
An Exploratory Case Study Using CBSP and Archium
Charles L. Chen

The University of Texas at Austin, Empirical
Software Engineering Laboratory,

Austin, Texas

U.S.A

clchen@ece.utexas.edu

Danhua Shao
The University of Texas at Austin, Empirical

Software Engineering Laboratory,

Austin, Texas

U.S.A

dshao@ece.utexas.edu

Dewayne E. Perry
The University of Texas at Austin, Empirical

Software Engineering Laboratory,

Austin, Texas

U.S.A

perry@ece.utexas.edu

ABSTRACT
The need for architectural rationale has long been recognized, but
unfortunately it has remained a relatively unexplored area of
research in software architecture. However, there is growing
interest in methods for capturing the rationale behind software
architectures. We summarize two of these methods (CBSP and
Archium), present an exploratory case study using both methods
to evolve a real software system, and then use the results from this
case study to analyze and compare these methods. From this
analysis, we conclude that the CBSP and Archium methods are
complementary rather than competing because of their respective
strengths and weaknesses.

Categories and Subject Descriptors
D.2 Software Engineering; D.2.1 Requirements; D.2.10 Design;
D.2.11 Software Architecture

General Terms
Software Architecture, Exploratory Case Study, Experience
Report.

Keywords
Architecture evolution, System maintenance, Architecture
rationale, case study, accessibility framework, design trade-offs

1. INTRODUCTION
Going from requirements to architecture is the first and hardest
step in engineering software systems. The choices made during
this step shape the project and may restrict the choices to be made
in evolutionary development. Unfortunately, this wealth of
choices and complex tradeoffs is often captured inadequately, if at
all. Having a better understanding of the rationale for why these
choices were made can bring significant benefits for both the
initial design phase of the system as well the evolution and
maintenance phase.

The importance of rationale in software architecture has been long
recognized. Perry and Wolf proposed their model of software
architecture composed of elements, form, and rationale [4].
However, as seen in Garlan and Perry [8], most of the research in
software architecture has focused on ADLs, and there has been
little work done on using or providing rationale.

More recently, there has been some interest in capturing rationale.
Duenas and Capilla advocate using a Design Decision view of
software architecture [5]. Wolf and Dutoit focus on rationale for

their Rationale-based Analysis Tool for object-oriented
requirements analysis [6]. Perry and Grisham [9] explore the
issues with using rationale, specifically in the context of COTS.
CBSP and Archium are methods designed to document the
rationale as part of the architecture [1,2,3].

Exploring the capture and use of rationale in software architecture
is one of the research areas of our lab. Recently, we had an
opportunity to explore these issues firsthand. One of the authors
created the Core Library Components for Text-To-Speech (CLC-
4-TTS) Suite, a set of extensions for Firefox that enables the
visually impaired to browse web pages [7]. Because of the need to
stay up to date with Firefox and because of new features, the
CLC-4-TTS Suite is constantly evolving. In a recent iteration, the
ability to process CSS speech properties was added; this is a
feature that is not available in even the leading commercial screen
readers. In the process of evolving this system, we applied the
CBSP and Archium methods in designing a new component vital
for having CSS speech property support. The CBSP and Archium
methods were selected because they are the more recent attempts
at capturing and using rationale in architecture. This paper
summarizes the CBSP and Archium methods for capturing
architecture rationale and presents an exploratory case study that
uses and evaluates them in the context of this evolutionary step.

2. THE CBSP METHOD
The CBSP method was developed by Grunbacher et al. [1,2].
CBSP is designed to help architects bridge the gap between
requirements and architecture. The name CBSP comes from the
idea of breaking down an architecture into components, buses,
systems, and their respective properties. The steps of the CBSP
method are as follows:

1. Selection of requirements for the next iteration

2. Architectural classification of requirements

3. Identification and resolution of classification mismatches

4. Architectural refinement of requirements

5. Trade-off choices of architectural elements and styles with
CBSP

The first step of this method simplifies the problem by
eliminating and refining requirements using stakeholder
prioritization. During the second step, a team of architects
classifies the requirements in terms of their relevance along the
Component, Bus, System, Component Property, Bus Property,
and System Property dimensions. In the third step, the architects

Architecture Model:
Component Entity, Delta,

Interface,
Port,

Connector,
Abstract Connector

Composition Model:
Composition Technique,

Composition Configuration, Design
Fragment Composition

Design Decision Model:
Design Fragments,
Design Decisions

Figure 1. The Archium Meta-Model

compare their classifications and discuss any mismatches. By
having this discussion, misunderstandings about the requirements
can be uncovered and resolved. After the architects have agreed
on the classification of the requirements, they refine these
requirements into architecturally friendly CBSP artifacts in the
fourth step. An example of this refinement process can be seen
below in section 4.1 where we apply the CBSP approach to
developing a component for a real software system.

In the last step, the architects use these CBSP artifacts to choose
an appropriate architectural style for the system by comparing the
amount of support each style has for the relevant properties.
Grunbacher et al. present an example of doing this evaluation in
[1]. For the Data Component dimension, they list possible
properties as aggregated, persistent, streamed, and cached. They
also show the amount of support that is provided for each
property by the Client-Server, C2, Event-Based, Layered, and
Pipe-and-Filter architectural styles. For instance, pipe-and-Filter
is good at supporting streamed data, but bad at supporting cached
data; the reverse is true of the Client-Server style. They repeat this
for the properties related to the Processing Component,
Bus/Connector, and System dimensions. However, it is important
to note that the evaluation that they did reflected their specific
case study and is not necessarily appropriate for other projects.
Ultimately, choosing the various properties, delineating the
various styles, and evaluating the amount of support that a
particular style has for a given property is a task that is left up to
the architects for their particular domains and specific projects.

3. THE ARCHIUM METHOD
Jansen and Bosch proposed a new approach called Archium [3]
for documenting the rationale as part of the design and evolution
of software architecture. In the traditional view of software
architecture, the architecture is composed of components and
connectors. The problem with this traditional model is that the
design rationale is lost, making it difficult to evolve the system.
To overcome this problem, Jansen and Bosch proposed viewing
software architecture as a series of design decisions; this

information about design decisions can help developers evolve
their current architecture. In the Archium view, a design decision
includes the following parts:

Rationale: Why the change is being made

Design rules: What rules should be followed

Design constraints: What should not be allowed

Additional requirements: New requirements resulting from
the change

The information that Archium provides about design decisions
can be helpful in evolving the system, checking for violations of
design rules and constraints, pruning obsolete design decisions,
preserving the integrity of the concepts, defining the design space
clearly, analyzing both the software architecture and design, and
tracing changes in the architecture. Archium supports first class
architectural design decisions, explicit architectural changes,
documentation of modifications/subtractions/additions, and clear
relationships between architectures and their implementations.

The problem to be solved is the core of this model [3]. Motivation
and Cause elements describe where the problem comes from.
Solution elements specify possible approaches to solving the
problem. Decision elements show which solution is selected as
the final solution for the problem as the result of making trade-
offs. Applying this decision leads to a modification on the
software architecture. All of this happens within the context of
requirements and other architectural decisions.

Each solution contains the following elements: Description,
Design Rules, Design Constraints, Consequences, Pros, and Cons.
The Description delineates the modifications that will result from
this solution. The Design Rules are the specifications to which the
implementation must conform as found, for example, in
architectural styles and/or patterns. The Design Constraints define
the limitations on what the architectural entities are allowed to do.
The Consequences capture the consequences of using this
solution. The Pros are the expected benefits of using this solution.
The Cons are the possible problems of using this solution.

With this design decision model, Jansen and Bosch propose a new
meta-model for software architecture. In this meta-model, the
design decision is specified as a first class entity, and the software
architecture is specified as a series of design decisions.

The meta-model consists of the Architecture Model, the Design
Decision Model, and the Composition Model. The Architecture
Model defines the elements in the same way as in common
software architectures. It includes the following: Component
Entity, Delta, Interface, Port, Connector, and Abstract Connector.
The Design Decision Model defines the design decision and
includes Design Fragments and Design Decisions. The
Composition Model applies the Design Decision Model to the
Architecture Model. It contains the Composition Technique, the
Composition Configuration, and the Design Fragment
Composition. The Archium meta-model can be seen in Figure 1.

4. AN EXPLORATORY CASE STUDY
USING CLC-4-TTS
The CLC-4-TTS Suite is composed of two libraries of functions
designed for use by Firefox extension developers and an
application layer designed to provide an interface for end users.
The first of these two libraries provides text-to-speech functions,
and the second provides DOM traversal and manipulation
functions. The application layer uses both of these libraries to
transform Firefox into a self-voicing browser which enables the
visually impaired to access web pages. The architecture of the
CLC-4-TTS Suite is constrained by Firefox and what its extension
system allows; these constraints are felt acutely at the lower levels
of the architecture. The CLC-4-TTS Suite is cross OS compatible
and supports Mac and Linux in addition to Windows. In order to
provide text-to-speech services for non-Windows platforms, it
relies on Java FreeTTS.

The CLC-4-TTS Suite was initially developed at the start of 2005;
since then it has been constantly evolving and has undergone
several major iterations. The latest iteration involved adding
support for CSS speech properties that allow web developers to
specify the style in which text is read by screen readers the same
way they would specify the style in which text is displayed on the
screen. Instead of adjusting the font family, color, size, etc., web
developers can set the pitch, speaking rate, volume, etc. Adding
support for adjustable speech properties in Java FreeTTS was a
difficult problem, and the first attempt to do so was plagued with
faults resulting from race conditions. Speech properties were
incorrectly associated with messages, and sometimes a speech
property would be applied to all messages with no way for the
user to revert to the default speech property. This first attempt
was done with the idea of adding a custom queue system but
without any formal capture of the design rationale.

This exploration was motivated by a desire to evaluate the CBSP
and Archium methods as well a practical attempt to step back and
re-evaluate the requirements in order to design a good solution for
adding adjustable speech properties to Java FreeTTS. The CBSP
method was used first to come up with a design for accomplishing
this. Then the Archium method was used to consider alternative
designs. These designs were compared, and the experiences of

using these methods were recorded and analyzed. There are
validity issues with possible bias from previous experience with
the system and the learning effect of using Archium after having
used CBSP. However, this is an exploratory case study and
provides a much needed replication of the case studies presented
in the CBSP and Archium papers since there have been no
attempts to replicate those case studies in the literature.

4.1 Using CBSP
4.1.1 High Level Design
The problem was broken up into the following six requirements:

R1: Speech properties must be configurable for FreeTTS.

R2: Users must be able to interact with the system at all
times.

R3: Speech should not have any long pauses.

R4: Equal priority messages should be spoken in the order
they were received.

R5: High priority messages must be able preempt lower
priority messages; preempted messages do not have to be
saved.

R6: Speech properties from one message may not interfere
with those from another.

These requirements were then refined into the following CBSP
elements as seen in Figure 2:

R1 – R1_C: There needs to be a SetProperties function for
FreeTTS.

R2 – R2_SP: The system needs to be multi-threaded in
order to handle constant user interaction.

R3 – Eliminated: The definition of “long pause” was
ambiguous and a correctly functioning queue system should
not have this problem.

R4 – R4_B: There needs to be a queue for messages.

R4_BP: The queue for this system should be first in,
first out (as opposed to a double-ended queue).

R5 – R5_C: There needs to be a Queue Manager that
allows operations on the queue. One of these operations has
to clear the queue.

R6 – R6_C: There needs to be a Message Data Object that
has a CONTENT member and a PROPERTY member.

Deriving these CBSP elements was a fairly straightforward
process. CBSP makes it easy to trace from these elements back to
their requirements. However, where there was room for variation,
the CBSP method did not allow for the capture of these
alternative solutions. For example, this design reflects the use of a
queue system created as a component within the CLC-4-TTS
system, but an alternative design of leveraging queuing
capabilities that already exist within FreeTTS is not captured and
has no place to be documented within the CBSP method.

R1: Speech properties must be
configurable for FreeTTS R1_C: SetProperties function for FreeTTS

R4: Equal priority messages should be
spoken in the order they were received R4_B: Queue for messages

R5: High priority messages must be able
preempt lower priority messages; preempted
messages do not have to be saved

R5_C: Queue Manager that allows the queue
to be cleared

R6: Speech properties from one message
may not interfere with those from another R6_C: Message Data Object with a CONTENT member and a

PROPERTY member

Figure 2. Refinement of Requirements to CBSP Artifacts.

Since the goal was to add support for speech properties in Java
FreeTTS under the existing CLC-4-TTS Suite and not to create a
brand new architecture, the final step of selecting an architectural
style was omitted. Had we needed to perform this step, we would
have had to analyze the amount of support that various
architectural styles had for the properties that we are interested in
and which were not necessarily covered in the CBSP to style
mappings as laid out by Gruenbacher et al. in [2]. For instance,
the data component should be queued, but there is not a
queued/buffered property in their style mappings. The processing
component needs to be dynamically reconfigurable, but
dynamically reconfigurable is only a property for the system in
their style mappings.

4.1.2 Low Level Design
There are two implementation options for creating the queue
system. The queue system could be fully implemented as an
explicit data object, or simply continue to use the existing system
(with some minor modifications) and accept minor buggy
behavior since FreeTTS will queue messages, but not properties.
Because properties could not be queued, the last property would
be applied to all messages. Thus it is possible for all the messages
in the queue to be spoken with an incorrect property until the last
message. The worst possible scenario would be if new messages
were constantly being added to the queue and the properties were
always different; in such a case, the speech property would
always be different from the one intended for the current message.
The first approach is far more correct as it is a true queue system;
the second approach is much easier to implement. Thus the first
approach should be chosen if the bugginess of the second
approach is unacceptable; otherwise, the second approach should
be used.

The rationale behind the requirements was re-examined; tracing
back from the CBSP elements, the most relevant requirement for
the queue system was requirement R6, “Speech properties from
one message may not interfere with those from another.” In the
CLC-4-TTS Suite, the only time there could be such interference
is when the user is trying to read an HTML element. Reading an
HTML element generates three equal priority messages: 1. the

type of the element if it is special (for example, a heading, link,
check box, etc.), 2. the content of the element, and 3. the status of
the element if applicable (whether the check box is checked or
not, etc.). The desired behavior in such a case is to read the
content with the speech properties specified on the page, and to
read the type and the status with the default speech properties.
This can only be accomplished with the first method; if the
second method were to be used, then the property of the last
element wins.

A careful risk assessment was performed by analyzing the
possible scenarios. The most common usage of speech properties
is in the middle of a paragraph (usually to add emphasis to a
particular word); thus there would be no special type to identify
and no status. Furthermore, no new messages would be put on the
queue until after the queue was cleared, either because everything
in the queue had already been spoken or because the user
interrupted the queue by performing an action that generated a
high priority message that removed all of its predecessors from
the queue. This means that at worst, there would never be more
than three messages in a queue; after the third message, the queue
would be reset. Because of these behavioral properties, we can
enumerate the scenarios that involve speech properties as follows:

1. There is only the content. – There is only one message in
the queue, and the last property used is its property. There is
no error. This is also the most frequent case where speech
properties are used.

2. There is type and content. – There are two messages in the
queue. The property that will be used for both messages
belongs to the last message. The type will be read with the
property for the content; this may make the type sound
strange, but it will still be understandable.

3. There is content and status. – There are two messages in
the queue. The property that will be used for both messages
belongs to the last message. The content will be read with
the property for the status; this means the content will be
read with the default property, making it sound as if speech
properties were not implemented.

4. There is type, content, and status. – There are three
messages in the queue. The property that will be used for all
the messages belongs to the last message. The type and the
content will be read with the property for the status.
However, since the type and the status are both system
generated messages and both will be using the default
property, the type will be read with the correct property. The
only error in this case is reading the content with the default
property, making it sound as if speech properties were not
implemented.

Since the effects of the errors are minor and transient, and the
errors would only occur rarely, the second implementation option
is acceptable.

4.2 Using Archium
4.2.1 High Level Design
The problem was stated in Archium format as follows:

Problem

The current interface to FreeTTS does not allow speech
properties to be set.

Motivation

The result of this is that Linux and Mac users are unable
to experience the CSS speech property support being
introduced

Cause

 Speech property support has not been implemented yet

Context

 Evolving the existing CLC-4-TTS Suite

Two potential solutions were explored: 1.) Using a JSML
Generator, and 2.) Using a Queue System. The pros and cons
analysis is shown in the following subsections.

4.2.1.1 Potential Solution #1: JSML Generator
• Description:

Use JSML to encode the properties into a string along
with the message. Pass the entire thing into FreeTTS.

• Design rules:

All generated strings must be well formed JSML
strings.

• Design constraints:

Message needs to be put within tags that contain the
properties; therefore messages and associated properties
should be delivered at the same time.

• Consequences:

CLC-4-TTS Suite is dependent on FreeTTS supporting
JSML.

• Pros:

1. Easy to code (similar system exists for SAPI 5
already)

2. FreeTTS manages the queue

3. Easy to force FreeTTS to empty queue (for
prioritization)

• Cons:

1. FreeTTS does not yet support JSML; significant
wait time expected as the FreeTTS project appears
to be in hiatus (last update was in February 2005).

4.2.1.2 Potential Solution #2: Queue System
• Description:

Create a queue system that will set the speech properties
for FreeTTS, pass FreeTTS a message to be spoken, and
then wait until it is ready for a new message with a
different set of speech properties.

• Design rules:

Must keep track of messages and associated speech
properties

• Design constraints:

Queue must not interfere with users' ability to interact
with the system as a whole; blocking is only to block
the speech portion but nothing else.

• Consequences:

CLC-4-TTS Suite is dependent on Java FreeTTS
allowing the setting of speech properties.

• Pros:

1. Can be implemented immediately as Java FreeTTS
already allows for the setting of speech properties.

• Cons:

1. Far more difficult than using a JSML generator.

Because the JSML Generator approach was infeasible, the Queue
System approach was selected as the design.

4.2.2 Low Level Design
The same two implementation options exist for the Archium
version. Making the choice between these two options can be
considered as simply another Archium model.

Problem

The current implementation of the CLC-4-TTS system
does not have an explicit queue.

Motivation

The result of this is that equal priority messages cannot
be queued and spoken in order such that their speech
properties do not interfere with each other.

Cause

 An explicit queue has not been implemented yet

Context

 Evolving the existing CLC-4-TTS Suite

4.2.2.1 Potential Solution #1: Explicit Queue System
• Description:

Create a queue object. Use this to explicitly queue the
messages.

• Design rules:

All messages to FreeTTS must be sent through this new
queue system to ensure that all messages are queued.

• Design constraints:

Queue system must accommodate messages and their
speech properties. Queue must interface with FreeTTS.

• Consequences:

CLC-4-TTS Suite must be heavily modified to account
for this new queue system.

• Pros:

1. Messages and their properties will be handled
correctly all the time

• Cons:

1. A great deal of effort is required to overhaul the
existing system to use this new queue system

2. Risky approach – potential to introduce a large
number of bugs

3. Restricts future change – switching to a different
system (such as a JSML generator) in the future
would be difficult as the queue system will need to
be undone first.

4.2.2.2 Potential Solution #2: Implicit Queue System
• Description:

Rely on the existing system (after minor modifications)
to handle queuing.

• Design rules:

Messages should continue to be sent the way they are.
Speech properties for messages may be sent with the
messages if there are any.

• Design constraints:

Only minor changes will be made to the system; for the
most part, things should stay the same.

• Consequences:

CLC-4-TTS Suite is slightly modified to accommodate
this system. Some bugginess will have to be accepted.

• Pros:

1. Can be implemented quickly without disrupting the
current system

2. Easy to switch to a different system in the future

• Cons:

1. Not all cases will be handled correctly

Because of the rare occurrence of the conditions where there will
be a problem and because having the flexibility to use a different,
better system in the future is important for a constantly evolving
project like the CLC-4-TTS Suite, the second solution is chosen.

4.3 Comparison of CBSP and Archium
Although the methods were different, they both resulted in the
same design. The likely explanation for this result is that this
design is the most direct solution to the problem. There is also the
possibility that this result is an artifact of both methods having
been used by the same person; however, he tried to use these
methods as independently as possible by following the steps for
one method, then restarting from scratch and following the steps
for the other method.

The high level design was implemented according to the low-
level design decisions. After modifying the code of the text-to-
speech component to take advantage of the existing queue system
within FreeTTS, the system performed correctly (except for the
known buggy cases), thus validating the design. Interestingly
enough, capturing the possibility of using a JSML generator and
leaving the flexibility to use it in the future may soon have some
practical value since there has been some recent news that the
FreeTTS project will incorporate code that will allow it to support
JSML in the near future. Using a JSML generator would be a
better solution than the current queue system; capturing the
rationale for why it was not selected will be helpful during
refactoring in deciding whether or not these reasons still exist
given the current situation.

We found that the CBSP method was useful in providing a
structured process for going from requirements to architecturally
friendly CBSP artifacts and in tracing these artifacts back to the
original requirements. However, it was difficult to evaluate trade-
off choices made in the creation of the CBSP artifacts; CBSP
provides no support for capturing and reasoning about alternatives
in deriving the CBSP artifacts from the requirements. Although
there was no attempt to choose an architectural style using the
CBSP artifacts given the nature of the project, had it been
necessary, we would probably have found that step to be difficult
since there is no guidance given in the CBSP methodology for
determining the amount of support that an architectural style
provides for a particular property.

Interestingly, we found that the strengths and weaknesses of the
Archium method were exactly the opposite of those of the CBSP
method. Not only are alternative designs captured explicitly as
part of the Archium process, the pros and cons of those designs
are documented as well. This provides a strong basis for
reviewing design choices and determining if past choices are still
valid in the current context of the system. However, creating these
potential solutions was difficult; Archium has no process or

guidance for deriving the architectural solutions from the
requirements and leaves that step completely up to the designers.

The most interesting result of this exploratory case study is that
the CBSP and Archium methods appear to be complementary
rather than competing. Thus using CBSP to go from requirements
to possible architectural solutions and then using Archium to
document and evaluate the alternatives may be better, both in
terms of the quality of the resulting architecture and the
documentation of the underlying rationale, than either method
alone. Both of these methods can improve by learning from each
other. CBSP could benefit from having better tradeoff analysis
and capturing alternative solutions. Archium could benefit by
having a clearer path between requirements and architectural
design. Choosing an appropriate architectural style is an area
where further research is needed as neither method adequately
addresses this issue.

5. CONCLUSIONS AND FUTURE WORK
We have summarized the CBSP and Archium methods. Our
exploratory case study applied both methods to designing a
solution for a real-life software system; the results of this study
indicate that the CBSP and Archium methods may be
complementary rather than competing. CBSP is useful in helping
architects go from requirements to architecturally friendly
elements; Archium is useful for capturing the rationale for picking
one solution over other alternatives. Using both methods can
result in an easier transition from requirements in the problem
space to architectural elements in the solution space and in better
documentation of why certain choices were made – this increased
traceability is invaluable in software evolution. The selection of
an appropriate architectural style is an area that requires further
research since neither of these methods currently addresses this
problem.

6. ACKNOWLEDGMENTS
This research is supported in part by NSF CISE Grant CCR-
0306613.

7. REFERENCES
[1] Grunbacher, P., Egyed, A., Medvidovic, N. Reconciling

Software Requirements and Architectures: The CBSP
Approach. Proceedings of the 5th IEEE International
Symposium on Requirements Engineering, 2001, 202-211.

[2] Grunbacher, P., Egyed, A., Medvidovic, N. Reconciling
Software requirements and Architectures with Intent
Modeling. Software and Systems Modeling, Vol. 3 No. 3,
2004, 235-253.

[3] Bosch, J. Software Architecture: The Next Step. Proceedings
of the First European Workshop on Software Architecture
(EWSA 2004), 2004, 194-199.

[4] Perry, D., Wolf, A. Software Architecture. 1989.
http://www.ece.utexas.edu/~perry/work/papers/swa89.pdf.

[5] Duenas, J., Capilla, R. The Decision View of Software
Architecture. EWSA, 2005, 222-230.

[6] Wolf, T., Dutoit, A. A Rationale-based Analysis Tool. 13th
International Conference on Intelligent & Adaptive Systems
and Software Engineering, 2004.

[7] Chen, C. CLC-4-TTS and Fire Vox: Enabling the Visually
Impaired to Surf the Internet. Undergraduate Research
Journal, Vol. 5 No. 1, 2006, 32-42.

[8] David Garlan and Dewayne E. Perry, Special Issue on
Software Architecture, IEEE Transactions on Software
Engineering, 21:4 (April 1995)

[9] Dewayne E. Perry, and Paul Grisham. Architecture and
Design Intent in Component and COTS Based Systems,
International Conference on COTS Based Software Systems,
Februrary 2006, Orlando FL.

	INTRODUCTION
	THE CBSP METHOD
	THE ARCHIUM METHOD
	AN EXPLORATORY CASE STUDY USING CLC-4-TTS
	Using CBSP
	High Level Design
	Low Level Design

	Using Archium
	High Level Design
	Potential Solution #1: JSML Generator
	Potential Solution #2: Queue System

	Low Level Design
	Potential Solution #1: Explicit Queue System
	Potential Solution #2: Implicit Queue System

	Comparison of CBSP and Archium

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

