
Architecture Assessment Model for System Evolution

Sutirtha Bhattacharya, Dewayne E. Perry
Empirical Software Engineering Lab (ESEL)

ECE, The University of Texas at Austin
Austin, TX 78712

sutirtha.bhattacharya@intel.com
perry@ece.utexas.edu

Abstract1
Even though there has been some research on system

evolution, there is no well defined vocabulary to indicate
deviation of a system from desired goals. Further, there are
no objective measures to indicate whether changes
incorporated into a system as part of its evolution violates the
integrity of the architectural design. Also, little research has
been done to categorize the aspects of a software system that
is subject to deviation as the system evolves.

In this paper we develop a model for tracking software
evolution and propose measures that will objectively indicate
the extent of deviation or divergence in a software system.
We also categorize the different aspects of software, changes
to which can significantly impact usability as well as
conceptual coherence.

1. Introduction

Most software systems undergo significant changes over
their lifetime. In fact it is common experience that any
software without an active roadmap soon falls out of favor
with its users. Several reasons can be identified for such
change
• System requirements evolve
• The context in which the software operate changes
• New capabilities that build on existing ones are

identified
• Maintenance activities are performed keep the software

operational
Ideally, all system change should be reified in the

architecture first followed by implementation changes or
enhancements. However, it has commonly been observed that
due to time-to-market pressures as well as sub-optimal
development processes, the changes to a system often erode
the fundamental characteristics of the original architecture
which progressively results in intractable systems that fail to

1 This research is supported in part by NSF CISE grant IIS-0438967.
Please note that any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation

satisfy the basic reliability, availability and performance
requirements.

Although the concept of architectural erosion was
identified a decade and a half ago [1], approaches for
assessment of loss of architectural characteristics have
focused on architectural recovery, where architectural
information is recovered from source code [e.g. 2, 3, 4, 5, 6].
However, since architecturally relevant information can be
obscured in the implementation and implementations often
violate system requirements, Medvidovic et al. has proposed
a lightweight approach for correlating implementations with
software requirements using architectural styles [7]. We
believe that while checking on deviations using the actual
implementation is necessary, relying solely on the
implementation for this assessment pushes an important
aspect of system evolution to a very late phase in the
development process, when corrective actions could be
significantly more expensive. While O’Rielly et al. [8]
proposed a model based approach, there was still a reliance
on implementation and no metrics were proposed.

In this paper we propose a model for assessing
architectural deviation based on architectural model changes
and propose measures that will objectively indicate the extent
of change in a software system. Our model will also highlight
loss of system functionality and architectural structure. As
part of the model development, we categorize the different
aspects of software, changes to which can significantly
impact usability and conceptual coherence.

In the second and third sections of this paper we discuss
the background and the high level assessment model. In the
next two sections we develop our proposed measures for
system evolution. The last two sections discuss the validation
of our proposal and the conclusions.

2. Background

The proposed assessment model for system evolution is
based on our abstract architectural model representation [9].
We discuss the representation briefly.

The abstract architectural model partitions the
architectural representation into Architectural Functionality
Spec and Architectural Non-functional Spec. We will

elaborate on the Architectural Functionality Spec as the
system evolution assessment is based on it.

The Architectural Functionality Spec is composed of
Architectural Component Specs. These component specs
capture the specification of the key components of the
architecture. The intent of these components is to partition the
system domain into logical abstractions. Each Architectural
Component Spec is qualified by the Interface Spec, the
Attribute Spec and the Behavioral Spec. The Interface Spec is
composed of the Provided Services Spec and the Required
Services Spec and captures the service interfaces the
component exposes as well as the ones it needs. The Attribute
Specs capture the data managed by the component while the
Behavioral Specs capture the behavioral model using a state
chart representation. The Interface Specs (Provided and
Required) comprehend the input and output data, the input
and output events as well as the pre and post conditions
associated with each service interface.

The form of the architecture is captured in our abstract
model in terms of Form Units where an individual Form Unit
is represented by one or many Form Unit Mapping(s). Each
Form Unit Mapping is qualified by an Architectural
Component pair, the cardinality associated with the
Architectural Elements and the Rule that explains the
relationship between the Architectural Element pair.

3. High Level Assessment Model

All systems, independent of the application domain, are
built to deliver a set of services for end users. Fundamental to
the delivery of these services is the architectural integrity
with which these services are delivered. Experience with
decades of software development has proved that software
architecture has more to do with utility than aesthetics –
much more so than its civil engineering counterpart. A poorly
constructed system may be able to satisfy immediate
functional requirements, but it may fail to satisfy reliability,
availability or performance requirements. Even if a system
can satisfy the desired non-functional requirements, it may be
difficult to modify and enhance the system. It is therefore
extremely critical that software is effectively architected to
satisfy both functional and non-functional goals. Also, since
typical software systems go through regular enhancements
and releases, an architecture not designed for extensibility
and evolution will fail to deliver desired capabilities in the
long run. Given the inevitability of evolution of a software
system, it is important that an assessment model for system
evolution is developed at an architectural level.

While non-functional requirements are a critical part of
any software architecture, the raison d’etre for any software
system is delivery of functional requirements. However the
structure of the system influences a number of the non-
functional requirements. This research hypothesizes that
focusing on the functional and structural implications of
software architecture evolution are adequate to assess

desirable and undesirable deviations from key architectural
goals. Of course, deviation needs to be measured both in
terms of change from an architectural blueprint as well as
from one software version to another. This is because in
many software development projects there are no
documented architectural blueprints, and we do need a
baseline for the assessment of deviation. Fundamental to our
approach is the concept of registration. Registration is
defined as the process of formally associating component
characteristics to the architectural blueprint and establishing
mappings in a form that captures the association and is
computable.

We define deviation from an architectural baseline in
terms of divergence. Measurement of divergence is done at
the level of individual services and data attributes. We
elaborate on the assessment of divergence in section 4. The
fundamental idea behind the measurement of divergence is
the change in the registration of various architectural
elements to the base architecture.

Most complex software systems undergo several rounds
of developer turnover and in most industry projects it is seen
that the initial designers and developers are no longer in the
team when critical enhancements need to be made. It is very
important during such enhancements or modifications that
useful functionality as well as the structural integrity of the
system is not lost while delivering new capabilities. To
identify such undesired change we introduce the notion of
architectural erosion. Just as the washing away of the topsoil
due to running rainwater results in soil erosion which leaves
the land barren, architectural erosion results in the wearing
away of useful capabilities from a system. The erosion
indicators are of two types – functional and structural. These
are elaborated further in Section 5.

It is to be noted that in the subsequent sections we make
references to ‘software versions’ and ‘implementations’
during our elaboration of the divergence and erosion
measures. This is because our approach is applicable for
measuring deviation from either an architectural blueprint or
from a previous version of a software component that has
been specified against an architectural blueprint. While a
development organization can use our approach to assess
deviation post system construction, greater value would be
derived if the assessment was done prior to actual
construction, using the architectural specs for the component
being built.

4. Architectural Divergence

One of the key concepts used in the assessment of

system evolution is architectural divergence. Divergence
essentially measures the change in compliance of an asset
component with respect to an architectural blueprint. As a
system evolves, it undergoes changes in the set of services it
offers as well as the data it manages. In an ideal scenario new
capabilities should be added to a component without loss of

existing functionality, except in cases where certain services
are intentionally deprecated. However, in real life systems,
we often see that changes made in one portion of the
software, affects some other portions. Though some of these
are done intentionally, most of them are unintentional. A few
examples are given below:
• An existing service is extended to deliver additional

functionality and the API is modified, which breaks
existing method invocation code

• Data Entities are extended with additional data elements
which may break the consistency with an existing
schema

• For event based systems, new events are introduced, or
existing ones modified, which modifies system response
In the absence of a mechanism to assess such changes,

bugs will be identified only during system testing. Fixing
issues that late in the development process is typically quite
expensive. It would be ideal to understand the impact of
changes planned as early in the development cycle as
possible. The benefit is maximum if it can be done at the
architectural level. In this section we explain our proposal for
the assessment of divergence at an architectural level.

Divergence is measured relative to a baseline. If the
intent is to measure the divergence from the architectural
blueprint, then the architectural blueprint needs to be
considered as the baseline. For measuring the divergence
between two different versions of an asset component, the
earlier version should be treated as the baseline.

Divergence can be measured both from a functional
perspective as well as from a structural perspective.
Functional divergence measures how a given version of
software deviates from the baseline in terms of the
architectural services and data supported. Structural
divergence on the contrary measures the deviation in terms of
architectural characteristics captured in the Form of the
architectural description of our abstract architecture model.

We describe Functional and Structural Divergence in the
next two subsections.

4.1 Functional Divergence

Functional Divergence measures the divergence with
respect to services and the data captured in the architectural
description. To measure service divergences, divergence for
the associated input and output data, the input and output
events and the pre and post condition need to be measured.
The service level divergence can be bundled to quantify the
overall divergence from all the services associated with an
architectural component. We also measure divergence in
terms of data attributes managed by an architectural
component. Individual attribute divergence can be bundled
for an assessment of the overall architectural component
attribute divergence. A similar treatment can be applied to
measure behavioral divergence. The bundled service

divergence, attribute divergence and behavioral divergence
can be used to compute an overall architectural component
divergence.
The Functional Divergence measures are explained below

Service Level Divergence

In our abstract architectural model, a service is modeled
by the input data that are required for the execution of the
service, the output data that are generated by the service, the
input events that trigger the service, the output events that are
generated by the service, the pre-condition that need to be
satisfied before the service executes and post conditions that
need to be reflected in the component state to indicate
satisfactory execution of the service. Therefore, to measure
the service level divergence all of the above aspects need to
be considered. We explain each of these below.

Input and Output Event Divergence:

Input and Output Event Divergences are measured for a
given service. Any reference to divergence for events will
correspond to a particular service, s, from the architectural
description. We explain the derivation of Input Event
Divergence IEDiv(s) in details. The derivation of Output
Event Divergence, OEDiv(s), is analogous. The key
components that are used for the measurement of IEDiv(s)
are the two sets RegdIEnew(s) and RegdIEbase(s). RegdIEnew(s)
capture the registration information about the input events
associated with the service s for the asset component that is
classified as new. Similarly the set, RegdIEbase(s) captures the
registration information for the component classified as base.
If the service deign or implementation (in case assessment is
done after system construction) for the component accepts the
particular event as an input as specified in the architectural
description, the corresponding element of the set is set to one,
if it does not, the element is set to zero. So essentially the sets
RegdIEnew(s) and RegdIEbase(s) are a collection of ones and
zeros, with each element signifying the registration or
otherwise for each event associated with the service. It is
obvious that the cardinality of both of these sets are the same
as the set of events (input events in this case) associated with
the service are defined in the architectural specification which
is independent of any specific component implementation.
We represent the registration information for a particular
event, ev, for the service, s, by RegdIE(s, ev). It corresponds
to either a one (when the designed/implemented service is
triggered by event ev in the architecture) or zero (the
designed/implemented service is not triggered by the event
ev). Therefore the factor [RegdIEnew(s, ev) - RegdIEbase(s,
ev)] corresponds to a zero if the service
design/implementation for both the new and the base
component are the same wrt triggering by event ev, or one, if
there is a change from one component to another. Since we
are interested in the overall divergence, we consider the
absolute value i.e. Abs[RegdIEnew(s, ev) - RegdIEbase(s, ev)].
The deviation for each event associated with the service s is

summed over all the events (represented by the set IE(s)) and
the resultant sum is divided by the cardinality of the set IE(s),
which corresponds to the number of input events associated
with the given service in the architectural description.

IEDiv(s) and OEDiv(s) are shown below:

∑
∈ −

=
)()],(

),(
|)(|

1)(
sIEev base

new

evsIERegd
evsIEAbs[Regd

sIE
sIEDiv (1)

∑
∈ −

=
)()],(

),(
|)(|

1)(
sOEev base

new

evsOERegd
evsOEAbs[Regd

sOE
sOEDiv (2)

Where
IE(s)/ OE(s): Set of I/O events for service s
RegdIEnew(s)/ RegdOEnew(s): Registration information for
input/output events corresponding to service s for new
RegdIEnew(s, ev)/ RegdOEnew(s, ev): Value of element for
event, ev, in the set RegdIEnew(s)/ RegdOEnew(s)
RegdIEbase(s)/ RegdOEbase(s): Registration information for I/O
events corresponding to service s for base
RegdIEbase(s, ev)/ RegdOEbase(s, ev): Value of element for
event, ev, in the set RegdIEnew(s)/ RegdOEnew(s)

From above, 0 ≤ IEDiv(s), OEDiv(s) ≤ 1. As an example,
a value of 0.5 for IEDiv(s) would indicate that half the input
events for a given service s has changed from the base
version to new.

Input and Output Data Divergence:

The approach for the assessment of data divergence is
similar to that of input and output events with some
modifications to comprehend the way input and output data
are represented. Input and output data are modeled by data
entities which can be made up of several data elements. For
example, the data entity ‘Address’ could be made up of
several data elements such as ‘Street Address’, ‘City’, ‘Zip’,
‘Country’ etc. The approach is similar to the one used for
database designs where tables represent the data entities in
the schema while the fields represent the data elements.

We explain the derivation for Input Data Divergence,
IDDiv(s), in details. The two sets RegdIDElnew(s, en) and
RegdIDElbase(s, en) correspond to the registration information
for the two components new and base with respect to the data
entity, en, which is an input data entity for the service, s. The
cardinality of these two sets equal the number of elements
associated with the given data entity, en. We use
RegdIDElnew(s, en, el) and RegdIDElbase(s, en, el) as the
notation for representing the registration of the components
new or base with the element el, in entity en, that is needed
for execution of the service, s. The value is either a one
(when the designed/implemented service requires the data
element el in entity en for execution of service s) or zero (the
designed/implemented service does not need the data element
el in the entity en for execution). The factor [RegdIDElnew(s,
en, el) - RegdIDElbase(s, en, el)] equals zero if the service
design for both the new and the base components are the
same wrt the need for the data element el in the data entity en,
for execution of service s. It equals one, if there is a change
from base to new. Since we are interested in the overall
divergence, we consider the absolute value
Abs[RegdIDElnew(s, en, el) - RegdIDElbase(s, en, el)]. This
absolute value is summed up over all the elements associated
with the data entity en. To calculate the divergence from base
to new for a given entity, en, the sum of the absolute values
for each data element is divided by the number of elements
associated with the entity en. IDEl(s, en) is the set of
elements associated with input data entity, en, and hence the
cardinality of this set represents the number of elements
associated with the entity en. The overall divergence for all
the input data entities, IDDiv(s), is computed by taking the
sum of the divergences for each data entity and dividing the
sum by the number of input data entities for the service s as
defined in the architecture.

The derivation of Output Data Divergence, ODDiv(s), is
analogous. IDDiv(s) and ODDiv(s) are shown below.

∑
∈

∑
∈

−=
)(),(

)],,(),,(
|),(|

1
|)(|

1)(
sIDEnen ensIDElel

elensbaseDIRegdelensnewElAbs[RegdID
ensIDElsIDEn

sIDDiv (3)

∑ ∑
∈ ∈

−=
)(),(

)],,(),,(
|),(|

1
|)(|

1)(
sODEnen ensODElel

basenew elensDORegdelensElAbs[RegdOD
ensODElsODEn

sODDiv (4)

Where
IDEn(s)/ ODEn(s): The set of I/O data entities for service s
IDEl(s, en)/ ODEl(s, en): The set of elements associated with
the I/O data entity en for service s
RegdIDElnew(s, en)/ RegdODElnew(s, en): Registration info
for elements of I/O data entity en, for service s for new
RegdIDElnew(s, en, el)/ RegdODElnew(s, en, el): Value of
registration for element el, in data entity en, for service s in
the set RegdIDElnew(s, en)/ RegdODElnew(s, en)

RegdIDElbase(s, en)/RegdODElbase(s, en): Registration info for
elements of I/O data entity en, for service s for base
RegdIDElbase(s, en, el)/ RegdODElbase(s, en, el): Value of
registration for element el, in data entity en, for service s in
the set RegdIDElbase(s, en)/ RegdODElbase(s, en)

It is to be noted that IDDiv(s) and ODDiv(s) follow the
relation 0 ≤ IDDiv(s), ODDiv(s) ≤ 1.

Pre-Condition and Post-Condition Divergence:
The derivation of Pre and Post Condition divergences are

similar to that of Input and Output Events. We explain the
approach for derivation of Pre-Condition Divergence. The
two sets RegdPreCnew(s) and RegdPreCbase(s) capture the
registration information of the components new and base for
the pre-conditions for the execution of service s. Each
element of these two sets is either a one or a zero depending
on conformance to the pre-conditions associated with the
service s. RegdPreCnew(s, c) and RegdPreCbase(s, c)
correspond to the value, one or zero, representing whether the
service design/implementation satisfies the pre-condition c or
not. The factor Abs[RegdPreCnew(s, c) – RegdPreCbase(s, c)] is
zero if there is no change in conformance to pre-condition c
from the component base to component new. If there is a
change in the conformance, this factor equals one. To
compute the Pre-Condition Divergence, PreCDiv(s), we take
the sum of the factor for all the pre-conditions associated with
the service s and divide the result by the count of the pre-
conditions for the service, s. The count of the pre-conditions
is given by the cardinality of the set PreC(s) which represents
the set of pre-conditions associated with the service s.

Post-Condition divergence, PostCDiv(s), is computed
using the same approach as Pre-Condition divergence. The
formulae for PreCDiv(s) & PostCDiv(s) are:

∑
∈ −

=
)()],(

),(
|)(|

1)(
sPreCc csbaseRegdPreC

csneweCAbs[RegdPr
sPreC

sDivPreC

 (5)

∑
∈ −

=

)()],(
),(

|)(|
1

)(

sPostCc csbaseRegdPostC
csnewstCAbs[RegdPo

sPostC

sDivPostC
 (6)

Where
PreC(s)/ PostC(s): Set of pre/post-conditions for service s.
RegdPreCnew(s)/ RegdPostCnew(s): Registration information
for pre/post-conditions for service s for new
RegdPreCnew(s, c)/ RegdPostCnew(s, c): Value of element for
pre/post-condition c, for service s in the set RegdPreCnew(s)/
RegdPostCnew(s)
RegdPreCbase(s)/ RegdPostCbase(s): Registration information
for pre/post-conditions corresponding to service s for base
RegdPreCbase(s, c)/ RegdPostCbase(s, c): Value of element for
pre/post-condition c, for service s in the set RegdPreCbase(s)/
RegdPostCbase(s)

As in the case of event and data divergence, 0 ≤
PreCDiv(s), PostCDiv(s) ≤ 1.

Service Divergence:

Service Divergence, SvDiv(s), for a service s measures
the divergence wrt delivery of the service from component
base to new. It takes into account divergences for input
events, output events, input data, output data, pre-conditions
and post-conditions. SvDiv(s) also comprehends the various
dependencies for the generation and consumption of data,

events and pre and post conditions. The various dependencies
are used in this formula to highlight the relative importance
of the respective deviations. A large deviation for the input
data may not be a big issue if just one service generates all
the required input data, however if many services are
involved in the generation of the input data the potential
impact is large, as much more scrutiny will be needed to
account for the deviation. SvDiv(S) is really the weighted
average of the Input Data Divergence IDDiv(s), the Output
Data Divergence ODDiv(s), the Input Event Divergence
IEDiv(s), the Output Event Divergence OEDiv(s), the Pre-
Condition Divergence PreCDiv(s) and the Post-Condition
Divergence PostCDiv(s) where the respective weights are the
various dependencies. The value of SvDiv(s) is bounded by 0
≤ SvDiv(s) ≤ 1.
The formula for Service Divergence SvDiv(s) is:

)PostCDep(sPreCDep(s)
sOEDepsIEDepsODDepsIDDep

(s))xPostCDivPostCDep(sPreCDiv(s)xsDepPreC
sxODDivsODDepsxIDDivsIDDep

sxOEDivsOEDepsxIEDivsIEDep
sSvDiv

+
++++

+
++

++
=

)()()()(
)(

)()()()(
)()()()(

)(

 (7)

Where
IEDep(s): Input Event Dependency i.e. count of scenarios
that generate the events that trigger service s
IEDiv(s): Input Event Divergence for service s
OEDep(s): Output Event Dependency i.e. count of services
that consume events generated by service s
OEDiv(s): Output Event Divergence for service s
IDDep(s): Input Data Dependency i.e. the count of services
that generate the data required by service s
IDDiv(s): Input Data Divergence for service s
ODDep(s): Output Data Dependency i.e. count of services
that consume the data generated by service s
ODDiv(s): Output Data Divergence for service s
PreCDep(s): Pre-Condition Dependency i.e. count of services
that establish pre-conditions for execution of service s
PreCDiv(s): Pre-Condition Divergence for service s
PostCDep(s): Post-Condition Dependency i.e. count of
services that depend on post-conditions established by s.
PostCDiv(s): Post-Condition Divergence for service s

Architectural Component Service Divergence:

We combine the divergence evaluated for each service to
compute the overall service divergence for an architectural
component. The Architectural Component Service
Divergence, ArchCompSvDiv(d), is the average of the
Service Divergence of all the associated services. This metric
is useful for evaluating the deviation of one version of a
component from another with respect to the realization of an
architectural component. As in the case of SvDiv(s) for
ArchCompSvDiv(d), 0 ≤ ArchCompSvDiv(d) ≤ 1.

The formula for Architectural Service Divergence is:

∑
∈

=
)(
)(

|)(|
1)(

dArchCompSvs
sSvDiv

dArchCompSv
dDivArchCompSv

 (8)
Where
SvDiv(s): Service Divergence for service s
ArchCompSv(d): Set of services for component d.

Attribute Level Divergence

Just as the delivery of a certain service may undergo
changes from one version of software to another, the
attributes managed by an architecture can also undergo
change. It is important that we establish some objective
criteria to assess the departure of an attribute from either a
baseline architecture or from a previous version of the
software. Generating and consuming data in the correct
format is often the key to successful software integrations.
This is especially true in the case of Dataflow architectural
styles such as Batch Sequential and Pipes and Filters. It is
also true for Data Centered styles such as Repository and
Blackboard. As an example, let us assume that two software
applications integrate in such a manner that the “Address”
data attribute generated by application A is consumed by
another application B. Now let us suppose that in the initial
version of Application A, the data attribute “Address” had 5
data elements – “Street”, “City”, “County”, “Country” and
“Zip Code”. Application B used the “County” information
from the “Address” data attribute to determine the county
based demographics. However in a later version, the
developers of A incorrectly assumed that the “County”
information in the “Address” is redundant and dropped it. As
a result B would fail to deliver the county based demographic
information. This situation could be avoided if there was an
objective way to determine that the later version of
application A had diverged from the initial version with
respect to support for the data attributes. The Attribute Level
Divergence measures have been defined to address this gap.

Attribute Divergence:

Attribute Divergence, AttrDiv(a), measures the deviation
with respect to the delivery of a given attribute a. For the
“Address” example mentioned above, a review of AttrDiv(a)
for the attribute would have identified the difference from
one version to another, which could have subsequently been
addressed without going through an integration failure.

For computing the Attribute Divergence, we use the two
sets RegdAttrnew(a) and RegdAttrbase(a) which capture the
registration information for the attribute a in the new version
and the base version respectively. These sets are a collection
of ones and zeros, with a one indicating that the application is
registered to the corresponding element associated with the
attribute, while a zero indicates that the attribute doesn’t
support the corresponding element. For each of the sets there
will be as many entries as there are elements associated with

the given attribute as specified in the abstract architectural
model and therefore the cardinality of the two sets
RegdAttrnew(a) and RegdAttrbase(a) will be the same. The
absolute value of [RegdAttrnew(a, el) - RegdAttrbase(a, el)] is
one if there is a change in the component with respect to the
support of data element el, associated with the attribute a. The
change or otherwise of each element is summed up over all
elements of the attribute and divided by the total number of
elements associated with the attribute to calculate AttrDiv(a).
The formula for AttrDiv(a) is shown below

∑
∈

−

=

)(
)],(),

|)(|
1

)(

(
aAttrel

elaAttrRegdelaAttrAbs[Regd
aAttr

aAttrDiv

basenew

 (9)
Where
Attr(a): Set of data elements associated with attribute a
RegdAttrnew(a): Registration info for attribute, a, for new
RegdAttrnew(a, el): Value of element corresponding to data
element el, for attribute a in the set RegdAttrnew(a)
RegdAttrbase(a): Registration info for attribute, a, for base
RegdAttrbase(a, el): Value of element corresponding to data
element el, for attribute a in the set RegdAttrbase(a)

Architectural Component Attribute Divergence:

Since reviewing divergence for individual attributes can
be cumbersome, we bundle the divergence for attributes
associated with a given architectural component.
ArchCompAttrDiv(d) measures the diverge of all the
attributes associated with a given architectural component. It
is the average of the Attribute Divergences of all attributes
associated with the architectural component. The
Architectural Component Attribute Divergence value lies
between zero and one and is calculated as in below

∑
∈

=

)(

)(
|)(|

1
)(

dtrArchCompAta

aAttrDiv
dtrArchCompAt

dtrDivArchCompAt
 (10)

Where
ArchCompAttr(d): Set of attributes associated with
component d
AttrDiv(a): Attribute Divergence for attribute a

Behavioral Divergence

In our abstract model for architecture specification, the
behavior of an architecture component is captured in terms of
a state diagram. The behavioral specification is represented as
the quintuple State, Trigger, Guard, Effect and Target. Each
set of this quintuple is known as a behavioral unit in our
model.

We evaluate the behavioral unit divergence between two
versions new and old using an approach similar to that used
for measuring attribute divergence. The divergence for each
behavioral unit is captured by the Behavioral Unit
Divergence or BehavUnitDiv(bu) as shown below.

el)](bu,nitRegdBehavU

el)(bu,havUnitAbs[RegdBe
|l(bu)BehavUnitE|

1
iv(bu)BehavUnitD

base

new

l(bu)BehavUnitEel

−

=

∑
∈

 (11)
Where
BehavUnitEl(bu): The set of elements associated with
behavioral unit bu. This essentially consists of five elements
State, Trigger, Guard, Effect and Target
RegdBehavUnitnew(bu): Registration information for
behavioral unit bu for the new version
RegdBehavUnitnew(bu, el): Value of registration for element
el, for behavioral unit bu in the set RegdBehavUnitnew(bu)
RegdBehavUnitbase(bu): Registration information for
behavioral unit bu for the base version
RegdBehavUnitbase(bu, el): Value of registration for element
el, for behavioral unit bu in the set RegdBehavUnitbase(bu)

The divergence associated with each behavioral unit is
bundled into the Architecture Component Behavior
Divergence, ArchCompBehavDiv(d), and is evaluated as in
below. It is the average of behavioral unit divergence for all
the behavioral units in the architectural component.

∑
∈

=

)(

)(
|)(|

1
)(

dhavUnitArchCompBebu

buivBehavUnitD
dhavUnitArchCompBe

dhavDivArchCompBe
(12)

Where
ArchCompBehavUnit(d): The set of behavioral units
associated with the architecture component d
BehavUnitDiv(bu): Behavioral Unit Divergence for
behavioral unit bu.

Just like the other divergence measures, the value of
ArchCompBehavDiv(d) also lies between zero and one.

Architecture Component Divergence

While Architecture Component Service Divergence
ArchCompSvDiv(d), Architecture Component Attribute
Divergence ArchCompAttrDiv(d) and Architecture
Component Behavioral Divergence ArchCompBehavDiv(d)
capture the deviation of an architecture component with
respect to the services, attributes and the behavior,
Architecture Component Divergence captures the overall
divergence of a component wrt the architecture
specifications.

It is measured by the weighted average of the
divergences of the services, the attributes and behavior where
the weights correspond to the number of services, the number
of attributes and the number of behavioral elements
associated with the architectural component.
Architecture Component Divergence is evaluated as in below
and its value lies between zero and one.

|havUnit(d)ArchCompBe|
|tr(d)ArchCompAt||(d)ArchCompSv|

ehavDiv(d)xArchCompB|havUnit(d)ArchCompBe|
ttrDiv(d)xArchCompA|tr(d)ArchCompAt|

vDiv(d)xArchCompS|(d)ArchCompSv|
v(d)ArchCompDi

++

+
+

=

 (13)

Where
ArchCompSv(d): Set of services in component d.
ArchCompSvDiv(d): Architecture Component Service
Divergence for component d
ArchCompAttr(d): Set of attributes in component d
ArchCompAttrDiv(d): Architecture Component Attribute
Divergence for component d
ArchCompBehavUnit(d): Set of behavioral units for
component d
ArchCompBehavUnitDiv(d): Architecture Component
Behavior Divergence

Architecture Component Divergence also follows the
relation 0 ≤ ArchCompDiv(d) ≤ 1.

4.2 Structural Divergence
As explained previously, the form of an architecture is

modeled using Form Units where an individual Form Unit is
composed of one or many Form Unit Mapping(s). Each Form
Unit Mapping is modeled by a pair of components, the
cardinality associated with the components and the Rule that
explains the relationship between the component pair.

Structural Divergence measures the deviation in the form
of the architecture. To calculate the Structural Divergence,
we first calculate the Form Unit Mapping Divergence
FormUnitMapDiv(fum) for a given form unit fum. It is
essentially the ratio of the change in the number of elements
of the Form Unit mapping that a component is registered to,
to the total number of elements in a given form unit mapping.
The factor),(elfumitMapRegdFormUn base represents
whether the base component is registered to element el of
form unit mapping fum or not. If it is, then the value is one,
otherwise its value is zero. The factor

)],(),(elfumitMapRegdFormUnelfumrmUnitAbs[RegdFo basenew − has
a value of one if there is a change in the registration from the
base version to the new version. (14)

)],(

),([
)(|

1
)(

)(

elfumitMapRegdFormUn

elfumitMapRegdFormUnAbs
fumpElFormUnitMa

fumpDivFormUnitMa

base

new

fupElFormUnitMael

−

=

∑
∈

 The overall Structural Divergence StructuralDiv(a) is
measured by taking into account all the form unit mappings
associated with a form unit and bundling it for all the form
units associated with the architecture, a. The scope of the
architecture could be restricted to an architectural region to
derive the Structural Divergence for the region of interest.

We first derive the FormUnitDivergence(a,f) as

∑
∈

=

),(

),,(
|),(|

1
),(

faFormUnitfum

fumfapDivFormUnitMa
faFormUnit

favFormUnitDi
 (15)

And then calculate the Structural Divergence as

∑
∈

=

)(

),(
|)(|

1
)(

aArchFormf

favFormUnitDi
aArchForm

aDivStructural
 (16)

Where
FormUnitMapEl(fum): Set of elements for form unit mapping
fum
RegdFormUnitMapnew(fum, el): Value of registration for
element el in form unit mapping fum in the set for component
new
RegdFormUnitMapbase(fum, el): Value of registration for
element el in form unit mapping fum in the set for component
base
ArchForm(a): Set of Form Units associated with architecture
a
FormUnit(a,f): Set of Form Unit Mappings associated with
form unit f in architecture a
FormUnitMapDiv(a, f, fum): Form Unit Mapping Divergence
for form unit mapping fum for unit f in architecture a

The value of structural divergence lies between zero and
one, with zero implying no change in the architectural form
while one implies a complete overall of all the form unit
mappings associated with the architecture.

5. Architectural Erosion

Architectural Erosion measures the loss of functionality
or architectural form as a software system or component
evolves. Analogous to the natural phenomenon of erosion,
Architectural Erosion provides indictors to track loss of
system functionality or structure.

Functional Erosion indictors focus on loss of system
functionality while Structural Erosion indicators focus on the
loss of architectural form.

5.1 Functional Erosion
Functional Erosion can be classified into Service Erosion

and Attribute Erosion. Service Erosion focuses on the loss of
system functionality or services supported while Attribute
Erosion focuses on the loss of Data Attributes managed by
the system.

Service Erosion

Service Erosion is essentially the ratio of the number of
services lost to the total number of services originally
supported. As noted in (17), we keep count of the original
number of services in the variable countServices and the
count of services lost in the countLostServices variable.
countServices is incremented for each service that was

originally supported i.e. when 1)(=sSvcRegd base . On the
other hand countLostServices is incremented when
RegdSvcnew(s) is zero and RegdSvcbase(s) is one or when

0)()(<− sSvcRegdsSvcRegd basenew . Note that the value of
RegdSvcnew(s) and RegdSvcbase(s) are either zero or one
depending on whether the component new and base are
registered to the service s or not.

]++→<
−++

→=∈∀

ervicescountLostS0)(s)RegdSvc
(s)(RegdSvc ;cescountServi

1)(s)[(RegdSvc ArchSvc(a)s

base

new

base

 (17)

The value of Service Erosion, SvcErosion(a), is obtained by
dividing countLostServices by countServices

cescountServi
ervicescountLostSaSvcErosion =)((18)

Service Erosion can be measured at any level of
granularity, for an architecture as a whole or for a specific
architectural region. It may comprehend one architectural
element or multiple architectural elements. Assigning the
appropriate set of services to the set ArchSvc(a) would
determine the scope of this measure.

Attribute Erosion

Like Service Erosion, Attribute Erosion measures the
loss of data managed by the system. The approach for
computing the Attribute Erosion is exactly the same as
Service Erosion. Two variables countAttributes and
countLostAttributes keep track of the attributes originally
supported i.e.)1)(=aAttrRegd base and the attributes lost i.e.

)0)()(<− aAttrRegdaAttr(Regd basenew respectively.

])0)(
)(

)1)(

++→<
−++

→=∈∀

ttributescountLostAaAttrRegd
aAttr(Regd ;butescountAttri

aAttr[(Regd)ArchSvc(ara

base

new

base

 (19)

Attribute Erosion, AttrErosion(a) is computed by diving
countLostAttributes by countAttributes.

butescountAttri
ttributescountLostAanAttrErosio =)((20)

5.2 Structural Erosion
The evaluation of Structural Erosion is similar to the

assessment of functional erosion. However in the case of
Structural Erosion, we measure the loss of structural units
from the architecture where structural unit is represented by
form unit mappings.

Structural Erosion is evaluated as shown below

]
)0)(

)(
)1)(

++
→<−

++
→=

∈∀

ormUnitcountLostF
fumpFormUnitMaRegd

fumpFormUnitMa(Regd ;nitcountFormU
fumpFormUnitMa[(Regd

 itMap(a)ArchFormUnfum

base

new

base

 (21)

In the above expression, we increment the
countFormUnit for every form unit that the base component
was registered to. The expression

)1)(=fumpFormUnitMa(Regd base evaluates to true when the
base component is registered to the form unit mapping fum.
The variable countLostFormUnit keeps track of all the form
unit mappings that are no longer supported by the new
component though they were supported in the base
component. Only then the term

)0)(
)(

<
−

fumpFormUnitMaRegd
fumpFormUnitMaRegd

base

new
 evaluate to true and

countLostFormUnit incremented.
The Structural Erosion is computed by dividing

countLostFormUnit by the countFormUnit.

nitcountFormU
ormUnitcountLostFaErosionStructural =)((22)

The structural erosion can be computed for either an
architectural region or the architectural as a whole. A high
value of StructuralErosion(a) signifies a significant loss in
the structure of the architecture while a value of zero implies
no loss in the architectural structure.

6. Evaluation

The proposed divergence and erosion measures were
applied to a sample University Registration System where the
architectural description of the baseline system consisted of
45 services and 22 data attributes distributed over 15
architectural components. The same system had 48 services
and 29 data attributes distributed over 15 architectural
components after a refactoring exercise.

One of the architectural components “Registration
Manager” had 5 services and 3 attributes. We illustrate the
application of the divergence measures using the Registration
Manager component. For one of its service, “Drop a Class”,
the Input Event Divergence, IEDiv(s), was computed to be
0.33 using formula (1) as one of the three input events was
dropped due to the elimination of a redundant UI screen. This
service originally generated one output event “Recalculate
Fee Bill”. Post refactoring a new output event was added
“Notify Instructor”. As a result, the Output Event
Divergence, OEDiv(s), was calculated as 0.50 using (2).

The service “Drop a Class” originally had two input data
entities, “Course Info” and “Student Record.” Post
refactoring, the number of entities remained the same but an
additional data element “Instructor Email Id” was added to
the “Course Info” data entity, whereby the number of data

elements associated with “Course Info” changed from 5 to 6.
The number of data elements associated with “Student
Record” did not change from the original list of 6. The Input
Data Divergence, IDDiv(s) was thus calculated to be 0.083
using (3). There was no change in the one output data entity
“Updated Student Record” for this service and so the Output
Data Divergence was calculated as zero using (4).

“Drop a Class” had 2 pre-conditions “Student is
registered for Class” and “Class has not been cancelled”. A
third pre-condition “Add/Drop Class Deadline Date has not
passed” was added. Thus using (5), the Pre Conditions
Divergence, PreCDiv(s), was calculated as 0.33. An
additional post condition “Instructor has been notified” was
added to the existing list of 3. So using formula (6), the value
of Post Condition Divergence, PostCDiv(s), was calculated as
0.25.

The two Input Events were generated by 2 input screens
and so, IEDep(s) equals 2, while OEDep(s) equals 2 as two
services consumed the output events generated. The two
input data entities “Course Info” and “Student Record” were
created by two different services and so IDDep(s) also equals
2. Since three services consumed the one Output Data Entity,
“Updated Student Record”, ODDep(s) equals 3. The three
pre-conditions were generated by 3 services while the four
post-conditions were needed for 4 other service executions,
thus PreCDep(s) equals 3 and PostCDep(s) equals 4. Using
above info and formula (7), the service divergence for “Drop
a Class” service was calculated to be 0.2385. This value of
the Service Divergence would alert the System architect that
some changes have happened wrt this service because of
system evolution. So in case of any incompatibilities or
functionally failures, this measure would highlight services
for scrutiny.

The Service Divergence for the “Registration Manager”
component was bundled to calculate the Architectural Service
Divergence using formula (8) and its value worked out to
0.345. Similarly we computed the Architectural Component
Attribute Divergence for the 3 attributes managed by the
component using formulae (9) and (10) and it worked out to
0.25. Since Behavioral information was not available for this
architecture, we could not compute the Behavioral
Divergences.

The overall Architectural Component Divergence
worked out to 0.32 using formula (13). This value was the
highest among all the other architectural components. This
implied that there was noticeable change in the
implementation of the “Registration Manager” component
post refactoring, and could therefore be a source of potential
architectural mismatches.

It was interesting to note that for the University
Registration System, the Structural Divergence calculated
using formula (14), (15) and (16) worked out to zero. This
would indicate that no changes were made to the relative
positioning of the components in the architecture. Hence
from the above information, the system architect would be

able to conclude that the scope of the refactoring was
localized to the enhancement of existing components and that
no major architectural changes were done. The divergence
measures, in general, are envisioned to provide guides to the
system architect to identify architectural ‘hotspots’ for
analysis to prevent undesired changes.

The Architectural Erosion measures were also exercised
as part of our case study. The Service Erosion was found to
be 0.063 using formula (17) and (18), while Attribute Erosion
was 0.069 using (19) and (20). As would be obvious from the
Divergence measures, the Structural Erosion indicator was
evaluated to zero. The erosion measures are intended to alert
the system architect when services, attributes or structural
elements are dropped during system evolution. The System
Architect should follow up to ensure that the loss does not
impact the system negatively.

In summary, while the erosion metrics identify loss of
functionality and architectural structure, the divergence
measures used in conjunction with the erosion measures help
to identify areas of activity (or change) in the architecture.
The utility of these metrics is higher when software from
different suppliers interoperate to deliver overall system
functionality and the System Architect may not have detailed
insight of all the supplier products.

7. Conclusion

 In this paper we have developed a model for the
architectural assessment of system evolution. We have also
provided a vocabulary for the various aspects that are key to
the measurement of system change. The architectural
divergence and erosion indicators provide objective measures
for the assessment of system change. It’s worth mentioning
that we have also developed a set of Architectural Drift
metrics that leverage the Architectural Divergence indicators.
However, we couldn’t present those or a more detailed
exposition of the evaluation done due to constraints of space.

Finally, even though there has been a fair amount of
interest on system evolution, no research has proposed
divergence or erosion indicators for an objective evaluation.
From what we know, ours is the first attempt in that direction.

8. References

[1] Perry, D. E., Wolf, A. L., “Foundations for the Study of

Software Architectures”, ACM Software Engineering
Notes, 17, 4, October 1992, 40-52

[2] Bowman, I. T., Holt, R. C., Brewster, N. V., “Linux as a
Case Study: Its Extracted Software Architecture”,
ICSE’99, Los Angeles, CA, May 1999.

[3] Gall, H., Klosch, R., Mittermeir, R., “Object-Oriented
Re-Architecting” ESEC-5, Berlin, Sep. 1995.

[4] Guo, G. Y., Atlee, J. M., Kazman, R., “A Software
Architecture Reconstruction Method” WICSA-1, SA,
1999.

[5] Kazman, R., Carriere, J., “View Extraction and View
Fusion in Architectural Understanding” 5th International
Conference on Software Reuse, Canada, 1998.

[6] Mikic-Rakic, M., Mehta, N. R., Medvidovic, N.,
“Architectural Style Requirements for Self-Healing
Systems”, 1st Workshop on Self-Healing Systems,
Charleston, Nov. 2002.

[7] Medvidovic, N., Egyed, A., Gruenbacher, P., “Stemming
Architectural Erosion by Coupling Architectural
Discovery and Recovery”, 2nd International Workshop
from Software Requirements to Architectures (STRAW),
Portland, 2003

[8] O’Reilly C., Morrow, P., Bustard, D., “Lightweight
Prevention of Architectural Erosion”, 6th International
Workshop on Principles of Software Evolution, 2003

[9] Bhattacharya, S., Perry, D. E.,. "Contextual Reusability
Metrics for Event-Based Architectures", 4th ACM-IEEE
International Symposium on Empirical Software
Engineering, November 2005, Australia

[10] van der Hoek, A., Mikic-Rakic, M., Roshandel, R.,
Medvidovic, N., ”Taming Architectural Evolution”, 8th
European Software Engineering Conference, 2001, 1-10

[11] Bass, L., Clements, P., Kazman, R., “Software
Architecture in Practice”, Addison Wesley, 1999

[12] Fenton, N., Pfleeger, S., “Software Metrics: A Rigorous
and Practical Approach”, PWS Publishing Company,
1997

[13]Shaw, M., Garlan, D., “Software Architecture:
Perspectives on an Emerging Discipline”. Prentice Hall,
1996

[14] Bosch, J, “Design & Use of Software Architectures:
Adopting and evolving a product-line approach,”
Addison-Wesley, 2000

[15] Bhattacharya, S. “Specification and Evaluation of
Technology Components to Enhance Reuse,” Masters
Thesis, The University of Texas at Austin, July 2000

