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Abstract 
Perry and Wolf [2] introduced a general model for 

software architecture.  Since then a number of architecture 
descriptions languages (ADLs) as well as a variety of 
architecture definitions have been introduced.  None of 
these languages or definitions has provided an explicit 
model sufficient to support the needs of architecture 
composition, analysis and evaluation.  In this paper, we 
introduce such a model, an abstract model sufficiently rich 
to support the above mentioned needs of.  We explain and 
illustrate this model, provide an architectural example, and 
outline its usefulness. 
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1. Introduction 
 

Laying the foundations of software development as an 
engineering discipline continues to challenge both 
researchers and practitioners. We often look to other 
disciplines for inspiration and “aspire to emulate their 
enviably well established repertoires of theoretical 
foundations and practical disciplines” [1]. What makes 
software so different? Why has software not lived up to 
the promise of standardization and reuse that would make 
building new software much easier?  Is it the immaturity 
of the field, or is it the complexity of a discipline that 
spans a wide variety of application domains?  

It is fair to say that the software domain cannot be 
comprehensively bounded in even by the four kinds of 
Denial identified by Jackson [1]. It may unfortunately be 
true that, we software engineers have not been able to 
clearly define our domain of influence between the World 
and the Machine. We have reached out for both with an 
equal intensity and in the process blurred the foundations 
upon which standards might evolve. But off course, we 
can take comfort in the saying that “great undertakings 
involve great risks” and it is unlikely anybody would 
challenge the assertion that it indeed is a great undertaking 
and has been a fascinating journey. It is with the help of 

software that we have peered into planet Mars and have 
predicted weather patterns around the globe. 

Doug McIlroy’s prediction in 1968 that mass-
produced software components would end the so-called 
“software crises” has not materialized as yet. However, 
research and industrial experience over the years has led to 
the recognition that component-based software systems do 
provide substantial software engineering benefits. 

When a system is made up of multiple modules or 
components, it is not hard to infer that there needs to be a 
framework in which these modules or components exist 
and operate. This overall framework is popularly known as 
the software architecture. A software architecture has been 
defined by Perry and Wolf as a triple of elements, form 
and rationale [2]. Since then, processing, data and 
connecting elements have been conflated into components 
and connectors which make up the elements of a system. 
The form is a set of weighted properties and defines the 
relationships between components and connectors, while 
the rationale is a set of justifications for the choice of 
elements and formal aspects of the software. While this 
definition of software architecture has been widely 
accepted for many years now, there has been little work 
done to define an architectural specification model based 
on this definition on which rules of composition can be 
applied to build complex systems out of components. 

In this paper we propose an approach for modeling the 
elements and for specifying the form of an architecture to 
facilitate reasoning about compositions and for evaluating 
software architectures early in the development cycle. In 
section 2 we discuss the need for separation of concerns. 
The approach used for the modeling is described in section 
3. Section 4 discusses the proposed model while section 5 
provides an example software architecture that illustrates 
the abstract model and outlines its usefulness. Section 7 
concludes the paper. 

 
2. Separation of Concerns 
 

Divide and Conquer has been widely acknowledged 
as a fundamental strategy in software engineering and 
computer science. We see it in sorting algorithms, it 
appears in multiplication of polynomials. In fact it is the 
seed idea that has spearheaded progress in operating 
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systems and programming languages. The question is, how 
relevant is to architectural design? 

In this context it is important to discuss the Shanley 
principle that was highlighted as a rule for efficient design 
by Arnoul de Marneffe [3], who in turn was quoted by 
Knuth [4] in his paper on Structured programming and 
then by Michael Jackson in his ICSE17 keynote talk [1]. 
The  idea behind the Shanley principle is that one part can 
perform multiple functions. This has been wonderfully 
explained by Jackson as “the architecture of the world has 
been designed with the fullest possible application of the 
Shanley Principle”. In software, the statement that any 
software system has multiple stakeholders has no novelty 
in it and is indeed trite – which essentially means that the 
same software satisfies different functions for the different 
stakeholders involved. If it did not, we wouldn’t need to 
worry about multiple stakeholders of the system. We do 
not believe that the Shanley principle is in contradiction 
with separation of concerns and that it effortlessly steps 
from Jackson’s, World (i.e. problem space from which we 
derive our requirements) to his Machine (i.e. the solution 
space from which we create our system that satisfies these 
requirements). Separation of concerns is important when 
we build the ‘machine’ for managing complexity of the 
interrelationships in an ‘intransigently informal world’, but 
when a solution is actually deployed, the ‘world’ or the 
deployment environment may give the implementation 
different functions, which are often beyond the control of 
the creators of the solution. A word processor of today not 
only helps create electronic documents, it also helps ensure 
that the document has correct grammar and that the 
document is readable with proper formatting.  

Since our essential goal is to reason about 
architectures, we deal with components at an abstraction 
level that is meaningful for component composition. 
Quantum Mechanics has turned Newtonian physics upside 
down but even then Newtonian physics does a reasonable 
job at explaining natural phenomena of objects bigger than 
sub-atomic particles.  

It should thus come as no surprise that we hinge our 
abstract architectural model on a not-so-novel idea of 
separation of concerns. Our architectural model is 
supported by the three key constructs of architectural 
elements, architectural composition and architectural 
regions. The architectural elements serve to capture the 
elements of the architecture i.e. the components and 
connectors. For each architectural element we capture the 
service specifications, dependency specifications and the 
general constraints. The general constraints are categorized 
into functional and non-functional constraints. Together 
with the service and dependency specifications, the 
functional constraints captured as part of general 
constraints identify the requirements of the ‘world’ that the 
architectural element solves i.e. the “What”, while the non-

functional constraints capture the system requirements that 
need to be satisfied for delivering the ‘machine’ – i.e., the 
“How”.   The architecture composition and architectural 
region constructs are intended to capture the form of the 
architecture. These two constructs focus on capturing 
information that is relevant for performing compositional 
analysis – their purpose being quite different from 
capturing the needs or functionality of individual 
components 
 
3. Approach for Specifications 

 
Our primary goal is to create an abstract model of 

software architecture components 1) to support reasoning 
about component composition and 2) to provide a basis for 
constraint based architecture evaluation. An important 
secondary goal is to support the reasoning about 
component substitution (i.e. component reuse and 
component evolution).  We expect the structure of an 
abstract model that satisfies our primary goals to satisfy 
our secondary goal as well. In this section we discuss the 
approach for the specifications. 
 
3.1 Specifying Software Architectures 
 

Software Architectures are generally thought of in one 
of two ways: as prescriptions or as descriptions. There are 
good reasons for both approaches and the need for each is 
largely dependent on its use. The differences are as 
follows: an architectural prescription defines the 
important constraints on the architecture – i.e. it defines 
the important, but not necessarily all, components and 
connectors, their critical properties (though again, not 
necessarily all of them), and the critical relationship and 
interactions among the components of that architecture. 
What is prescribed is necessary; what is not mentioned is 
allowed as needed in completing the remaining design at 
both the architectural and the lower levels of design. An 
architectural description on the other hand defines the 
complete architecture; what is not described is not 
allowed. The former is usually under-constrained, while 
the latter is precisely constrained (though it may often be 
over constrained). The former is usually described with 
constraints while the latter requires a more descriptive 
(and often simpler) architectural language. 

We use a prescriptive approach for this research as the 
constraints provide an extremely useful tie between the 
system drivers and the architectural design, and provide a 
form of self-documenting rationale. Besides, given that an 
iterative development model is fast becoming the norm 
rather than the exception in the industry, it seems that 
building a descriptive architectural model would not be 
possible till the very last iteration, by when most of the 
key architectural and design decisions would already have 
been made. 



 
3.2 Degree of Formalism in the Specifications 
 

Within the context of architectural prescriptions, the 
specification technique  used for this research was an 
important consideration. We needed a computable 
representation that was flexible. It was desirable that the 
representation was expressive while not compromising on 
the kind of information that could be modeled.  

Informal methods are very flexible in form and 
therefore not computable. Leaving interpretation to 
humans inhibits reusability, as the semantics are not tight. 
For this research we need to communicate specifications in 
a way, which would enhance reuse and architectural 
evaluation rather than inhibit effective communication of 
the features/constraints. Hence informal methods were 
found unsuitable for this effort. 

Formal methods have not been used for this research 
primarily because architecture specification has been 
envisioned to be an iterative process, relying on refinement 
from multiple iterations (component capabilities evolve 
and/or requirements specifications evolve). The 
representation we use needs to accommodate both 
evolution and iteration. Such change is not allowed in a 
formal approach as the semantics are strict and 
constraining them becomes a problem due to the iterative 
nature of specification.  

Hence, we rely on semi-formal techniques for 
specification of the software architecture. Semi-formal 
methods (i) enable the accommodation of changes to 
architectural specifications (ii) provide enough 
expressiveness to support effective identification and 
evaluation of architectures and components in an 
architectural context (iii) are easy to understand and 
communicate (iv) does not require special training and is 
widely used. 
 

4. Model for Software Architecture 
 
Our proposal for an architectural model is consistent 

with the initial Perry and Wolf definition of software 
architecture. We propose three abstract constructs as the 
basis for our analysis:   
• Arch-element -- An arch-element can be either a 

component or a connector (while their structure for 
purposes of modeling and analysis is identical, they 
have distinct logical purposes – ie, connectors 
represent interactions among components).  This 
construct represents basic elements in the architecture. 

• Arch-composition – An arch-composition represents 
the sub-architectural structure of an arch-element.  As 
such it represents the substructure of an arch-element 
and must satisfy the interface constraints of that 
element.   The rules of compositional completeness 

govern not only the support of the arch-element 
interface, but the internal interdependencies as well. 

• Arch-region – An arch-region is an arbitrary set of 
arch-elements or arch-compositions and can overlap, 
contain or be contained in other arch-regions. An 
arch-region provides a constraint scoping mechanism.  
As such it represents a collection of arch-elements to 
which a set of constraints apply. 
Before we delve into the specifics of the model, we 

take a slight detour here to explore the main issues with 
component composition so that we comprehend the 
requirements for component composition (to the extent 
possible) into our architectural model. David Garlan 
identified the main issue to be, what he called, 
architectural mismatches [17] and he highlighted several 
implications of this mismatch: excessive code size, poor 
performance, need to modify external packages used 
during the integration (or system composition), the need to 
re-invent existing functionality and an error prone build 
and construction process. The causes for these 
architectural mismatches identified by Garlan were 
inappropriate assumptions about the nature of the 
components and the connectors (i.e. our architectural 
elements), assumptions about the global architecture 
structure and the construction process.  

It is obvious that system integration is an inherently 
complex process and there are no silver bullets for the 
problem. However there is a lot that can be done to 
facilitate this difficult process. We propose to use the 
rationale in our architectural model to document the 
assumptions about the components, the connectors and the 
global architecture structure so that the information is 
available to the system integrator for making optimal 
decisions. Besides, the form in our model will provide 
insight into the global architecture structure which could 
potentially provide guidelines to component developers. 
The non-functional aspects specified in our model would 
also capture information that would be useful during 
system composition. 

For the overall organization of the architecture, we 
introduce the notion of an architectural region. Essentially 
it represents a collection of architectural elements to which 
a set of constraints apply. The concept of regions 
facilitates the specification of targeted rules for a sub-
architecture. These rules could be compositional rules such 
as architectural styles or design patterns, as well as domain 
specific implicit constraints. They help localize constraints 
and make system instantiation easier, as they can 
potentially help promote a loose form of packaging of a set 
of components. Regions influence the form of an 
architecture and will be elaborated further in section 4.2.  

In the next two sub-sections we discuss the models for 
the different elements of our architecture prescriptions. 

 



4.1 The Elements: Components and Connectors 
 
A software architecture specification is partitioned 

into several architectural elements. These architectural 
elements are driven by functional partitioning and also 
introduce the notion of object orientation which helps 
identify the implementation classes later during 
development. The elements of an architecture are the data, 
processing and connecting elements that have a physical 
existence and deliver some services that are either 
functional or non functional in nature. In this preliminary 
model we have not differentiated data, processing and 
connecting elements but conflated them all into arch-
elements.  The reason for this is that while they are 
logically distinct, it is not clear that they are at all 
structurally distinct.  Data elements, of course, are clearly 
structurally distinct from processing and connecting 
elements.  If we find that there are sufficient data elements 
independent of processing and connecting elements, we 
may separate them out as a separate component.   

There is one issue however that may require structural 
differences:  multiple connecting connectors.  Connectors 
have been usually thought of as point to point mechanisms 
that provide the abstractions for communication 
interactions.  However, that is not their only use.  They 
may be used as coordinators and mediators as well.  For 
example, one could imagine a very complex connector that 
serves as a coordinator of fault handling mechanism and 
instead of just one to one connectors, there are obvious 
uses for many to one (multiple clients, one server), one to 
many (broadcast), and many to many (cooperating 
components negotiating or reaching consensus) 
connectors, either with a fixed set of connections or an 
open-ended set of them.  This is an important research 
issue that will need to be solved to complete our 
architecture model.  And of course, connectors may be the 
subjects of architectural composition just as processing 
and data elements are. 

The abstract model captures architectural elements as  
 
arch-element =  
(name, {service specifications },{dependency 
specifications}, {general constraints }) 
 
As mentioned previously an arch-element is qualified 

by the service specifications, the dependency 
specifications and the general constraints. The service 
specifications essentially capture the interface information 
using which other arch-elements can integrate and 
leverage the capabilities provided by the arch-element 
being specified. The dependency specifications help 
capture the ‘needs’ of an arch-element i.e. services that a 
given arch-element depends on. The general constraints 
capture all the functional and non-functional constraint 
that the arch-element needs to satisfy. 

A service specification has a name, a set of input, 
output and general constraints associated with that service.  
Input and output constraints may define the information 
itself or constraints on that information that is needed or 
provided by the specified service.  Example I/O constraints 
might include things like sorted lists of faculty 
descriptions, etc (of course in a semi-formal notation). The 
service specification construct is shown below. 

 
service specification =  
( name,{input constraints },{output constraints }, 
{general service constraints } )  
 
We separate out the dependency specifications from 

service specifications even though dependencies are 
basically the same except they are usually not named.  
These dependency specifications must be satisfied by the 
service specifications of the supporting architectural 
elements.  This separates the formal service interface 
constraints from an arch-element’s dependency interface 
constraints. The representation of the dependency-
specification is shown below. 

 
dependency specification = 
 ({input constraints }, {output constraints }, 
{general dependency constraints }  )   
 
The Input Constraints for the Service and Dependency 

specifications include the Input Data, Input Event and the 
Pre-Conditions constraint, while the Output constraints 
include the Output Data, Output Events and the Post-
Conditions constraints.  The Input and Output Data 
constraints capture the Input Data required for the 
execution of the service and the Output Data generated by 
the service. The Input and Output Events capture the Input 
Events that trigger the execution of the service and the 
Output Events that are generated by the service execution. 
The Pre-Conditions Constraints capture the set of 
conditions (as captured by the arch-element state) that 
need to be satisfied for the service to begin execution 
while the Post-Conditions Constraints capture the arch-
element’s state that should be satisfied upon execution of 
the service. It is to be noted that the pre-condition and 
post-condition constraints help validate that the service 
execution for the arch-element began when the desired set 
of conditions were satisfied and that it delivered the 
desired results.  

General constraints can be classified into functional 
and non-functional constraints, and may represent 
obligations, placement constraints, etc.  We have lumped a 
number of different kinds of constraints under the name 
general constraints.  These may be functional constraints 
indicating the kinds of functionality for a component or 
dependency or these may be non-functional constraints, 
such as performance, fault tolerance, etc. They may also 



be topological constraints indicating placement in a 
distributed system.  Obligations entailed by using a 
particular architectural element may also be represented.  
The construct below shows general constraints  

The non-functional constraints are captured in terms 
of the Quality Attribute Constraints and the Deployment 
Constraints. The Quality Attribute Constraints specifies 
the constraints on the quality attributes for the architectural 
element. These constraints on the quality attributes are 
over and above the arch-element’s services, dependencies 
and the functional constraints. It is important to capture 
these constraints as part of the architectural specification 
because it has often been seen that systems need to be re-
designed not because of any deficiency in supported 
functionality, but because they fail to satisfy requirements 
associated with certain quality attributes such as reliability, 
availability and performance. Thus explicit knowledge of 
these constraints would help in avoiding unacceptable 
system configurations. The Deployment Constraints on the 
other hand capture an architectural element’s deployment 
related constraints such as installation requirements, 
platform dependencies etc. The non-functional constraints 
construct is shown below.  

 
general constraints = 
({functional constraints}, {non-functional 
constraints)   
 
As part of general constraints, the functional 

constraints are intended to lump together different kinds of 
constraints that are associated with the delivery of end user 
functional requirements. As the data managed by an arch-
element is fundamental to the kinds of services that it 
supports, we capture the data associated with an arch-
element using the attribute constraints. Behavioral 
constraints ensure that the arch-element specifications 
comprehend the various states associated with the arch-
element. It is common experience that architectural 
mismatches often happen when integration is done just by 
considering the API and not the implementation logic of 
the associated methods. The functional constraints 
construct is shown below. 

 
non-functional constraints =  
({quality attribute constraints },{deployment 
constraints })  

  
functional-constraints =  Since the details associated with the specification of 

arch-element is quite elaborate, we summarize the above 
with the help of a diagram. Figure 1 summarizes all the 
concepts discussed so far. 

({attribute constraints }, {behavioral constraints })  
 

Arch-element
:name:

Service Specifications
:name:

Input 
Constraints

Output 
Costraints

General Service 
Constraints

Data 
Constraints

Event 
Constraints

Pre/Post Condition 
constraints

General 
Constraints

Dependency 
Specifications

Functional 
Constraints

Non-functional 
Constraints

Attribute 
Constraints

Behavioral 
Constraints

Quality Attribute 
Constraints

Deployment 
Constraints

Figure 1: Architectural Element Specification 



In the rest of this section we elaborate the details 
associated with some of the additional constructs 
mentioned previously.  

The Attribute Constraints capture the data supported 
by the arch-element. An individual attribute constraint is 
qualified by its name, the data elements associated with it 
and any additional constraints that may be applicable. 
Information about the data elements are captured in the 
data element specification while general attribute 
constraints capture additional constraints on the data 
element or the attribute. As an example, the data entity 
‘Address’ which is captured as an attribute may be further 
qualified by the associated data elements such as street 
name, city, zip code and country 

 
attribute constraints =  
(name, { data element specifications },{ general 
attribute  constraints } )  
 
The Behavioral Constraints capture the behavioral 

aspects of an architectural element and is modeled using a 
state chart representation. The dynamic behavior of a 
component is modeled by the following quintuple and is 
termed as a behavioral unit which essentially represents a 
“unit of behavior”. 

 
Behavioral unit  = 
(state, trigger, guard, effects, target) 

 
Figure 2 below identifies each of the above in a state 

chart diagram. 

Figure 2: Behavioral Representation for Architectural 
Elements 
 

The Quality Attribute Constraints specifies the 
constraints on the quality attributes for the arch-element. 
These constraints on the quality attributes are over and 
above the system’s capabilities, services and behavior 
captured in the model. It is important to capture these 
constraints as a part of the specifications because it has 

often been seen that systems need to be re-designed 
because it fails to satisfy certain quality attributes. Hence 
explicit knowledge of a component’s constraints would 
help in avoiding unacceptable system configurations. 

Figure 3 below demonstrates a Quality Attributes 
Constraints. The Quality Attribute Constraints are 
composed of the Runtime Constraints and the Static 
Constraints. The Runtime Constraints captures the 
constraints of the arch-element that are relevant/observable 
during the execution of the element. On the contrary, the 
Static Constraints captures the constraints on the quality 
attributes of the arch-element that are not affected by the 
runtime characteristics. Obviously these constraints are 
optional for an arch-element as all of these together may 
not make sense in different contexts. 

Quality Attribute 
Constraints

Runtime 
Constraints

Static Constraints

Reliability 
Constraints

Availability 
Constraints

Performance 
Constraints

Usability 
Constraints

Modifiability 
Constraints

Portability 
Constraints

Reusability 
Constraints

Integrability 
Constraints

Testability 
Constraints

Security 
Constraints  

Initialization

do: initialize course Open

entry: Register Student
exit: Increment Count

Canceled

do: Notify Registered
Students

Add Student/
Set Count = 0

[ Count = 20]

Cancel

Cancel

Closed

do: Finalize course

Cancel

Add Student [ Count < 20] /count ++

State Target

Trigger

Guard

Effects  
 

The Runtime Constraints captures the Performance, 
Security, Availability, Usability and Reliability related 
constraints. The Performance Constraints are responsible 
for capturing the responsiveness of the system related to 
transactions per unit time, arrival rates and distribution of 
service request, processing times, queue sizes and latency. 
The Security Constraints captures the element’s ability to 
resist unauthorized usage while continuing to provide its 
services to authorized users. The Availability Constraints 
captures the constraints on the availability of the 
architectural element. The usability related constraints are 
captured in the Usability Constraints. The Usability 
constraints are related to Learnability, Efficiency, 
Memorability, Error Avoidance and Error Handling. The 
Reliability Constraints captures the constraints of the 
component related to its consistent performance as per 
specifications. 

Figure 3: The Quality Attribute Constraints Map



The Static Constraints captures Modifiability, 
Portability, Reusability, Integrability and Testability 
constraints of the architectural element. The Modifiability 
Constraints captures issues related to the ease of changing 
or extending capabilities, ease of deleting capabilities, 
adapting to new operating environments, and restructuring 
the internals of the component. The support for the 
system’s ability to run under different computing 
environment is captured in the Portability Constraints. The 
Reusability Constraints help specify the ability of the 
component to be used in different contexts. The issues 
related to the integration of the component to other 
components is captured in the Integrability Constraints 
while the Testability Constraints captures the testability 
related constraints. The testability related constraints are 
typically tied to the arch-element’s observability and 
controllability. 

The Deployment Constraints [Figure 4] captures an 
arch-element’s deployment related constraints. The 
Deployment Constraints are partitioned into the Core 
Infrastructure Constraints and Interaction Constraints.  

D eploym ent 
Constraints

Core 
Infrastructure 

Constraints

Interaction 
Constraints

Com puting 
Platform  Const

D ynam ic 
D isplay Const.

O perating 
System s Const.

R untim e Env. 
Const.

Peripheral Const.

N etwork Support 
Const

D atabase Const

CO TS package 
Const

Architectural 
Elem ent Const.

R untim e 
Libraries Const.

U ser Interface 
Const.

Installation 
Const.

Perform ance 
M onitor Const.

D ata Transport 
Const.

 
 
 

The Core Infrastructure Constraints for an arch-
element captures the requirements for installation of the 
element on its base platform. It specifies the basic 
installation requirements for the component without 

consideration for its interaction with other system 
components. Hence, satisfaction of the Core Infrastructure 
Constraints specification does not imply proper functional 
operation of an arch-element. The Interaction Constraints 
on the other hand, captures the information about how an 
arch-element interacts with other elements in the 
architecture. Satisfaction of all the Deployment Constraint 
specifications, which includes both the Core Infrastructure 
Constraint and the Interaction Constraint specification, 
implies proper deployment of the component in the 
context of the overall architecture. The division of the 
Deployment Constraint into Core Infrastructure 
Constraints and Interaction Constraints was motivated by 
the goal of separately addressing the issues of an arch-
element’s own installation requirements versus its 
requirements for interaction with other arch-elements. The 
information captured in these two sets of constraints would 
help in reasoning over the deployment requirements of the 
arch-element from these two distinct perspectives. These 
constraints are optional and should be used as needed for 
capturing the non-functional specifications of an arch-
element. 

The Core Infrastructure Constraint is composed of the 
Computing Platform Constraint, the Dynamic Display 
Constraint, Operating System Constraint, Runtime 
Environment Constraint, Runtime Libraries Constraint, 
User Interface Constraint, Installation Constraint and the 
Performance Monitor Constraint. The Computing Platform 
Constraint captures information about the base platform on 
which the arch-element needs to be installed. For example, 
these constraints would specify that an arch-element 
should be deployed on an Intel Core 2 Duo series machine 
at a certain clock frequency with 1GB of memory and 80 
GB of hard disk space. The Dynamic Display Constraint 
captures information about the display requirement of the 
arch-element. It captures information like the screen size, 
the vertical and horizontal scan frequency and viewing 
angle of the display for optimal viewing of the arch-
element. These constraints are particularly important for 
graphics based arch-elements where display with a high 
resolution is required for proper viewing. The Operating 
Systems Constraint captures the possible operating 
systems in which the arch-element can be installed and 
executed. For example, this constraint specifies whether a 
particular software should execute on Windows 2000 as 
well as Windows XP. The Runtime Environment 
Constraint details the runtime environment information of 
the arch-elements while the Runtime Libraries Constraint 
captures information about the runtime libraries required 
for correct operation. The User Interface Constraint 
specifies the UI features that should be supported by the 
arch-element. The Installation Constraint captures the 
information of the installation requirements. It specifies 
information about the directory where the arch-element is 

Figure 4: The Deployment Constraints 



to be installed, the system files that are modified, the files 
that are placed in the system directory, the registry 
changes (in the case of Windows applications) made, etc. 
The Performance Monitor Constraint helps specify the 
details about performance monitors for the arch-element.  

The Interaction Constraints are an aggregate of the 
Peripheral Constraints, the Network Support Constraints, 
the Database Constraints, the COTS Package Constraints, 
the Architectural Element Constraints and the Data 
Transport Constraints. The Peripheral Constraints details 
the peripheral dependencies of the arch-element. For 
example, if an arch-element transmits real-time data from a 
wireless computing platform, it would require a wireless 
modem. The Network Support Constraints captures 
information about bandwidth, throughput and other 
network related requirements for proper operation while 
the Database Constraints specifies the database(s) that the 
arch-element needs to interact with. The Middleware 
Constraints specifies the middleware requirements for the 
arch element and the COTS Package Constraints captures 
the dependencies on COTS packages. The Architecture 
Elements Constraints identifies the other arch-elements 
that the arch-element being specified interacts with. 
Finally, the Data Transport Constraints captures 
information about the way data is transported from the 
arch-element being specified to other arch-elements. 
 

4.2 Form 
 

By the Perry Wolf definition, the form is a set of 
weighted properties and relationships among components 
and connectors. A form defines constraints on the 
components and connectors and how they are placed 
relative to each other and how they interact. 

Research and experience with software building over 
the years has resulted in the codification of collective 
experience of skilled designers, architects and software 
engineers. These proven solutions to recurring design 
problems are popularly known as patterns. Different kinds 
of patterns have been proposed – Architectural Patterns 
[7], Design Patterns [6] and Idioms. These help define the 
relationship between different components under given 
constraints and is relevant to the form of a software 
architecture. They generally impose a rule on the 
architecture that specifies how the system will handle a 
given aspect of functionality [2]. Architectural Styles is 
another concept that is relevant to the form of an 
architecture. Styles essentially abstract arch-element and 
the formal aspects from various architectures. They are 
often less constrained than specific architectures. Different 
architectural styles such as the pipe and filter, layered or 
blackboard promotes different quality attributes for a 
software system when they are defined at a global level. 
Several architectural styles can also be merged in a 
software architecture as long as the constraints of the two 

styles do not conflict. An example of two styles in an 
architecture is provided in Perry and Wolf 1992 [2]. Styles 
can also be applied in a localized fashion. Application of 
architectural styles helps define the form of an 
architecture. 

The key constructs of our model that are relevant to 
the form of an architecture are architectural composition 
and architectural region. As explained previously, 
architecture composition represents the sub-architectural 
structure of an arch-element while architectural region 
provides a construct scoping mechanism and represents a 
collection of arch-element to which a set of constraints 
apply. These two constructs are demonstrated below 

 
arch-composition =   
( name, { arch-elements }, { mappings }) 
 
arch-region = ( Descriptor,{ arch-elements | arch-
compositions }, { general constraints } ) 
 
While arch-composition and arch-region are the two 

fundamental concepts of our model, we also provide a 
construct for capturing the generic form of an architecture. 
The purpose of this construct is to capture in a granular 
fashion the different elements that make up the form. 

The form of an architecture can be influenced by both 
functional as well as non-functional requirements.  For a 
given software architecture model, the form needs to be 
specified at a global level and/or at a local level i.e. for an 
architectural region or sub-architecture , as for complex 
systems it may be impossible to specify the form at a 
global level. The form of architecture is modeled as in 
Figure 5. 
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Figure 5: Architectural Form 

 



A given style or a pattern is represented as a Form Unit 
in our model. Thus a subject observer pattern is a form unit 
with multiple Form Unit Mappings, where each form unit 
is represented by an Architectural Element Pair, the Rule 
for the relationship between the pair and the Cardinality 
between the pair. One arch-element is common across all 
the Form Unit Mappings for the subject observer pattern 
and serves as the Subject. The second component in the 
Arch Element Pair for the form unit mappings represents 
the Observers.  

 
4.3 Rationale 
 

The rationale in our architecture model is the set of 
justifications for the choice of elements and formal aspects 
of the architecture. A rationale ties architectural design 
decisions to various system drivers – for example 
decisions may be tied to functionality requirements from 
the user, non functional system constraints, market 
requirements and business strategies. In fact the 
constraints mentioned earlier in this paper provide an 
extremely useful tie between system drivers and the 
architectural design; they provide a form of self-
documenting rationale.  

In our model we treat rationale as atomic units that 
may be associated with any aspect of our specification. 
They are sprinkled over every facet of our architecture. 
Off course these can be later categorized into convenient 
groups but we do not model rationale using either a 
hierarchy or decomposition to reinforce the fact that 
justifications for an architectural decision is often 
independent of the level of abstraction for which a design 
decision is needed. 

 

5. Example Software Architecture and 
Usefulness of Proposed Model 
 
The proposed approach for specification was used for 

documenting the architecture of the tool EASE 
(Environment for Architecture Specification and 
Evaluation), that is being built as part of this research.  

Summary information about the architecture is given 
in the table below. 

 
 Architectural Element No. of 

Services 
1. Architecture Compliance Metrics 

Evaluator 
8 

2. Component Characteristic Metrics 
Evaluator 

14 

3. System Configuration Metrics 
Evaluator 

12 

4. Architectural Style Predictor 8 
5. Architectural Divergence 10 

Calculator 
6. Architectural Drift Calculator 3 
7. Architectural Erosion Calculator 3 
8. Report Generator 7 
9. Display Manager. 4 

Table 1: EASE Architecture 
 
The details associated with the architecture cannot be 

presented here due to constraints of space. We present the 
abstract model for EASE with only one of the arch-
elements highlighted in Figure 6. 

 
Figure 6: Example Architectural Specification 
 
Several architectural analysis techniques have been 

developed based on our abstract architectural model. We 
briefly mention each of these below. 

 
Contextual Reusability Metrics [25]: A set of contextual 
metrics have been developed that provide a mechanism for 
a quantitative evaluation of software component reuse in 
the context of architecture requirements (functional and 
data) and architecture structure.  We leverage the 
requirements represented within an architectural 
specification to provide the context for a component to 
evaluate the compliance of these components to the 
architectural specification, to assess the similarity between 
components, the component’s coverage of the architectural 
description, as well as numerically tracking the evolution 
of a component in terms of the specification. Our 
reusability assessment goes beyond simple interface 
matching and helps system integrators explore behavioral 
characteristics of components as well. These metrics 
provide a quantitative mechanism for assessing reusability 
leveraging the context of a component. 
 
Predicting Emergent Properties of Systems [26]: We have 
also developed an approach for reasoning about 
architectural styles using the specification approach 
explained in this paper. With our style prediction proposal, 
not only will a System Architect have the ability to 
evaluate several deployment options but will also have the 
ability to get a sense of the quality attributes of the final 
system before actual construction. We can also use our 
approach to determine the conformance of a system 



configuration to a particular style.  This will be 
particularly useful during the evolution of a system to 
detect either architectural drift, or architectural erosion 
 
Assessment of System Evolution [27]: Using our abstract 
architectural model, we have also developed a 
methodology for the architectural assessment of system 
evolution. We have proposed as set of architectural 
divergence, drift and erosion indicators that provide 
objective measures for the assessment of system change.  
 
6. Summary 
 

In this paper we propose an architectural model for 
documenting the specifications of architectural elements, 
the form of the architecture as well as the justifications for 
the different design decisions. It is envisioned that an 
architecture described using our architectural 
specifications model can be instantiated using asset 
components that are registered against individual 
architectural elements. The architecture specification 
model enables architecture evaluation for assessing 
reusability potential, for predicting emergent properties of 
system as well as for tracking system evolution. 
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