some pro:Process | some m:Protected_Msg |
some t: (Time - TO/last()) - TO/prev(TO0/last()) |
let t’ = TO/next(t) | let t’’ = TO/next(t’) |
'HasReadAccess(pro,m) && (m->t in pro.knows) &&
(m.contents->t not in pro.knows) &&
(m.contents->t’’ in pro.knows) && IsUnique(m.contents) }

pred AntiEavesdropping_System(){
SecureSystem() and Eavesdropping() }

pred AntiEavesdropping_Confidentiality(){
Confidentiality() and Eavesdropping() }

pred EavesdroppingWhenSentInClear (){
some pro:Process | some m:Protected_Msg |
some t: (Time - TO/last()) - TO/prev(TO0/last()) |
let t’ = TO/next(t) | let t’’ = TO/next(t’) |
'HasReadAccess(pro,m) && (m->t in pro.knows) &&
(m.contents->t not in pro.knows) &&
(m.contents->t’’ in pro.knows) }

pred EavesdroppingWhenSentInClear_System(){
SecureSystem() and EavesdroppingWhenSentInClear() }

pred Corruption(){

some m: Protected_Msg | !'(HasWriteAccess(m.lastWriter, m)) }
pred AntiCorruption_System(){ SecureSystem() and Corruption() }
pred AntiCorruption_Integrity(){ Integrity() and Corruption() }

pred Spoofing(){
all t: Time | some m: Protected_Msg |
some r: Sent | some p: Process |
(r.sender != m.lastWriter) &&
(r.msg = m) & (m->t in p.knows) }

pred AntiSpoofing_System(){ SecureSystem() and Spoofing() }
pred AntiSpoofing_IntegrityAlone(){ Integrity() and Spoofing() }
pred AntiSpoofing_Authenticity(){ Authenticity() and Spoofing() }

pred DeniableReception(){
all t: Time | one p,q: Process | one m: Msg |
one record: Recvd | record.recvr = q && record.msg = m &&
record->t in p.knows && m->t not in q.knows }

pred AntiDeniableReception_System(){
SecureSystem() and DeniableReception() }

pred AntiDeniableReception_NRRS(){
NonRepudiationReceiverSide() and DeniableReception() }

pred DeniableSending(){
all t: Time | one p,q: Process | one m: Msg | one r: Sent |
r.sender = q && r.msg = m &&
r->t in p.knows && q !'= m.lastWriter }

pred AntiDeniableSending_System(){
SecureSystem() and DeniableSending() }

pred AntiDeniableSending NRSS(){
NonRepudiationSenderSide() and DeniableSending() }

Figure 2: Complete Security Model in Alloy

write to a protected message; it merely means
that there is no legitimate write access.

MemoryRulel Information that is known is not
forgotten. This guarantees that knowledge is
monotonically increasing.

MsgRulel A message cannot contain itself. This
is to prevent an unrealistic loop that could de-
velop if the model were not constrained. This
does not prevent a message from being the con-
tents of a different message.

MsgRule2 A message can only have one source.
This is only the purported source of the message
and is not necessarily the true source of the mes-
sage.

MsgRule3 All messages must be known by some
process. This is to prevent trivial messages which
are not known by any process.

KnowledgeRulel The knowledge relationship be-
tween a process and a formula is mutual. This
is to guarantee the consistency of our model; it
would not make sense if a process knew a formula
but that formula was not known by that process.

KnowledgeRule2 If a process knows a message,
it will know its contents in the next time step.
This implements learning from a message.

KnowledgeRule3 If a process knows a protected
message and has read access, it will know its con-
tents in the next time step. This implements
learning from a protected message. Note that
this does not preclude the ability of a malicious
process to learn the contents anyway by eaves-
dropping; it merely provides legitimate processes
with a direct path for learning.

KnowledgeRule4 A process can only send what
it knows. This is to guarantee the consistency of
our model; it would not make sense if a process
sent something but did not know what it was.
The passing process knows it has passed a pro-
tected message but does not know the contents
of the protected message that it sent.

ProcessO
(Eavesdropping_pro)

Protected_MsgO
(Eavesdropping_m)

protected_by

hasRead |hasRead

Process4

Figure 3: Eavesdropping

had write access to this protected message and
is the source of this protected message.

NonRepudiationReceiverSide If some process knows
that a particular process received a particular
message, then that particular process must know
that particular message.

NonRepudiationSenderSide If some process knows
that a particular process sent a particular mes-
sage, then that particular process must be the
source of that particular message.

4.5 Obstacles to Security
To test our definitions for their effectiveness against vulner-
abilities, we created the following obstacles:

Eavesdropping Some process is able to learn the
contents of a protected message even though this
process did not have read access to the protected
message, did not know the content beforehand,
and the contents of this message were never sent
in any other message (protected or not). This ob-
stacle violates Confidentiality. Figure 3 shows
the relevant portions of the instance that Alloy

generated for this obstacle.

4.4 Security Definitions
We translated our security definitions into Alloy predicates Corruption Some process which does not have
as follows: write access to a protected message is the source

Confidentiality If a process knows a protected
message at t,, does not know its contents, its
contents were never sent in the clear, and the
process does not have read access to the pro-
tected message; then the process will not know
the contents of the protected message at tn41.

Integrity If a protected message is valid, then
there is some process which has write access to
that protected message and is the source of that
protected message.

Authenticity If a protected message is valid and
a process knows this protected message, then this
process knows that there is some process which

of that protected message. This obstacle violates
Integrity. Figure 4 shows the relevant portions
of the instance that Alloy generated for this ob-
stacle.

Spoofing There is some process which knows
that a particular process sent a particular pro-
tected message; however, that particular process
is not the source of that protected message. This
obstacle violates Authenticity. Figure 5 shows
the relevant portions of the instance that Alloy
generated for this obstacle.

DeniableReception Process P knows that Process
Q received a particular message; however, (Q does
not know this message. This obstacle violates
NonRepudiationReceiverSide. Figure 6 shows

Protected_MsgO
(Corruption_m)

astWriter

protected_by

contents

hasWrite \hasWrite

Process0

Figure 4: Corruption

Protected Msg0

lastWriter

Processd4

Figure 5: Spoofing

recvr

Protected_MsgO

Figure 6: DeniableReception

the relevant portions of the instance that Alloy
generated for this obstacle.

DeniableSending Process P knows that Process
@ sent a particular message; however @ is not the
source of that message. This obstacle violates
NonRepudiationSenderSide. Figure 7 shows the
relevant portions of the instance that Alloy gen-
erated for this obstacle.

4.6 Results

We were able to generate several instances where all of the
security predicates held. This indicates that our definitions
are internally consistent and compatible with one another.

For all of the obstacles, Alloy was able to generate an in-
stance if security did not hold; however, as we expected,
Alloy was unable to generate any instances where both the
obstacle, and the corresponding security predicate it vio-
lated, held. We used a scope of five to give us greater con-
fidence that our security definitions guarded against these
obstacles correctly.

The Alloy model also exposed the need to be explicit about
the underlying assumptions in our security model. For ex-
ample, in an earlier iteration of our Eavesdropping obstacle,
we did not specify that the contents of the protected mes-
sage had to be unique. Thus, it would be possible for a
process to send the contents of a protected message in an-
other message. Alloy was able to generate an instance where
both this version of Eavesdropping when a message is sent
in the clear and Confidentiality both held. The process
which did not have read access to the protected message was
still able to learn its contents, even when Confidentiality
held, because that process was able to learn it from an un-
protected message. Figure 8 shows the relevant portions of
the instance that Alloy generated for this case.

The Alloy model that we created was a good representation
of our security definitions, but there were some differences.

ProcessO

knows

EavesdroppingWhenSentInClear_pro

contents

Protected_Msg0
EavesdroppingWhenSentInClear_m

protected_by

hasRead

Figure 8: Confidentiality is not guaranteed if the contents of a protected message are also sent in the clear

Process_0

Protected_Msg0

lastWriter

Figure 7: DeniableSending

We did not model the knowledge relationship of knowing
that one knows that one knows that one knows, etc. since
that would eat up the scope and not be particularly inter-
esting. However, as a consequence, we were not able to have
as much granularity in some instances. For example, there
is a subtle, but real difference between our security defini-
tions and our Alloy model in regards to the above example
of eavesdropping when a message is sent in the clear. In
our security definitions, while the end result is still that an
eavesdropper without read access has learned the contents of
the protected message, the eavesdropper will not know that
he knows the contents of the protected message since he will
have no means of equating the contents of the unprotected
message with those of the protected message. Another dif-
ference is our usage of “knows” and “learns” to deal with the
issue of temporality in Alloy by only considering the system
before (the formulas that a process already “knows”) and
after (the formulas that a process “learns”) a learning oper-
ation; in our security definitions, there is only “knows” and
the system is considered as a sequence of messages.

From our experience with Alloy in this project, we have
learned that using constraints to ensure that models are non-
trivial can result in the need to use larger scopes. In order to
prevent Alloy from generating models where there were only
processes or where processes had no relations with formulas
(no knowledge, no learning), we created a “KeeplInteresting”
fact to constrain Alloy to generate only nontrivial models.
We discovered that for one of our earlier checks against con-
fidentiality where we expected a counterexample, Alloy was
unable to find a counterexample until the scope was enlarged
to six; however, if we enlarged the scope to seven, the model
would become so large that Alloy would freeze on our sys-
tem. We also discovered that we spent a signficant portion
of our time re-testing checks after making changes to part
of our Alloy model to ensure that the change did not acci-
dentally introduce new errors; we believe that this process
could be greatly streamlined if Alloy had the ability to let

users execute runs in batches.

5. RELATED WORK

Our work is a novel contribution to using Alloy in the con-
text of security. Earlier attempts at automated reasoning of
security focused on analyzing a specific property in a spe-
cific protocol, but here we have focused on creating general
definitions of security properties that can be applied to dif-
ferent protocols. Each of the steps of a protocol can be
checked for violations against any of our definitions. An-
alyzing and comparing multiple protocols this way will be
easier and more likely to yield consistent results than if the
security properties had to be redefined for each individual
protocol. We believe that a reusable set of security defini-
tions will benefit the Alloy community in the same way that
reusable software components benefit software engineering
in general.

There have been several approaches to using model checkers
and other automated tools for proving properties of pro-
tocols. BAN logic proofs are not straightforward to im-
plement, as they require additional work to define precise
semantics and prepare the protocol for the proof technique.
However, model checking has been applied to protocol analy-
sis [11, 12]. Other approaches to automated reasoning for
BAN proofs require making assumptions or changes to the
core semantics of the epistemic schema used by BAN. One
project, implemented at MIT used knowledge flow logic and
Alloy to reason about an authentication protocol [20].

More recent research into security logics have extended the
basic framework in BAN with more precise semantics and
support for non-repudiation [8, 19]. These logics may be
more conducive to automated checking than BAN. Some
work has been done using theorem provers to work with
cryptographic protocols for authentication [18]. There is
promise that a model checking approach might yield good
results.

6. DISCUSSION AND FUTURE WORK

We originally intended to use our Alloy model to analyze the
security of various network protocols. However, our initial
model could only reason about the pre- and post-states of
an action. This abstracted away the individual steps of pro-
tocols which are their most interesting parts (and the parts
most likely to contain vulnerabilities). The current version
of the model presented here has the ability to look at indi-
vidual time steps with the current version of our Alloy model
for security. We plan to create Alloy models of network pro-
tocols and then test these with our security predicates.

One approach was to convert our model into BAN logic.
We originally designed our S5 model to resemble concepts
in BAN- such as the generalization of a cryptosystem into a
general protection policy-but we encountered semantic dis-
connect when we attempted the translation of our security
model into operational constraints in BAN. They are both
epistemic logics, but the difference in their semantics (and
possibly the vagueness of BAN) prevented a straight forward
translation.

The most important difference is with respect to the differ-
ence between knowledge and logic. In S5’s possible worlds

model, Kp(¢) exactly means that based on the axioms and
inference rules of the system, P has enough knowledge about
the current world to determine that in all possible worlds P
considers true, ¢ must be true in all of them. Therefore,
P knows ¢ is true. However, in BAN, K E ¢ (K believes
¢) means that K may behave as if ¢ is true. This means
that the belief operator, EE, is weaker than K, though we
wonder how secure a system would be if processes believe
things that might not necessarily be true.

With respect to our action predicates, Sent and Rcvd, we
find that they are generally similar to BAN’s |~ (said mes-
sage) and < (sees message) operators with one significant
difference. In BAN, if a message is composed of multiple
parts, then a process may both say a message and say each
of its parts. Similarly, if a message is encrypted using some
key, then a process may say an encrypted message and its
contents. The same is true for the sees operator. In our S5
model, Sent and Rcvd correspond exactly to the messages as
sent or as received, not their constituent elements. We think
this makes Sent and Rcvd weaker than |~ and <, though we
cannot find any reason to think that the distinction matters
during the conversion from S5 to BAN.

Our notion of policy is intentionally similar to the repre-
sentation for an encrypted message in BAN. The expression
[M]; corresponds exactly to {M}x when the policy is de-
fined as “encrypt messages using key K”. In this way, each
distinct key corresponds to a distinct policy in our security
model. The set of processes with write permission in our
security model is exactly the set of processes in BAN who
own a private key. The set of processes with read permission
is exactly the set of processes who have the corresponding
public key. For a shared key system, the set of processes
with read permission and the set of processes with write
permission for a given policy is necessarily identical.

The idea of using S5 to express the generalized security
model is based on a tool called Sage which was designed
to reason about distributed consensus protocols [17]. Sage
applied the knowledge logic S5, plus a general-purpose tem-
poral logic [6] to create a specification of a specific distrib-
uted coordination problem. The distributed system model
uses a local history buffer as well as vector clocks to store
what each process does and knows locally at any given mo-
ment during the execution of the protocol. Various actions
of the system are defined, such that if a given action occurs
on a process, then knowledge of that action having occurred
is added to that process’s local history buffer. Knowledge is
distributed through the system using asynchronous message
passing.

Sage’s reasoning engine is a backward-chaining resolution
style theorem prover. Starting with the end of the proto-
col, i.e., successful termination, Sage applied the inference
rules to generate the logical precedents for each true fact in
the system. If a predicate corresponding to a local action is
needed, then the system assumes the action occurred, and
places the action in the appropriate process’s local history
buffer. Execution continues until the system either gener-
ates an incorrect state (that is, the protocol could not have
terminated successfully given the execution conditions) or
reaches the initial state. If the initial state is reached, then

the protocol terminated successfully, and the set of local his-
tory buffers corresponds to a successful run of the protocol.
The run may be modified through the user interface to de-
termine how alternate runs or exceptional conditions could
affect the outcome of the protocol.

Using a backward-chaining theorem-prover approach, in con-
trast to the forward generative approach we used with Alloy,
should be interesting. In our Alloy approach, we constantly
had to evaluate whether new facts were interesting or triv-
ial, but in the backward-chaining approach, only interesting
facts are generated. Trivial or inconsequential facts, while
no less true, are not generated by this approach.

We attempted to migrate our security model into the Sage
engine, but even though our security model was implemented
in a similar logic to the one used by Sage, we had difficulty
getting the system to recognize the inference rules we needed
to support our model. We still think that there is some
merit in using a theorem-prover approach, perhaps with a
more recent and extensible theorem proving engine.

7. CONCLUSIONS

This work presents a reusable definition of general security
using a logic with precise semantics and an extensible Alloy
model that implements it. The definition and Alloy model
are intended to be reused in more complex analyses. We
evolved our model from an original design that used sim-
ple pre- and post- condition analysis to one that used time
steps to record partial orderings. This change, while in-
creasing the complexity of the analysis execution, provides
more opportunities for advanced analysis of runtime behav-
ior. Our hope is that our logical formulations may enable
more work with automated verification and validation tools,
not just limited to Alloy, but also to automated theorem
provers and model checkers. Our results in Alloy show that
this is at least conceptually possible.

8. ACKNOWLEDGMENTS

We would like to thank Laurent Hermoye of Département
d’Ingénierie Informatique at the Université Catholique de
Louvain and Deepika Mahajan of the Department of Elec-
trical and Engineering at the University of Texas at Austin,
whose indispensable work on the technical report Applica-
tion of Security Constraints to Architecture Design provided
the basis for this work with Alloy.

This research is supported in part by NSF CISE Grant CCR-
0306613.

9. REFERENCES
[1] M. Abadi and M. R. Tuttle. A semantics for a logic of
authentication (extended abstract). In PODC "91:
Proceedings of the tenth annual ACM symposium on
Principles of distributed computing, pages 201-216,
New York, NY, USA, 1991. ACM Press.

[2] G. Bella and L. C. Paulson. Mechanising BAN
kerberos by the inductive method. In Computer Aided
Verification, pages 416427, 1998.

[3] G. Bella and L. C. Paulson. Mechanical proofs about
a non-repudiation protocol. Lecture Notes in
Computer Science, 2152:91+, 2001.

[4] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. ACM Trans. Comput. Syst.,
8(1):18-36, 1990.

[5] K. M. Chandy and J. Misra. How processes learn.
Distrib. Comput., 1(1):40-52, 1986.

[6] B. Chellas. Modal logic: an introduction. Cambridge
University Press, Cambridge, United Kingdom, 1980.

[7] R. Fagin, J. Y. Halpern, M. Y. Vardi, and Y. Moses.
Reasoning about knowledge. MIT Press, Cambridge,
MA, USA, 1995.

[8] L. Gong, R. Needham, and R. Yahalom. Reasoning
About Belief in Cryptographic Protocols. In
D. Cooper and T. Lunt, editors, Proceedings 1990
IEEE Symposium on Research in Security and
Privacy, pages 234-248. IEEE Computer Society,
1990.

[9] J. Y. Halpern and A. Ricciardi. A knowledge-theoretic
analysis of uniform distributed coordination and
failure detectors. In Symposium on Principles of
Distributed Computing, pages 7382, 1999.

[10] D. Jackson. Alloy 3.0 reference manual, May 2004.

[11] D. Kindred and J. Wing. Fast, automatic checking of
security protocols. In Second USENIX Workshop on
Electronic Commerce, 1996.

[12] W. Marrero, E. Clarke, and S. Jha. Model checking
for security protocols, 1997.

[13] OASIS. Reference Model for Service Oriented
Architecture.

[14] OASIS. Web Services Security Core Specification 1.1.

[15] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40-52, 1992.

[16] A. Ricciardi. Knowledge-theoretic analysis of
partitionable coordination, December 1997.

[17] A. Ricciardi and P. Grisham. Toward sofware synthesis
for distributed applications. In TARK ’98: Proceedings
of the Tth conference on Theoretical aspects of
rationality and knowledge, pages 15-27, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[18] J. Schumann. Automatic verification of cryptographic
protocols with setheo. In CADE-1/: Proceedings of
the 14th International Conference on Automated
Deduction, pages 87-100, London, UK, 1997.
Springer-Verlag.

[19] P. Syverson and P. van Oorschot. A unified
cryptographic protocol logic. Technical Report
5540-227, NRL Center for High Assurance Computer
Systems, 1996.

[20] E. Torlak, M. van Dijk, B. Gassend, D. Jackson, and
S. Devadas. Knowledge flow analysis for security
protocols. Technical Report MIT-CSAIL-TR-2005-066,
Massachusetts Institute of Technology, 2005.

