
An Abstract Architectural Model for Composition, Analysis and Evaluation
Sutirtha Bhattacharya, Dewayne E. Perry

Empirical Software Engineering Lab (ESEL)
ECE, The University of Texas at Austin

Austin, TX 78712
sutirtha.bhattacharya@intel.com

perry@ece.utexas.edu

Abstract
Perry and Wolf [2] introduced a general model for

software architecture. Since then a number of architecture
descriptions languages (ADLs) as well as a variety of
architecture definitions have been introduced. None of
these languages or definitions has provided an explicit
model sufficient to support the needs of architecture
composition, analysis and evaluation. In this paper, we
introduce such a model, an abstract model sufficiently rich
to support the above mentioned needs of. We explain and
illustrate this model, provide an architectural example, and
outline its usefulness.

Keywords
Software Architecture, Architectural Model, Composition,
Analysis, Evaluation, and Reuse

1. Introduction

Laying the foundations of software development as an
engineering discipline continues to challenge both
researchers and practitioners. We often look to other
disciplines for inspiration and “aspire to emulate their
enviably well established repertoires of theoretical
foundations and practical disciplines” [1]. What makes
software so different? Why has software not lived up to
the promise of standardization and reuse that would make
building new software much easier? Is it the immaturity
of the field, or is it the complexity of a discipline that
spans a wide variety of application domains?

It is fair to say that the software domain cannot be
comprehensively bounded in even by the four kinds of
Denial identified by Jackson [1]. It may unfortunately be
true that, we software engineers have not been able to
clearly define our domain of influence between the World
and the Machine. We have reached out for both with an
equal intensity and in the process blurred the foundations
upon which standards might evolve. But off course, we
can take comfort in the saying that “great undertakings
involve great risks” and it is unlikely anybody would
challenge the assertion that it indeed is a great undertaking
and has been a fascinating journey. It is with the help of

software that we have peered into planet Mars and have
predicted weather patterns around the globe.

Doug McIlroy’s prediction in 1968 that mass-
produced software components would end the so-called
“software crises” has not materialized as yet. However,
research and industrial experience over the years has led to
the recognition that component-based software systems do
provide substantial software engineering benefits.

When a system is made up of multiple modules or
components, it is not hard to infer that there needs to be a
framework in which these modules or components exist
and operate. This overall framework is popularly known as
the software architecture. A software architecture has been
defined by Perry and Wolf as a triple of elements, form
and rationale [2]. Since then, processing, data and
connecting elements have been conflated into components
and connectors which make up the elements of a system.
The form is a set of weighted properties and defines the
relationships between components and connectors, while
the rationale is a set of justifications for the choice of
elements and formal aspects of the software. While this
definition of software architecture has been widely
accepted for many years now, there has been little work
done to define an architectural specification model based
on this definition on which rules of composition can be
applied to build complex systems out of components.

In this paper we propose an approach for modeling the
elements and for specifying the form of an architecture to
facilitate reasoning about compositions and for evaluating
software architectures early in the development cycle. In
section 2 we discuss the need for separation of concerns.
The approach used for the modeling is described in section
3. Section 4 discusses the proposed model while section 5
provides an example software architecture that illustrates
the abstract model and outlines its usefulness. Section 7
concludes the paper.

2. Separation of Concerns

Divide and Conquer has been widely acknowledged
as a fundamental strategy in software engineering and
computer science. We see it in sorting algorithms, it
appears in multiplication of polynomials. In fact it is the
seed idea that has spearheaded progress in operating

mailto:sutirtha.bhattacharya@intel.com

systems and programming languages. The question is, how
relevant is to architectural design?

In this context it is important to discuss the Shanley
principle that was highlighted as a rule for efficient design
by Arnoul de Marneffe [3], who in turn was quoted by
Knuth [4] in his paper on Structured programming and
then by Michael Jackson in his ICSE17 keynote talk [1].
The idea behind the Shanley principle is that one part can
perform multiple functions. This has been wonderfully
explained by Jackson as “the architecture of the world has
been designed with the fullest possible application of the
Shanley Principle”. In software, the statement that any
software system has multiple stakeholders has no novelty
in it and is indeed trite – which essentially means that the
same software satisfies different functions for the different
stakeholders involved. If it did not, we wouldn’t need to
worry about multiple stakeholders of the system. We do
not believe that the Shanley principle is in contradiction
with separation of concerns and that it effortlessly steps
from Jackson’s, World (i.e. problem space from which we
derive our requirements) to his Machine (i.e. the solution
space from which we create our system that satisfies these
requirements). Separation of concerns is important when
we build the ‘machine’ for managing complexity of the
interrelationships in an ‘intransigently informal world’, but
when a solution is actually deployed, the ‘world’ or the
deployment environment may give the implementation
different functions, which are often beyond the control of
the creators of the solution. A word processor of today not
only helps create electronic documents, it also helps ensure
that the document has correct grammar and that the
document is readable with proper formatting.

Since our essential goal is to reason about
architectures, we deal with components at an abstraction
level that is meaningful for component composition.
Quantum Mechanics has turned Newtonian physics upside
down but even then Newtonian physics does a reasonable
job at explaining natural phenomena of objects bigger than
sub-atomic particles.

It should thus come as no surprise that we hinge our
abstract architectural model on a not-so-novel idea of
separation of concerns. Our architectural model is
supported by the three key constructs of architectural
elements, architectural composition and architectural
regions. The architectural elements serve to capture the
elements of the architecture i.e. the components and
connectors. For each architectural element we capture the
service specifications, dependency specifications and the
general constraints. The general constraints are categorized
into functional and non-functional constraints. Together
with the service and dependency specifications, the
functional constraints captured as part of general
constraints identify the requirements of the ‘world’ that the
architectural element solves i.e. the “What”, while the non-

functional constraints capture the system requirements that
need to be satisfied for delivering the ‘machine’ – i.e., the
“How”. The architecture composition and architectural
region constructs are intended to capture the form of the
architecture. These two constructs focus on capturing
information that is relevant for performing compositional
analysis – their purpose being quite different from
capturing the needs or functionality of individual
components

3. Approach for Specifications

Our primary goal is to create an abstract model of

software architecture components 1) to support reasoning
about component composition and 2) to provide a basis for
constraint based architecture evaluation. An important
secondary goal is to support the reasoning about
component substitution (i.e. component reuse and
component evolution). We expect the structure of an
abstract model that satisfies our primary goals to satisfy
our secondary goal as well. In this section we discuss the
approach for the specifications.

3.1 Specifying Software Architectures

Software Architectures are generally thought of in one
of two ways: as prescriptions or as descriptions. There are
good reasons for both approaches and the need for each is
largely dependent on its use. The differences are as
follows: an architectural prescription defines the
important constraints on the architecture – i.e. it defines
the important, but not necessarily all, components and
connectors, their critical properties (though again, not
necessarily all of them), and the critical relationship and
interactions among the components of that architecture.
What is prescribed is necessary; what is not mentioned is
allowed as needed in completing the remaining design at
both the architectural and the lower levels of design. An
architectural description on the other hand defines the
complete architecture; what is not described is not
allowed. The former is usually under-constrained, while
the latter is precisely constrained (though it may often be
over constrained). The former is usually described with
constraints while the latter requires a more descriptive
(and often simpler) architectural language.

We use a prescriptive approach for this research as the
constraints provide an extremely useful tie between the
system drivers and the architectural design, and provide a
form of self-documenting rationale. Besides, given that an
iterative development model is fast becoming the norm
rather than the exception in the industry, it seems that
building a descriptive architectural model would not be
possible till the very last iteration, by when most of the
key architectural and design decisions would already have
been made.

3.2 Degree of Formalism in the Specifications

Within the context of architectural prescriptions, the
specification technique used for this research was an
important consideration. We needed a computable
representation that was flexible. It was desirable that the
representation was expressive while not compromising on
the kind of information that could be modeled.

Informal methods are very flexible in form and
therefore not computable. Leaving interpretation to
humans inhibits reusability, as the semantics are not tight.
For this research we need to communicate specifications in
a way, which would enhance reuse and architectural
evaluation rather than inhibit effective communication of
the features/constraints. Hence informal methods were
found unsuitable for this effort.

Formal methods have not been used for this research
primarily because architecture specification has been
envisioned to be an iterative process, relying on refinement
from multiple iterations (component capabilities evolve
and/or requirements specifications evolve). The
representation we use needs to accommodate both
evolution and iteration. Such change is not allowed in a
formal approach as the semantics are strict and
constraining them becomes a problem due to the iterative
nature of specification.

Hence, we rely on semi-formal techniques for
specification of the software architecture. Semi-formal
methods (i) enable the accommodation of changes to
architectural specifications (ii) provide enough
expressiveness to support effective identification and
evaluation of architectures and components in an
architectural context (iii) are easy to understand and
communicate (iv) does not require special training and is
widely used.

4. Model for Software Architecture

Our proposal for an architectural model is consistent

with the initial Perry and Wolf definition of software
architecture. We propose three abstract constructs as the
basis for our analysis:
• Arch-element -- An arch-element can be either a

component or a connector (while their structure for
purposes of modeling and analysis is identical, they
have distinct logical purposes – ie, connectors
represent interactions among components). This
construct represents basic elements in the architecture.

• Arch-composition – An arch-composition represents
the sub-architectural structure of an arch-element. As
such it represents the substructure of an arch-element
and must satisfy the interface constraints of that
element. The rules of compositional completeness

govern not only the support of the arch-element
interface, but the internal interdependencies as well.

• Arch-region – An arch-region is an arbitrary set of
arch-elements or arch-compositions and can overlap,
contain or be contained in other arch-regions. An
arch-region provides a constraint scoping mechanism.
As such it represents a collection of arch-elements to
which a set of constraints apply.
Before we delve into the specifics of the model, we

take a slight detour here to explore the main issues with
component composition so that we comprehend the
requirements for component composition (to the extent
possible) into our architectural model. David Garlan
identified the main issue to be, what he called,
architectural mismatches [17] and he highlighted several
implications of this mismatch: excessive code size, poor
performance, need to modify external packages used
during the integration (or system composition), the need to
re-invent existing functionality and an error prone build
and construction process. The causes for these
architectural mismatches identified by Garlan were
inappropriate assumptions about the nature of the
components and the connectors (i.e. our architectural
elements), assumptions about the global architecture
structure and the construction process.

It is obvious that system integration is an inherently
complex process and there are no silver bullets for the
problem. However there is a lot that can be done to
facilitate this difficult process. We propose to use the
rationale in our architectural model to document the
assumptions about the components, the connectors and the
global architecture structure so that the information is
available to the system integrator for making optimal
decisions. Besides, the form in our model will provide
insight into the global architecture structure which could
potentially provide guidelines to component developers.
The non-functional aspects specified in our model would
also capture information that would be useful during
system composition.

For the overall organization of the architecture, we
introduce the notion of an architectural region. Essentially
it represents a collection of architectural elements to which
a set of constraints apply. The concept of regions
facilitates the specification of targeted rules for a sub-
architecture. These rules could be compositional rules such
as architectural styles or design patterns, as well as domain
specific implicit constraints. They help localize constraints
and make system instantiation easier, as they can
potentially help promote a loose form of packaging of a set
of components. Regions influence the form of an
architecture and will be elaborated further in section 4.2.

In the next two sub-sections we discuss the models for
the different elements of our architecture prescriptions.

4.1 The Elements: Components and Connectors

A software architecture specification is partitioned

into several architectural elements. These architectural
elements are driven by functional partitioning and also
introduce the notion of object orientation which helps
identify the implementation classes later during
development. The elements of an architecture are the data,
processing and connecting elements that have a physical
existence and deliver some services that are either
functional or non functional in nature. In this preliminary
model we have not differentiated data, processing and
connecting elements but conflated them all into arch-
elements. The reason for this is that while they are
logically distinct, it is not clear that they are at all
structurally distinct. Data elements, of course, are clearly
structurally distinct from processing and connecting
elements. If we find that there are sufficient data elements
independent of processing and connecting elements, we
may separate them out as a separate component.

There is one issue however that may require structural
differences: multiple connecting connectors. Connectors
have been usually thought of as point to point mechanisms
that provide the abstractions for communication
interactions. However, that is not their only use. They
may be used as coordinators and mediators as well. For
example, one could imagine a very complex connector that
serves as a coordinator of fault handling mechanism and
instead of just one to one connectors, there are obvious
uses for many to one (multiple clients, one server), one to
many (broadcast), and many to many (cooperating
components negotiating or reaching consensus)
connectors, either with a fixed set of connections or an
open-ended set of them. This is an important research
issue that will need to be solved to complete our
architecture model. And of course, connectors may be the
subjects of architectural composition just as processing
and data elements are.

The abstract model captures architectural elements as

arch-element =
(name, {service specifications },{dependency
specifications}, {general constraints })

As mentioned previously an arch-element is qualified

by the service specifications, the dependency
specifications and the general constraints. The service
specifications essentially capture the interface information
using which other arch-elements can integrate and
leverage the capabilities provided by the arch-element
being specified. The dependency specifications help
capture the ‘needs’ of an arch-element i.e. services that a
given arch-element depends on. The general constraints
capture all the functional and non-functional constraint
that the arch-element needs to satisfy.

A service specification has a name, a set of input,
output and general constraints associated with that service.
Input and output constraints may define the information
itself or constraints on that information that is needed or
provided by the specified service. Example I/O constraints
might include things like sorted lists of faculty
descriptions, etc (of course in a semi-formal notation). The
service specification construct is shown below.

service specification =
(name,{input constraints },{output constraints },
{general service constraints })

We separate out the dependency specifications from

service specifications even though dependencies are
basically the same except they are usually not named.
These dependency specifications must be satisfied by the
service specifications of the supporting architectural
elements. This separates the formal service interface
constraints from an arch-element’s dependency interface
constraints. The representation of the dependency-
specification is shown below.

dependency specification =
 ({input constraints }, {output constraints },
{general dependency constraints })

The Input Constraints for the Service and Dependency

specifications include the Input Data, Input Event and the
Pre-Conditions constraint, while the Output constraints
include the Output Data, Output Events and the Post-
Conditions constraints. The Input and Output Data
constraints capture the Input Data required for the
execution of the service and the Output Data generated by
the service. The Input and Output Events capture the Input
Events that trigger the execution of the service and the
Output Events that are generated by the service execution.
The Pre-Conditions Constraints capture the set of
conditions (as captured by the arch-element state) that
need to be satisfied for the service to begin execution
while the Post-Conditions Constraints capture the arch-
element’s state that should be satisfied upon execution of
the service. It is to be noted that the pre-condition and
post-condition constraints help validate that the service
execution for the arch-element began when the desired set
of conditions were satisfied and that it delivered the
desired results.

General constraints can be classified into functional
and non-functional constraints, and may represent
obligations, placement constraints, etc. We have lumped a
number of different kinds of constraints under the name
general constraints. These may be functional constraints
indicating the kinds of functionality for a component or
dependency or these may be non-functional constraints,
such as performance, fault tolerance, etc. They may also

be topological constraints indicating placement in a
distributed system. Obligations entailed by using a
particular architectural element may also be represented.
The construct below shows general constraints

The non-functional constraints are captured in terms
of the Quality Attribute Constraints and the Deployment
Constraints. The Quality Attribute Constraints specifies
the constraints on the quality attributes for the architectural
element. These constraints on the quality attributes are
over and above the arch-element’s services, dependencies
and the functional constraints. It is important to capture
these constraints as part of the architectural specification
because it has often been seen that systems need to be re-
designed not because of any deficiency in supported
functionality, but because they fail to satisfy requirements
associated with certain quality attributes such as reliability,
availability and performance. Thus explicit knowledge of
these constraints would help in avoiding unacceptable
system configurations. The Deployment Constraints on the
other hand capture an architectural element’s deployment
related constraints such as installation requirements,
platform dependencies etc. The non-functional constraints
construct is shown below.

general constraints =
({functional constraints}, {non-functional
constraints)

As part of general constraints, the functional

constraints are intended to lump together different kinds of
constraints that are associated with the delivery of end user
functional requirements. As the data managed by an arch-
element is fundamental to the kinds of services that it
supports, we capture the data associated with an arch-
element using the attribute constraints. Behavioral
constraints ensure that the arch-element specifications
comprehend the various states associated with the arch-
element. It is common experience that architectural
mismatches often happen when integration is done just by
considering the API and not the implementation logic of
the associated methods. The functional constraints
construct is shown below.

non-functional constraints =
({quality attribute constraints },{deployment
constraints })

functional-constraints = Since the details associated with the specification of

arch-element is quite elaborate, we summarize the above
with the help of a diagram. Figure 1 summarizes all the
concepts discussed so far.

({attribute constraints }, {behavioral constraints })

Arch-element
:name:

Service Specifications
:name:

Input
Constraints

Output
Costraints

General Service
Constraints

Data
Constraints

Event
Constraints

Pre/Post Condition
constraints

General
Constraints

Dependency
Specifications

Functional
Constraints

Non-functional
Constraints

Attribute
Constraints

Behavioral
Constraints

Quality Attribute
Constraints

Deployment
Constraints

Figure 1: Architectural Element Specification

In the rest of this section we elaborate the details
associated with some of the additional constructs
mentioned previously.

The Attribute Constraints capture the data supported
by the arch-element. An individual attribute constraint is
qualified by its name, the data elements associated with it
and any additional constraints that may be applicable.
Information about the data elements are captured in the
data element specification while general attribute
constraints capture additional constraints on the data
element or the attribute. As an example, the data entity
‘Address’ which is captured as an attribute may be further
qualified by the associated data elements such as street
name, city, zip code and country

attribute constraints =
(name, { data element specifications },{ general
attribute constraints })

The Behavioral Constraints capture the behavioral

aspects of an architectural element and is modeled using a
state chart representation. The dynamic behavior of a
component is modeled by the following quintuple and is
termed as a behavioral unit which essentially represents a
“unit of behavior”.

Behavioral unit =
(state, trigger, guard, effects, target)

Figure 2 below identifies each of the above in a state

chart diagram.

Figure 2: Behavioral Representation for Architectural
Elements

The Quality Attribute Constraints specifies the
constraints on the quality attributes for the arch-element.
These constraints on the quality attributes are over and
above the system’s capabilities, services and behavior
captured in the model. It is important to capture these
constraints as a part of the specifications because it has

often been seen that systems need to be re-designed
because it fails to satisfy certain quality attributes. Hence
explicit knowledge of a component’s constraints would
help in avoiding unacceptable system configurations.

Figure 3 below demonstrates a Quality Attributes
Constraints. The Quality Attribute Constraints are
composed of the Runtime Constraints and the Static
Constraints. The Runtime Constraints captures the
constraints of the arch-element that are relevant/observable
during the execution of the element. On the contrary, the
Static Constraints captures the constraints on the quality
attributes of the arch-element that are not affected by the
runtime characteristics. Obviously these constraints are
optional for an arch-element as all of these together may
not make sense in different contexts.

Quality Attribute
Constraints

Runtime
Constraints

Static Constraints

Reliability
Constraints

Availability
Constraints

Performance
Constraints

Usability
Constraints

Modifiability
Constraints

Portability
Constraints

Reusability
Constraints

Integrability
Constraints

Testability
Constraints

Security
Constraints

Initialization

do: initialize course Open

entry: Register Student
exit: Increment Count

Canceled

do: Notify Registered
Students

Add Student/
Set Count = 0

[Count = 20]

Cancel

Cancel

Closed

do: Finalize course

Cancel

Add Student [Count < 20] /count ++

State Target

Trigger

Guard

Effects

The Runtime Constraints captures the Performance,
Security, Availability, Usability and Reliability related
constraints. The Performance Constraints are responsible
for capturing the responsiveness of the system related to
transactions per unit time, arrival rates and distribution of
service request, processing times, queue sizes and latency.
The Security Constraints captures the element’s ability to
resist unauthorized usage while continuing to provide its
services to authorized users. The Availability Constraints
captures the constraints on the availability of the
architectural element. The usability related constraints are
captured in the Usability Constraints. The Usability
constraints are related to Learnability, Efficiency,
Memorability, Error Avoidance and Error Handling. The
Reliability Constraints captures the constraints of the
component related to its consistent performance as per
specifications.

Figure 3: The Quality Attribute Constraints Map

The Static Constraints captures Modifiability,
Portability, Reusability, Integrability and Testability
constraints of the architectural element. The Modifiability
Constraints captures issues related to the ease of changing
or extending capabilities, ease of deleting capabilities,
adapting to new operating environments, and restructuring
the internals of the component. The support for the
system’s ability to run under different computing
environment is captured in the Portability Constraints. The
Reusability Constraints help specify the ability of the
component to be used in different contexts. The issues
related to the integration of the component to other
components is captured in the Integrability Constraints
while the Testability Constraints captures the testability
related constraints. The testability related constraints are
typically tied to the arch-element’s observability and
controllability.

The Deployment Constraints [Figure 4] captures an
arch-element’s deployment related constraints. The
Deployment Constraints are partitioned into the Core
Infrastructure Constraints and Interaction Constraints.

D eploym ent
Constraints

Core
Infrastructure

Constraints

Interaction
Constraints

Com puting
Platform Const

D ynam ic
D isplay Const.

O perating
System s Const.

R untim e Env.
Const.

Peripheral Const.

N etwork Support
Const

D atabase Const

CO TS package
Const

Architectural
Elem ent Const.

R untim e
Libraries Const.

U ser Interface
Const.

Installation
Const.

Perform ance
M onitor Const.

D ata Transport
Const.

The Core Infrastructure Constraints for an arch-
element captures the requirements for installation of the
element on its base platform. It specifies the basic
installation requirements for the component without

consideration for its interaction with other system
components. Hence, satisfaction of the Core Infrastructure
Constraints specification does not imply proper functional
operation of an arch-element. The Interaction Constraints
on the other hand, captures the information about how an
arch-element interacts with other elements in the
architecture. Satisfaction of all the Deployment Constraint
specifications, which includes both the Core Infrastructure
Constraint and the Interaction Constraint specification,
implies proper deployment of the component in the
context of the overall architecture. The division of the
Deployment Constraint into Core Infrastructure
Constraints and Interaction Constraints was motivated by
the goal of separately addressing the issues of an arch-
element’s own installation requirements versus its
requirements for interaction with other arch-elements. The
information captured in these two sets of constraints would
help in reasoning over the deployment requirements of the
arch-element from these two distinct perspectives. These
constraints are optional and should be used as needed for
capturing the non-functional specifications of an arch-
element.

The Core Infrastructure Constraint is composed of the
Computing Platform Constraint, the Dynamic Display
Constraint, Operating System Constraint, Runtime
Environment Constraint, Runtime Libraries Constraint,
User Interface Constraint, Installation Constraint and the
Performance Monitor Constraint. The Computing Platform
Constraint captures information about the base platform on
which the arch-element needs to be installed. For example,
these constraints would specify that an arch-element
should be deployed on an Intel Core 2 Duo series machine
at a certain clock frequency with 1GB of memory and 80
GB of hard disk space. The Dynamic Display Constraint
captures information about the display requirement of the
arch-element. It captures information like the screen size,
the vertical and horizontal scan frequency and viewing
angle of the display for optimal viewing of the arch-
element. These constraints are particularly important for
graphics based arch-elements where display with a high
resolution is required for proper viewing. The Operating
Systems Constraint captures the possible operating
systems in which the arch-element can be installed and
executed. For example, this constraint specifies whether a
particular software should execute on Windows 2000 as
well as Windows XP. The Runtime Environment
Constraint details the runtime environment information of
the arch-elements while the Runtime Libraries Constraint
captures information about the runtime libraries required
for correct operation. The User Interface Constraint
specifies the UI features that should be supported by the
arch-element. The Installation Constraint captures the
information of the installation requirements. It specifies
information about the directory where the arch-element is

Figure 4: The Deployment Constraints

to be installed, the system files that are modified, the files
that are placed in the system directory, the registry
changes (in the case of Windows applications) made, etc.
The Performance Monitor Constraint helps specify the
details about performance monitors for the arch-element.

The Interaction Constraints are an aggregate of the
Peripheral Constraints, the Network Support Constraints,
the Database Constraints, the COTS Package Constraints,
the Architectural Element Constraints and the Data
Transport Constraints. The Peripheral Constraints details
the peripheral dependencies of the arch-element. For
example, if an arch-element transmits real-time data from a
wireless computing platform, it would require a wireless
modem. The Network Support Constraints captures
information about bandwidth, throughput and other
network related requirements for proper operation while
the Database Constraints specifies the database(s) that the
arch-element needs to interact with. The Middleware
Constraints specifies the middleware requirements for the
arch element and the COTS Package Constraints captures
the dependencies on COTS packages. The Architecture
Elements Constraints identifies the other arch-elements
that the arch-element being specified interacts with.
Finally, the Data Transport Constraints captures
information about the way data is transported from the
arch-element being specified to other arch-elements.

4.2 Form

By the Perry Wolf definition, the form is a set of
weighted properties and relationships among components
and connectors. A form defines constraints on the
components and connectors and how they are placed
relative to each other and how they interact.

Research and experience with software building over
the years has resulted in the codification of collective
experience of skilled designers, architects and software
engineers. These proven solutions to recurring design
problems are popularly known as patterns. Different kinds
of patterns have been proposed – Architectural Patterns
[7], Design Patterns [6] and Idioms. These help define the
relationship between different components under given
constraints and is relevant to the form of a software
architecture. They generally impose a rule on the
architecture that specifies how the system will handle a
given aspect of functionality [2]. Architectural Styles is
another concept that is relevant to the form of an
architecture. Styles essentially abstract arch-element and
the formal aspects from various architectures. They are
often less constrained than specific architectures. Different
architectural styles such as the pipe and filter, layered or
blackboard promotes different quality attributes for a
software system when they are defined at a global level.
Several architectural styles can also be merged in a
software architecture as long as the constraints of the two

styles do not conflict. An example of two styles in an
architecture is provided in Perry and Wolf 1992 [2]. Styles
can also be applied in a localized fashion. Application of
architectural styles helps define the form of an
architecture.

The key constructs of our model that are relevant to
the form of an architecture are architectural composition
and architectural region. As explained previously,
architecture composition represents the sub-architectural
structure of an arch-element while architectural region
provides a construct scoping mechanism and represents a
collection of arch-element to which a set of constraints
apply. These two constructs are demonstrated below

arch-composition =
(name, { arch-elements }, { mappings })

arch-region = (Descriptor,{ arch-elements | arch-
compositions }, { general constraints })

While arch-composition and arch-region are the two

fundamental concepts of our model, we also provide a
construct for capturing the generic form of an architecture.
The purpose of this construct is to capture in a granular
fashion the different elements that make up the form.

The form of an architecture can be influenced by both
functional as well as non-functional requirements. For a
given software architecture model, the form needs to be
specified at a global level and/or at a local level i.e. for an
architectural region or sub-architecture , as for complex
systems it may be impossible to specify the form at a
global level. The form of architecture is modeled as in
Figure 5.

Architectural

Form

Global
Form

Functional Form
Unit

Non-functional
Form Unit

Arch Element
Pair

Cardinality Rule

Form Unit
Mapping

Architectural
Element

Local Form

Figure 5: Architectural Form

A given style or a pattern is represented as a Form Unit
in our model. Thus a subject observer pattern is a form unit
with multiple Form Unit Mappings, where each form unit
is represented by an Architectural Element Pair, the Rule
for the relationship between the pair and the Cardinality
between the pair. One arch-element is common across all
the Form Unit Mappings for the subject observer pattern
and serves as the Subject. The second component in the
Arch Element Pair for the form unit mappings represents
the Observers.

4.3 Rationale

The rationale in our architecture model is the set of
justifications for the choice of elements and formal aspects
of the architecture. A rationale ties architectural design
decisions to various system drivers – for example
decisions may be tied to functionality requirements from
the user, non functional system constraints, market
requirements and business strategies. In fact the
constraints mentioned earlier in this paper provide an
extremely useful tie between system drivers and the
architectural design; they provide a form of self-
documenting rationale.

In our model we treat rationale as atomic units that
may be associated with any aspect of our specification.
They are sprinkled over every facet of our architecture.
Off course these can be later categorized into convenient
groups but we do not model rationale using either a
hierarchy or decomposition to reinforce the fact that
justifications for an architectural decision is often
independent of the level of abstraction for which a design
decision is needed.

5. Example Software Architecture and
Usefulness of Proposed Model

The proposed approach for specification was used for

documenting the architecture of the tool EASE
(Environment for Architecture Specification and
Evaluation), that is being built as part of this research.

Summary information about the architecture is given
in the table below.

 Architectural Element No. of

Services
1. Architecture Compliance Metrics

Evaluator
8

2. Component Characteristic Metrics
Evaluator

14

3. System Configuration Metrics
Evaluator

12

4. Architectural Style Predictor 8
5. Architectural Divergence 10

Calculator
6. Architectural Drift Calculator 3
7. Architectural Erosion Calculator 3
8. Report Generator 7
9. Display Manager. 4

Table 1: EASE Architecture

The details associated with the architecture cannot be

presented here due to constraints of space. We present the
abstract model for EASE with only one of the arch-
elements highlighted in Figure 6.

Figure 6: Example Architectural Specification

Several architectural analysis techniques have been

developed based on our abstract architectural model. We
briefly mention each of these below.

Contextual Reusability Metrics [25]: A set of contextual
metrics have been developed that provide a mechanism for
a quantitative evaluation of software component reuse in
the context of architecture requirements (functional and
data) and architecture structure. We leverage the
requirements represented within an architectural
specification to provide the context for a component to
evaluate the compliance of these components to the
architectural specification, to assess the similarity between
components, the component’s coverage of the architectural
description, as well as numerically tracking the evolution
of a component in terms of the specification. Our
reusability assessment goes beyond simple interface
matching and helps system integrators explore behavioral
characteristics of components as well. These metrics
provide a quantitative mechanism for assessing reusability
leveraging the context of a component.

Predicting Emergent Properties of Systems [26]: We have
also developed an approach for reasoning about
architectural styles using the specification approach
explained in this paper. With our style prediction proposal,
not only will a System Architect have the ability to
evaluate several deployment options but will also have the
ability to get a sense of the quality attributes of the final
system before actual construction. We can also use our
approach to determine the conformance of a system

configuration to a particular style. This will be
particularly useful during the evolution of a system to
detect either architectural drift, or architectural erosion

Assessment of System Evolution [27]: Using our abstract
architectural model, we have also developed a
methodology for the architectural assessment of system
evolution. We have proposed as set of architectural
divergence, drift and erosion indicators that provide
objective measures for the assessment of system change.

6. Summary

In this paper we propose an architectural model for
documenting the specifications of architectural elements,
the form of the architecture as well as the justifications for
the different design decisions. It is envisioned that an
architecture described using our architectural
specifications model can be instantiated using asset
components that are registered against individual
architectural elements. The architecture specification
model enables architecture evaluation for assessing
reusability potential, for predicting emergent properties of
system as well as for tracking system evolution.

7. References

[1] Jackson, M, “The World and the Machine”, Proceedings of

the 17th International Conference of Software Engineering,
Seattle, WA, 1995

[2] Perry, D. E., Wolf, A. L., “Foundations for the Study of
Software Architectures”, ACM Software Engineering Notes,
17, 4, October 1992, 40-52

[3] de Marneffe, P. A., “Holon programming: A Survey”,
Universite de Liege, Service Informatique, 1973.

[4] Knuth, D. E., “Structured Programming with go to
statements”, ACM Computing Surveys, Volume 6 Number
4, Pages 261-301, December 1974.

[5] Sommerville, I., Sawyer, P., “Requirements Engineering – A
Good Practice Guide”, John Wiley & Sons, 1998

[6] Gamma E., Helm R., Johnson R., Vlissides J., “Design
Patterns Elements of Reusable Object-Oriented Software”,
Addison-Wesley, 2002

[7] Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal
M., “Pattern Oriented Software Architecture”, Wiley Series
in Software Design patterns, 2001

[8] Biggerstaff, T. G., Perlis, A. J., “Software
Reusability” ACM Press, 1989

[9] Krueger, C. W., “Software Reuse. Computing
Surveys”, 24(2): 131-183, June 1992

[10] Mettala, E., and Graham, M. H., “The Domain Specific
Software Architecture Program”. Technical report
CMU/SEI-92-SR-9, Carnegie Mellon Software Engineering
Institute, June 1992.

[11] Karlson, E. A., Guttorm S, Stalhane, T., “Techniques for
Making More Reusble Components,” REBOOT Technical

Report #41, 7 June 1992
[12] Karlson, Even-Andre (ed.), “Software Reuse: A Holistic

Approach”, Wiley, New York, NY, 1995.
[13] Shaw, M., Garlan, D., “Software Architecture: Perspectives

on an Emerging Discipline”, Prentice Hall, 1996
[14] Szyperski, C., “Component Software: Beyond Object

Oriented Programming,” Addison-Wesley, 1999
[15] Johnson, R and Foote, B, “Designing Reusable Classes,”

Journal of Object Orientrd Programming, 1 (2), 22-5.
[16] Bosch, Jan, “Design & Use of Software Architectures:

Adopting and evolving a product-line approach,” Addison-
Wesley, 2000

[17] Garlan, D., Allen, R., Ockerbloom, J., “Architectural
Mismatch or Why it’s hard to build systems out of existing
parts”, Proceedings of the Seventh International Conference
on Software Engineering, April 1995.

[18] Tracz, W., “Software Reuse Maxims,” ACM SIGSOFT
Software Engineering Notes, Vol. 13, No. 4, October 1998,
pp. 28-31

[19] Tracz, W., “A Conceptual Model for Mega programming,”
ACM SIGSOFT Software Engineering Notes, Vol. 16, No.
3, July 1991, pp. 36-45.

 [20] Perry, D. E., “Generic Descriptions for Product Line
Architectures”, ARES II Product Line Architecture
Workshop, Los Palmos, Gran Canaria, Spain, February 1998

[21] Habermann, A. N., Perry, D. E., “Well Formed System
Composition”, Carnegie-Mellon University, Technical
Report CMU-CS-80-117. March 1980

[22] Perry, D. E., “The Inscape Environment: A Practical
Approach to Specifications in Large-Scale Software
Development. A Position Paper”, January 1990.

[23] Luckham, D. C., Vera, J., “An Event-Based Architecture
Definition Language”, IEEE Transactions on Software
Engineering, vol. 21, no. 9, pages 717-734, September 1995.

[24] Bhattacharya, S. “Specification and Evaluation of
Technology Components to Enhance Reuse,” Masters
Thesis, The University of Texas at Austin, July 2000

[25] Bhattacharya, S., Perry, D. E., “Contextual Reusability
Metrics for Event-Based Architectures”, The 4th
International Symposium on Experimental Software
Engineering (ISESE), November 2005, Australia

[26] Bhattacharya, S., Perry, D. E., “Predicting Emergent
Properties of Component Based Systems”, The 6th IEEE
International Conference on COTS-based Systems
(ICCBSS), February 2007, Canada

[27] Bhattacharya, S., Perry, D. E., “Architecture Assessment
Model for System Evolution”, The 6th Working IEEE/IFIP
Conference on Software Architecture (WICSA), January
2007, India

	An Abstract Architectural Model for Composition, Analysis an
	Sutirtha Bhattacharya, Dewayne E. Perry
	Austin, TX 78712

	sutirtha.bhattacharya@intel.com
	Abstract
	4.1 The Elements: Components and Connectors
	Figure 1: Architectural Element Specification
	Figure 2: Behavioral Representation for Architectural Elemen

	4.2 Form
	Figure 5: Architectural Form

	4.3 Rationale

