
Mining Software Repositories for Rigorous Empirical Evaluation:
A Position Paper

Danhua Shao, Sarfraz Khurshid and Dewayne E Perry
Electrical and Computer Engineering, The University of Texas at Austin

{dshao, khurshid, perry}@ece.utexas.edu

Abstract

In the software tools studies, most of the
evaluations were done within artificial contexts at
labs. Although this approach can give instant feedback
with low cost, the mock contexts are quite different
from the real context and industrial developers are still
confused with the experiment results. Our study
provides a significant and low cost method to evaluate
software tools with near real contexts.

1. Introduction

Historical data has long been recognized as a rich
source of data for empirical studies [1]. It offers
significant advantages for descriptive, relational and
experimental studies: availability, low costs, avoidance
of a number of internal validity issues, etc. There are,
of course, some drawbacks: the data may be
incomplete; desired data may be missing; the data may
be untrustworthy; they data may not be in a convenient
form; etc.

In software engineering, there is a rich history of
using historical data for a variety of purposes from
project management, process improvement, and system
analysis to system improvement. An early example
related to project management is that of Boehm’s book
on software economics [2]. It relies on a wealth of
historical data to derive his constructive cost model
(COCOMO). A variety of studies on software faults
also rely on historical data to help understand the
problems with software development and evolution
(for example, [3] and [4] by one of the authors1) in
terms of interface and development software faults.

A significant amount of work based on the
historical data from one of the subsystems of

1 Please note that there is a wealth of citations that
could be used here and for all the topics covered. We
are not trying to be exhaustive, but merely indicative
of the variety of approaches to be found – and as this is
a position paper, the sources at hand are the easiest to
use as illustrations.

AT&T/Lucent Technologies’ 5ESS™ Telephone
Switching System was done in the Software
Production Research Department of Bell Labs. This
Project was called the Code Decay Project and was the
result of an NSF funded collaboration between this
department, the National Institute for Statistical
Sciences (NISS) and several universities (for example,
Adam Porter at the University of Maryland and Nancy
Staudenmeyer at Duke University). The historical data
consisted of the entire version management and change
management histories of this representative subsystem.
The studies ranged from looking for factors for code
decay [5] to studies of parallel changes showing a
direct linear relationship between degree of change
concurrency and the increased presence of faults [6].

2. The ICSE MSR Series
The first workshop on mining software repositories

was held in Edinburgh in May 2004 with Ahmed
Hassan, Ric Holt and Audris Mockus as the co-chairs
of the workshop. This was the first such organized
community focus on the use of historical data,
specifically version management and associated data.

The genesis of this series was Ahmed Hassan’s PhD
thesis [7] on the use of software repositories to aid
software developers and project managers. The
general topics for this first workshop were centered
around the following: extracting and presenting data
from version and associated repositories; using the
data to understand system development and evolution
processes; using the data to understand system defects
and change patterns; using the data to aid in system
comprehension and reuse; and using the data for
assisting project management. Indeed, we presented a
paper on using the 5ESS™ version and change
management to understand the phenomena about and
effects of small source code changes [8].

While the call for papers for MSR 2005
acknowledged that “Software practitioners and
researchers are beginning to recognize the potential
benefit of mining this information to support the
maintenance of software systems, improve software
design/reuse, and empirically validate novel ideas and

techniques”, the papers published and the sessions
organized were, in general, similar to those found in
MSR 2004. There were in fact no papers explicitly
concerned about using or mining software repositories
for empirically validating novel ideas and techniques.
At best, the repositories were used empirically in a
self-referential way to evaluate the techniques and
tools for mining software repositories

The MSR 2006 was similar to MSR 2004 and 2005.
This is not meant as a criticism, but as an observation.
The work done so far in mining software repositories
has been extremely good and productive. But the
focus is not nearly as broad or as interesting as it might
be. Certainly the work that has been done provides a
useful basis for a variety of explorations that can use
the tools and techniques that have been produced thus
far. But there is much more that can be done in mining
repositories.

3. Rigorous Empirical Evaluation
As we mentioned in the introduction above,

historical data provides a rich source for empirical
studies. Further, version and change management
repositories are amongst the richest data repositories
available to software engineering researchers, either
from open source projects or from company specific
projects such as the 5ESS™ repository used to
advantage by Bell Labs researchers.

It is our position that the version and change
repositories offer a significant opportunity for
supporting rigorous empirical evaluation and
validation. Perhaps the most obvious subject domains
for this rigorous empirical validation are those domains
that are responsible for finding faults in software
systems. Version and change management repositories
are a natural basis for empirically evaluating analysis
tools. It may well be a useful basis for evaluating
testing techniques as well, but our experience using
these repositories has been with analysis tools rather
than testing.

The idea of using historical data as found in such
repositories as the basis for software engineering
experiments was first suggested in the Perry et al.
ICSE 98 tutorial on empirical studies in software
engineering [9]. The third part of the tutorial focused
on suggested experimental designs and various
approaches that might prove useful in future empirical
studies. One of these suggested designs was the use of
historical data to experimentally evaluate methods,
techniques, processes and tools.

An early example of this approach is found in
Atkins et al. [10] (not surprisingly all from the same
department at Bell Labs as Perry and Votta with Porter
as a long time collaborator) where they evaluated the
effect on productivity of a version editor, VE, on the
basis of historical version management data. The
authors were able to differentiate versions edited using
VE versus other editors because VE left identifiable
signatures in the source code of all the version oriented
lines it generated. Using an effort estimation technique
developed by Graves and Mockus [11], they were able
to demonstrate that those developers who used VE
were “approximately 36% more productive when using
VE than when using standard test editors.”

The effort estimation technique and the comparative
data were all derived from version repositories. It was
fortunate that they were able to differentiate the
historical data into VE and non-VE related groups.
Without that extra-repository distinction (or relation if
you will), the evaluation would not have been possible.
Thus, while this empirical study did use historical data
from version and change management, it was, in a real
sense, instrumented data.

But the study does illustrate an important point: the
versions found in the repository were separated into
two groups based on a criterion that was useful in the
empirical study and a significant result was obtained
on the basis of this differentiation.

The first step then, in designing an evaluative
experiment is establishing the hypotheses we want to
test in terms of independent and dependent variables.
The critical experimental issue here is that of construct
validity: do we have the right abstract constructs that
represent what we intend to investigate and are they
represented by useful and appropriate observable
constructs.

The independent and dependent variables may
include any or all of the following in version and
change management databases: versions, changes,
dates, people making changes, the kinds of changes,
the size of changes, the size of modules, the number of
changes, etc. The list of possible variables is limited
only by the historical data found in the repositories.

Where data is not found in the repositories, it may
be possible to infer it from the data that is there. This
is what, for example, Hassan [7] and Mockus and
Votta [12] have done in their techniques of
determining whether changes are fault fixes,
improvements or enhancements (both techniques
derived and validated from studying the historical data
in these repositories).

The next step is determining the sample groups to
be the subjects of the experiment. One should have at
least two groups: a control group and a treatment
group. Further, one may wish to block on the basis of
certain characteristics in the population such as type of
change, etc., in which case multiple groups of
representative samples will be needed.

On the basis of these desired characteristics, one
may then mine the repositories to create equivalent
groups made up of either the entire populations in the
repositories or randomly selected subsets to use in the
experiment.

It is at this point where the usefulness of having
both version and change management repositories
becomes most interesting in terms of evaluating
analysis tools. Given the versions chosen in the
subject groups, one can mine the change management
repositories for fault fix changes related to those
versions and establish the fault set for each version.

This approach provides the “mundane realism” that
has not been, and very likely cannot be, provided by
fault seeding. Further this removes the internal
validity problems associated with fault seeding: the
representativeness of the faults seeded the placement
of those faults, and the frequency of fault occurrence.

Unfortunately, the fault set derived from the change
management repository may not be without its own
internal validity problem depending on the data
therein: faults are often only collected once integration
or system testing begins and so the faults found in unit
testing are not represented. Thus, to understand and
evaluate the behavior of analysis tools for the full
range of fault finding, one would have to design and
execute field experiments using real development
projects to supplement the experiments on historical
data and to cover the full range of usefulness for that
tool.

4. An Example Experiment
We have done just such an experiment to rigorously

evaluate the usefulness, effectiveness and practicality
of a tool that detects semantic interference between
versions [13]. The idea of this tool grew out of one of
the authors work on the problem of parallel changes
[6]. There we looked primarily at syntactic
interference and hypothesized the existence of
significant semantic interference that was not detected
by current techniques. The tool is intended to be part
of the pre-version-deposit process.

The resulting tool we created is sound but not
complete. The experiment was intended to show just
where its effectiveness and usefulness lay.

We randomly selected three groups of versions:
those where the changes between versions where
intervals between versions were quite long; those
where the intervals between versions were moderate in
length; and those where the intervals between changes
were quite short. The three groups were intended to
represent versions that were quite stable, versions
where the changes could be absorbed and understood
by the developers without undue pressure, and
versions where the changes were highly “parallel” –
i.e., where there is little time to absorb the meaning of
the changes and there is significant pressure to hurry
changes so the next developer can make his or her
changes in a timely way.

We then mined the change repository to create the
fault set for these versions, including the date when the
fault was found, and further classified the versions
according to whether they were fault fixes,
improvements or enhancements.

Given the historical data we had mined from the
repositories, we then executed the experimental
manipulations; we used the tool to analyze the versions
in the three groups yielding what we term “direct”
semantic interferences (i.e, we do not do pointer
analyses).

We then analyzed the fault set to see which of the
interferences represented faults and which did not (i.e.,
which represented either intended interferences –
fixing faults – or, possibly, faults that had not been
discovered; we assumed that the former was the case).
The matched interferences with faults provides a
predictive measure for what would be the results of
analysis as versions are deposited into the version
management system; the unmatched interferences were
a measure of false positives that might be encountered
in these analyses. We believe, however, that the
intended cases of direct semantic interferences are
easily dealt with by the developer and represent little
overhead in the version deposit process. The fault date
data provides a measure of how much time that would
be saved in uncovering the faults at deposit time rather
than at testing or release time. We further analyzed the
fault set to see what kinds of faults were not due to
direct semantic interference and classified them as to
types of faults.

The full design of the experiment is presented in
[14] and the results of executing the experiment are
presented in [15]. Our results showed where the tool

was effective (i.e., for which group and which type of
versions), how effective it was, and the costs and
savings of using it. The results were congruent with
the earlier findings in with respect to the degree of
concurrency and the likelihood of faults [6].

5. Conclusions
It is time to go beyond the simple demonstrations of

ideas that we currently find in research papers,
showing with a few artificial cases that something does
indeed work. It is time to provide rigorous empirical
evaluations and validations that provide useful and
practical information about where the tool use is
appropriate, the extent to which it is effective, and the
practical benefits to be obtained from its use.

The use of version and change management
repositories provides a rich and effective basis for
doing those rigorous experiments. Further, the
methods, techniques, process and tools that have been
developed to understand and manipulate these
repositories (and presented in the MSR workshop
series) provide a rich set of tools to help in these
experiments.

We can avoid the artificiality of many of the
approaches now used to provide ineffective and
shallow evaluations by using industrial strength data
from these repositories by carefully constructing
appropriate sample populations of versions and faults
and their related data. We can provide the needed
“mundane reality” [1] that is needed to provide at least
one important element in external validity – namely,
that the experiment was executed in the context of real
development data.

Thus, it is time to build on the first generation of
mining software repositories and begin the second
generation where we use the results of the first to
leverage those of the second. This second generation
should focus on using these repositories for rigorous
empirical evaluation and validation of “novel ideas
and techniques”.

6. References
[1] Rosenthal and Rosnow, Essentials of Behavioral

Research: Methods and Data Analysis. Second edition.
McGraw Hill (Series in Psychology) 1981, 1994.

[2] Barry Boehm, Software Engineering Economics
Englewood Cliffs, NJ: Prentice-Hall, 1981.

[3] Dewayne E. Perry and W. Michael Evangelist. “An
Empirical Study of Software Interface Errors”,
Proceedings of the International Symposium on New
Directions in Computing, IEEE Computer Society,
August 1985, Trondheim, Norway, 32-38.

[4] Dewayne E. Perry and Carol S.Steig, “Software Faults
in Evolving a Large, Real-Time System: a Case Study”,
4th European Software Engineering Conference --
ESEC93, Garmisch, Germany, September 1993.

[5] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus, “Does code decay? assessing the evidence
from change management data”, IEEE Transactions of
Software Engineering, TSE 27-1 (January 2001), 1-12,

[6] D.E. Perry, H.P. Siy, and L.G. Votta, “Parallel Changes
in Large Scale Software Development: An
Observational Case Study”, ACM Transactions on
Software Engineering and Methodology, Vol. 10, No. 3,
July, 2001, pp 308-337.

[7] Ahmed E. Hassan, “Mining Software Repositories to
Assist Developers and Support Managers , PhD Thesis,
School of Computer Science, Faculty of Mathematics,
University of Waterloo, Ontario, Canada, 2004.

[8] Ranjith Purushothaman and Dewayne E Perry,
``Towards Understanding the Rhetoric of Small Source
Code Changes'' Special Issue on Mining Software
Repositories, IEEE Transactions on Software
Engineering TSE 31-6 (June 2005)

[9] Dewayne E. Perry, Adam P. Porter and Lawrence G.
Votta, “Tutorial: A Primer on Empirical Studies”, 1997
International Conference on Software Engineering,
Boston Mass, May 1997.

[10] David Atkins, Thomas Ball, Todd Graves and Audris
Mockus. “Using Version Control Data to Evaluate the
Impact of Software Tools”, 21st International
Conference on Software Engineering, May 1999, Los
Angeles CA.

[11] T. L. Graves and A. Mockus. “Inferring change effort
from configuration management data”, Metrics 98: Fifth
International Symposium on Software Metrics,
November 1998, Bethesda MD, 267-273.

[12] Audris Mockus, Lawrence G. Votta: Identifying
Reasons for Software Changes using Historic
Databases. International Conference on Software
Maintenance 2000, 120-130.

[13] G. Lorenzo Thione and Dewayne E. Perry. “Parallel
Changes: Detecting Semantic Interferences”. The 29th
Annual International Computer Software and
Applications Conference (COMPSAC 2005), Edinburgh,
Scotland, July 2005

[14] Danhua Shao, Sarfraz Khurshid and Dewayne E. Perry.
"Mining Change and Version Management Histories to
Evaluate an Analysis Tool: Extended Abstract", Mid-
Atlantic Student Workshop on Programming Languages
and Systems, April 2006. New Brunsiwck NJ., April
2006

[15] Danhua Shao, Sarfraz Khurshid and Dewayne E Perry.
"Detecting Semantic Interference in Parallel Changes:
An Exploratory Case Study". Submitted for publication.

	Introduction
	The ICSE MSR Series
	Rigorous Empirical Evaluation
	An Example Experiment
	Conclusions
	References

