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ABSTRACT 
A Graphical User Interface (GUI) is an abstraction providing 
users with a more natural way of interacting with computers. It 
consists of objects like buttons, text boxes, toolbars etc. The 
communication between users and GUIs is event driven. Users 
can modify the state of a GUI and trigger events that lead to the 
execution of different code fragments. Hence, in order to test a 
GUI one should execute event sequences simulating user 
behaviors. While the state of some GUI widgets is limited to a 
small number of values (the value of a radio button), others have 
a wide range of possible states (the value of a text box). Such 
widgets are used for data input from the user in the form of text 
(alphabetic or numeric).  Since program execution may depend on 
the user input, it is a challenge to select suitable values in a way 
that allows thorough testing. We propose symbolic execution for 
obtaining these inputs. During symbolic execution, each branch of 
the program is visited and the constraints for control variables 
are resolved determining if it is reachable or not. Thus, by 
symbolically executing code that depends on user input, we can 
obtain values that ensure visiting each reachable branch in the 
program. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – 
Symbolic execution, Testing tools 

General Terms 
Verification. 

Keywords 
Software testing, GUI testing, Symbolic execution 

 

1. INTRODUCTION 

A Graphical User Interface (GUI) provides the user with a more 
convenient and intuitive way for interaction with the computer.  It 
was first introduced by Dough Englebart, an employee in 
Stanford Research Institute in 1965, and the first publicly 
affordable computer with a GUI— the Macintosh—appeared in 
1984  [17]. A GUI is a set of virtual objects (widgets) that are 
more intuitive to use, for example buttons, edit boxes, etc. In 
other words, it is a way of facilitating communication between 
humans with their complex vision of the world and computers and 
their software systems. GUIs are ubiquitous. Almost every 
computer user takes advantage of the convenience provided by 
that abstraction. In contrast with console applications where there 
is only one point of interaction (the command line), GUIs provide 
multiple points each of which might have different states. This 
structure makes GUI testing especially challenging because of its 
large input space. If one wants to test a form with five buttons (a 
button being the simplest active GUI widget), he must try all the 
120 possible combinations. This is necessary because in the 
internal logic of the GUI triggering of one event before another 
may cause the execution of different code segments. This 
limitation relates to the black-box testing of GUIs. Further, there 
are some GUI widgets that are used for user input (text boxes, edit 
boxes, combo boxes etc.) and could have an extremely large 
space of possible inputs. However, their content might cause 
some branching in the program. The most trivial approach in this 
case could be choosing inputs in a random fashion, but the large 
space of possible values makes it very likely that some parts of 
the underlying code would remain unexecuted. It is enough for 
one to consider the possible values for a ten character word and a 
program that executes a piece of code for a particular value of that 
input. It is almost certain that in this case randomization would 
not find that “special” value. 
A specification-based (black-box) approach may find such inputs, 
however it would require detailed specifications, which are often 
not feasible to write.  We propose a white-box testing approach 
for identifying these values: symbolically execute the underlying 
GUI code and generate a test suite that gives high (ideally full) 
coverage.  
Our approach is particularly suited for testing GUI applications 
that take user input in the form of text as parameters and have 
complex branching behavior that depends on the values of these 
parameters. Existing GUI testing methodologies are not effective 
at testing such GUIs as the focus of traditional work on GUI 
testing has been on checking properties of event sequences and 
not data dependent behavior [8] [11] [15] [16]. Data is typically 
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abstracted using a small set of expected values. Since the focus of 
our technique is on data, it is complementary to the existing 
approaches and leads to an increased branch and code coverage. 
Moreover, our approach enables a reduction in the number of tests 
needed to systematically check a GUI, since it inherits the 
strengths of symbolic execution, which enables exploring 
different program paths systematically and (for decidable 
constraints) detecting infeasible paths. We have implemented a 
prototype Barad for testing GUI applications developed in C#. 
We make the following contributions: 

• Symbolic execution for GUI testing. We introduce the 
idea of systematically testing GUI applications using 
symbolic execution. 

• Algorithm. We present an algorithm for systematic 
testing of GUIs; the algorithm implements an efficient 
solver for constraints on primitives and strings; it also 
minimizes generated test suites. 

• Implementation. Our prototype Barad implements our 
algorithm for testing C# applications. 

• Evaluation. We evaluate our approach using GUI 
subjects inspired by commercial applications. 

This paper is organized as follows. Section 2 gives an overview. 
Section 3 provides some background information. Section 4 
presents Barad. Section 5 is a case study. Sections 6, 7, 8 give 
some related work, future work and conclusions, respectively. 

2. OVERVIEW 
This section provides the basics of how our technique is applied 
to GUI testing. The goal is to give an overview of the 
methodology and show an example where conventional GUI 
testing techniques would fail to achieve high coverage unless a 
prohibitively large test suite were used.  

2.1 Example application 
The example GUI presented in Figure 1 is specially designed for 
the current research. It is inspired by an industrial application that 
the first author developed in C# during his past work. It is a 
simple GUI program that calculates the amount due for a plane 
ticket depending on the distance, passenger class, and selected 
airline.  

 
 
 
The main calculation is performed after the button “Calculate” is 
pressed. In order for some calculation to be done the user must 
choose at least one company and enter his name and ID. There are 
different passenger classes—namely—“Business”, “Child”, 

“Student” and “Privileged”. The first three categories are offered 
in a combo box menu and the last one should be typed explicitly. 
(Note that only when the user enters this special value manually 
will the corresponding code be executed) Moreover, if the 
“Passenger class” contains a value that is not in the above 
enumeration an exception is thrown. Each company has its own 
coefficient that is used during the calculation. Further, the 
different passenger classes have different base prices depending 
on the distance to be traveled, which is the absolute difference 
between the value in the boxes “From” and “To”. The main goal 
was to create an application with several branches the execution 
of which depends on user input both in the form of text and event 
sequence (i.e. selecting a radio button).  
Figure 2 shows a code fragment for the “Business” class. The 
source code for the other passenger classes is similar. As one can 
see there are five different branches that may be visited if the 
traveled distance is in a definite range. The calculation method 
has 22 branches plus one for the exception thrown if the 
“Passenger class” value is unacceptable. The conditions are 
nested three levels. In order to visit all of these branches, one 
must select a company, a passenger class, and enter at least one 
combination of departure and destination codes so that their 
absolute difference satisfies the specified branch condition. 
Moreover, to reach that code the user should have been entered 
his name and ID. 

 
 
 
Our technique performs the following steps: Tested code is 
instrumented using the symbolic data type system. Follows 
execution of that code during which control text files and a test 
suite are generated. The last phase is execution of the test suite on 
the application. Figure 3 depicts the flow of this process. 
During instrumentation, two simple rules are followed: 1) 
variables and operations on them are replaced by the 
corresponding symbolic types; 2) the branching constructs are 
substituted by the respective chooser classes. Section 5 presents a 
case study and examples of instrumented code. The generated test 
suite is a C# source file. To execute the tests we open the source 
file in Visual Studio, compile it, and run it.  
During test execution on the example application one of the tests 
fails because it attempts to explore a branch where the input for 
passenger class is not recognized.  In this way the branch that 
throws an exception in case of unacceptable input is explored. 
Branch coverage, code coverage and execution time for this test 
suite are presented in Table 1.  

1 { 
2  case "Business": 
4  { 
5   if (0 <= distanceRange && distanceRange < 50) 
6    amountDue = 120 * coeficient; 
7   if (50 <= distanceRange && distanceRange < 60) 
8    amountDue = 130 * coeficient; 
9   if (60 <= distanceRange && distanceRange < 70) 
10   amountDue = 145 * coeficient; 
11  if (70 <= distanceRange && distanceRange < 80) 
12   amountDue = 150 * coeficient; 
13  if (80 <= distanceRange && distanceRange < 100) 
14   amountDue = 160 * coeficient; 
15  break; 
16 } 

Figure 1. Example application 

Figure 2. Code fragment for the “Business” class 



 
 
 
 

Table 1. Results of symbolically generated test suite 

Number 
Of Tests 

Branch 
Coverage Line Coverage 

Execution 
Time 

23 100%  100% 4.92 sec 

 
These results are not surprising since all the branches of the tested 
code are reachable.  
We next compare our approach to random test generation. Our 
methodology to create a random test suite is as follows. During 
the symbolic execution it was ascertained that the execution of the 
code depends on the selection of a company (clicking on a radio 
button). The randomization for that case is modeled by selecting 
one of the three options—Air Company1, Air Company2, and 
neither. Since there are three possible values for the passenger 
class plus one that should be typed explicitly, a random choice is 
made out of the following values—one of the passenger types in 
the enumeration, the one that should be typed explicitly and just 
leaving the control empty, which is equivalent to incorrect input.  
The input for the text boxes “From” and “To” is a number 
between 0 and 99 and is chosen randomly. For the randomization, 
the C# random class is used. In order to provide more accurate 
results fifty test suites, each with different seed, are generated and 
the results averaged. Table 2 presents these results. 

 Table 2. Results of randomly generated test suite 

Number 
Of Tests 

Branch 
Coverage Line Coverage 

Execution 
Time 

400 97.1%  98.86% 46.17 sec 

 

The results of the random test suite show that it should be about 
twenty times larger in order to achieve high coverage. This 
explains the significant difference of the execution time. The 
number of tests is ascertained with running smaller test suites and 
intermittently increasing the number of tests until almost full 
coverage is achieved. Results in Table 2 are to be interpreted as 
follows: since 4/5 of the input for passenger class is valid, the 
absolute difference between departure and destination, and a radio 
button selection are primarily responsible for visiting a particular 
branch. As can be seen from this example, during the symbolic 
execution it is ascertained that one of the radio buttons for 
choosing company should be pressed for a particular code 
segment to be executed. This further proves the applicability of 

the symbolic execution not only for generation of user inputs but 
also for modification of the GUI state in a manner suitable for 
reaching a particular branch. 

3. BACKGROUD 
This section provides the reader with an overview about the 
processes of symbolic execution and GUI testing. 

3.1 Symbolic Execution 
The process of symbolic execution is actually execution of the 
original program, but instead of concrete values its variables are 
symbolic. Hence, every time a variable is modified, its current 
value becomes a function of its initial symbolic state and the 
accumulated operations up to that moment. During symbolic 
execution the program has different values for each symbolic 
variable, a program counter, and a path condition. The path 
condition contains accumulated constraints over the input 
variables that must be satisfied in order for this branch to be 
executed. It is a quantifier-free Boolean formula, such that if 
evaluated as true then there is at least one combination of input 
values that will execute the current branch.  Intuitively, if the path 
condition evaluates to false that means no input satisfies that 
expression and this branch is unreachable.  Every time the 
program encounters a branch statement, all the possible outcomes 
must be taken into account.  Hence, if execution reaches an “if” 
statement, there are two possible scenarios that must be 
considered.  This exploration of all possible paths forms the 
“execution tree” of the program with nodes representing the 
possible states and edges representing state transitions. Consider 
the example in Figure 4. The initial values of the variables “x” 
and “y” are set to symbolic ones. Every time a symbolic variable 
is modified it accumulates the update as an expression. When a 
branch is reached all the possible paths are explored and after 
entering a branch the path condition (PC) is updated and its 
validity checked.    

 
 

3.2 GUI Testing 
Since most contemporary software uses GUIs to interact with 
users, verifying a GUI’s reliability becomes important. In general, 
there are two distinct approaches to testing GUIs. The first keeps 
the GUI as light-weight as possible and move all the business 
logic into the background, thus avoiding this step of GUI testing. 

Code instrumentation 

Execution of instrumented code 

Test suite execution 
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22

8

x:X, y:Y 
PC: X >= Y

8 

x:X, y:Y 
PC: (X >= Y) && (X<Y) 
                FALSE! 

x:X , y:Y 
PC: X < Y 

x:X, y:Y 
PC: X >= Y

x:X + Y , y:Y 
PC: X < Y 

1 

x:X, y:Y 
PC: true 

 
1.  int x, y; 
2.  if (x < y) 
3.  { 
4.      x = x + y; 
5.  }  
6.  else 
7.  { 
8.      if (x < y ) 
9.         printf(“no”); 
10.    else 
11.       printf(“yes”); 
12. } 

 

Figure 3. Test process flow 

Figure 4. Program and its execution tree. 



In this case the GUI could be considered as a “skin” for the 
software. Since the main portion of the application code is not in 
the GUI, it may be tested using conventional software testing 
techniques. This approach however, places architectural 
limitations on system designers. The second uses some sort of 
GUI testing to verify its correctness. There are several different 
ways for one to accomplish this. First, there is the null case of 
omitting the GUI testing; this leads to production of lower quality 
software. Second, the GUI is tested with tools that can record and 
replay event sequences performed by the tester such as the one 
presented in [18]. This technique is laborious and time 
consuming. Hence, it is difficult for the tester to come up with a 
large test suite. Another approach is to use tools for automatic test 
generation, execution and assessment like the ones presented in 
[8] and [11]. These appear to be the only such complete 
frameworks and they also have the same author. 
All mentioned techniques, however, (aside from omitting testing) 
have a common drawback concerning the user input. They do not 
propose any mechanism of obtaining input values that would 
affect the program flow and lead to execution of different code 
sections [8] [11] [15] [16]. In manual test generation the tester 
must be aware of such “special” inputs in order to create relevant 
tests. The same is true for the automatic testing where during test 
generation values are read from a filled in advance database [8] 
[11]. 

4. BARAD: Symbolic Execution for GUI 
Testing 
In general there are two different ways for one to do symbolic 
execution. First one is to use a model checker, since 
contemporary model checkers can perform symbolic execution. In 
this case the tested code must be either translated into the 
language of the model checker (construction of a model) or it 
should be instrumented and used as input for a model checker that 
supports the implementation language. This approach is used in 
[5] where Java programs are instrumented and run with the Java 
PathFinder model checker [20]. A second approach for 
implementing symbolic execution is to create symbolic system of 
classes representing each corresponding basic data types (integer, 
string, Boolean etc.) and to define the semantics of the operations 
on them.  
Since the goal of the current project was to explore the 
applicability of symbolic execution for GUI testing in C#, the 
only available model checker for that language was Zing [1]. Zing 
is still in development and does not support symbolic operations 
on strings. The goal of this research was to obtain interesting 
input values for GUI testing, and this input, in general, is in the 
form of strings for both alphabetical and numeric data. If there is 
a transformation from strings to numbers, it is done explicitly in 
the code. Of course, for string representations in a model checker, 
an abstraction could be used; however, operations like “substring” 
are still challenging.  
For the purpose of this research, a framework for symbolic 
execution in C# was implemented. It is called Barad and deals, 
with some limitation, with all basic data types, namely integer, 
numeric (double), Boolean, character, and string. Barad does not 
yet support automatic instrumentation, which is performed 
manually in a way to guarantee the execution of each branch of 

the program and is the only time consuming manual step in the 
process. 
The next paragraphs give an overview of the data type system 
implementation, the semantics on supported data types, the 
constraint resolving techniques, and the test case generation 
algorithm.   

4.1 Data types 
All the basic data types in Barad implement a common interface 
that defines auxiliary methods used during the execution of a 
symbolic model. There are three main types of integer entities—
constant, variable, and operation. The following operations are 
currently supported for integer expressions—and, or, addition, 
difference, multiplication, division, less than, greater than, greater 
that or equal, less than or equal. Each integer operation is a class 
that inherits the class for integer operation which implements an 
integer interface. The integer interface on the other hand inherits 
the common interface. This results in a class system capable of 
representing symbolic operations over integers and allows their 
unbounded nesting. Boolean data type is not explicitly 
implemented, since it is straightforward to use integers instead of 
Booleans. Doubles are represented in a similar way to integers. 
Supported operations are: and, or, addition, difference, 
multiplication, division, less than, greater than, greater than or 
equal, less than or equal. Strings are represented by analogous 
class system. Currently implemented operations are equal, not 
equal, concatenation, and substring. The character type could be 
viewed as string with length one.   
During symbolic execution, the constraints over input variables 
should be resolved when entering a new branch. Hence, a 
technique for resolving these constraints is needed. 

4.2 Constraint solving 
For resolving of numeric constraints, the previous version of 
Barad used a theorem prover CVC3 [21] capable of evaluating 
complex expressions. However, CVC3 evaluates formulas in a 
given logical context declaring them as valid or invalid without 
providing concrete assignments to the input variables. This is a 
serious drawback since we aim to generate input values for the 
GUI. Because of that limitation a constraint solver is implemented 
in Barad. It can handle relatively simple constraints for integers 
and doubles and uses set restriction to evaluate the range of 
possible values for each variable. This technique does not handle 
the general case but solves all numeric constraints in the tested 
GUIs. Currently under development is a constraint solver that 
uses linear optimization (simplex method) for solving constraints 
and generation of concrete inputs. It will recognize the simple 
case in which all constraints are or could be represented as 
difference constraints, thus solving them and generating concrete 
values could be cast to a shortest path problem.       
We use the idea that each GUI widget used for keyboard input has 
a maximal length for solving string constraints. Each string 
variable or constant is represented as a bounded set of characters, 
each of which could take a bounded set of possible values. The 
difference between a variable and a constant is that the constant 
has only one possible value for each character. Equality is 
represented as intersection of the corresponding sets while 
inequality is represented as the exclusion of that intersection. 
Concatenation of strings is concatenation of the representation 



sets. Substring is a subsection of the corresponding set. Since only 
the allowed values for a character are stored in these sets, a 
random number generator is used for choosing a value iterating 
for every position of the string. However, this technique has a 
limitation. Consider the following example. A two character 
string variable S is represented as a set of sets with possible 
values and length two. If one imposes a constraint that S!=“ab” 
characters “a” and “b” are removed from the corresponding sets. 
Now, if one adds a new constraint that S=“aa” the condition 
would be unfeasible because “a” is no longer present in the first 
set. However, this representation works fine for the values and 
operations found in the tested applications.  
Moreover, Java String Analyzer [2] performs static analysis of 
Java programs and generates a context-free grammar for each 
string expression represented as a multilevel automaton. 
Unfortunately, this tool works only on Java programs. However, 
this technique could also be implemented in C# since only the 
front end of the tool is language dependant. 
In some cases a string variable is used to represent the value of a 
combo box implemented as a drop down list that can take only a 
finite set of possible values. In such case the variable contains an 
enumeration of the possible values. When an enumeration is 
provided it has precedence over the set representation.   
Note that the main contribution of this paper is the idea of using 
symbolic execution for GUI testing, rather than offering general 
solutions for string representation and constraint solving. 
Implemented solvers are effective enough for evaluating all the 
constraints in the tested applications. Therefore, we could 
successfully assess the applicability of symbolic execution for 
GUI testing.  

4.3 DFS traversal and backtracking 
The technique of symbolic execution imposes visiting of all 
branches of the program. This is performed by two classes—
“ChooseBool” and “ChoosePath”—which are used during the 
instrumentation phase to replace the standard branching 
constructs—“if” and “switch”, respectively. (The case study 
section contains examples of instrumented code using these 
classes) These objects choose non-deterministically all possible 
paths in a loop until all paths are explored. This implementation 
provides a DFS traversal of the program execution tree.  
Path condition is implemented as a separate class. It accumulates 
constraints over input variables and generates tests. Path condition 
is subscribed for the new branch event generated by each path 
chooser and every time a new path is selected the event handler 
executes an algorithm performing the following steps: 
1. Accumulated constraints are evaluated.  
2. If all constraints evaluate to true and are not contained in 

any existing test record, a new test record is created, and 
values for the input variables are generated. 

3. If at least one constraint evaluates to false, a test record is 
created (containing only constraints without input values) 

4. Unneeded constraints are removed 
5. Program variables  are restored  
Constraints are stored in a dynamic array (ArrayList object). 
Before a new branch is taken by the path choosers, an auxiliary 
object that has twofold purpose is added to the array. First, it 

serves as a separator of the constraints added by different 
choosers containing the unique ID of the chooser that created it. 
Second, it stores values of the program variables before entering 
the new branch. When a new branch event is generated all 
constraints and constraint dividers beginning form the end are 
removed consecutively until a constraint divider with ID equal to 
the event sender is reached. Then all program variables are 
updated with values stored in the constraint divider and it is 
removed from the array list.   

4.4 Test case generation 
The initial idea was for each leaf operation of the execution tree a 
separate test case to be generated. However, this approach does 
not provide the minimal number of tests. Moreover, if there are 
several branches of the program with the same condition there 
would be doubling of tests which is undesirable. Further, it is 
possible that one test covers several leaf operations. Consider the 
example in Figure 5. 
 
 
 
 
 
 
The message boxes on line 2 and 6 are part of different leafs of 
the execution tree. Hence, a constraint for message box on line 2 
to be shown is: x > 5 and constraints for showing the one on line 6 
are: x > 5 and x > 10; However, all the constraints for executing 
the code on line 2 are included in the constraints for execution of 
the one on line 6. Hence, we don’t need to generate two separate 
test cases. Rather, the one for executing line 6 would guarantee 
execution of the code on line 2. In this way we reduce the number 
of tests.  
Another possibility for test reduction is the merging of compatible 
tests. For example, let us have two input variables and two 
branches the execution of which depends only on one of these 
variables, respectively. These branches correspond to different 
leafs of the execution tree and their constraints are not contained 
in one another. Hence, there will be two separate test cases 
generated. It is possible these two tests can be merged. We use a 
simple heuristic to detect when we can merge tests.  There are two 
conditions that have to be met: First, neither variable should be 
modified inside the branches determined by the other one. 
Second, this techniques cannot be applied if one of the branches 
in the execution tree is “terminal” i.e. contains a return statement. 
We verify that there is no reduction in coverage. If there is such 
we do not merge the tests.  
During the symbolic execution, potential test cases are stored in a 
data structure. Every time a new branch is executed, if all of its 
constraints are valid, these constraints are checked to see if they 
are a subset of the ones belonging to any of the stored potential 
tests. If true, no test object is instantiated. However, this 
guarantees only that every potential test is not covered by 
previously generated ones and there is no guarantee that 
previously generated tests are not covered by the current one. 
Therefore, after completion of symbolic execution the data 
structure containing potential tests is traversed. During the first 

1 if (x > 5) 
2  MessageBox.Show("x > 5"); 
3 
4 if (x > 5) 
5  if (x > 10) 
6    MessageBox.Show("x > 10 && x > 10"); 

Figure 5. Overlapping tests example. 



traversal all the overlapping test cases are dropped using the first 
reduction heuristic. If the option for merger of test cases is set to 
true another traversal is made and compatible tests are merged 
using the second reduction heuristic.    
Once potential tests are reduced a C# source file containing the 
test suite is generated. Moreover, for each potential test a text file 
is created containing information of the constraints, their 
feasibility, variables and concrete values, if any. Note that for 
each unreachable branch a potential test case is generated, even 
though it is not considered during the test reduction phase. Since 
it is unreachable no test is added to the test suite and only a text 
file containing the corresponding constraints is created. This is 
useful for identifying and fixing unreachable branches.      

5. CASE STUDY 
This section provides a case study using a more complicated, real 
application and provides a preliminary assessment for the 
applicability of symbolic execution in GUI testing.  

5.1 Application under test 
The application under test is a workout generator used by the 
members of sports club Apolon. This automation facilitates 
clients in designing workout that fits their needs, speeds up the 
process and leads to economies reducing the number of personal 
instructors. The program takes as input user’s personal biometric 
characteristics such as gender, height, weight, age, metabolism 
and his or her experience level. On the basis of this input data the 
application generates a suitable week workout program. Figure 6 
shows a screenshot of the Workout Generator GUI. 

 
 
 
The application has several event handlers corresponding to 
clicking on each of the buttons. All of them except the one for 
clicking the “Generate” button do not perform any calculations, 
but rather have auxiliary functions as resetting the form, printing 
the workout etc. Since the current implementation of Barad still 
does not support automatic code instrumentation this process has 
to be done by hand. The code itself first checks if all the user 
input is provided and if not it shows a message urging the user to 
enter the required data. 

The input widgets consist of three drop-down lists and three text 
boxes. Each of the drop-down lists provides enumeration of 
possible values: for “Gender” are “Male” and “Female”; for 
“Metabolism” are “Slow”, “Normal” and “Fast”; and for 
“Experience” are “Beginner”, “Intermediate” and “Advanced”. 
These controls do not allow other way of interaction than 
selection of an item from the list and are properly initialized. 
Hence, it is not possible for the user not to provide values for 
these widgets.  
However, the text boxes are initially empty and require input of 
corresponding values. They accept only numeric characters and 
for each of them a check if it is empty is performed. The logic of 
the main generation algorithm has fifty-four branches that depend 
on values provided by the user. During results generation, 
coefficients for the reps, sets and cardio level are adjusted 
depending on the group to which the user belongs. Further, 
depending on the user level of experience different number and 
kinds of exercises are added to the workout.  

5.2 Results 
The length of code that is instrumented is 460 lines and has 54 
branches. Figure 7 shows an example of instrumented “if” 
statement using the path chooser ChooseBool. The object cb11 
(line 1) chooses non-deterministically (enumerates) one of the 
two possible paths corresponding to the “if” and the “else” 
statement of the construct. On line 6 the constraint for visiting the 
particular branch is added to the path condition. Lines 8-15 are 
equivalent to: 
 rtBox1 += “string value”; 
               rtBox1 += “string value”; 
In this case there is no “else” statement in the “if” construct. 
 
 

 
 
Figure 8 shows an example of an instrumented “switch” statement 
using the path chooser ChoosePath. The object cp5 (line 1) 
receives as a parameter the number of branches that are to be 
explored and the path condition, which registers for receiving the 
new branch event of cp5. cp5 chooses branches non-
deterministically—it just enumerates all integer values from one 
up to the initialization value minus one. This value is used for 
conditional switch statement (line 4). On lines 8, 14, 20 and 26, 
belonging to different branches of the switch statement, constrains 
are added to the path condition. On lines 9, 15, 21, and 27 
calculations adjusting the cardio coefficient are performed and 
have the following equivalent: 
 coefficient = coefficient * double constant 

Figure 6. Screenshot of the workout generator 

Figure 7. Instrumented code example  

1 ChooseBool cb11 = new ChooseBool(pc); 
2 while (!cb11.allExplored()) 
3 { 
4  if (cb11.nextPath()) 
5  {    
6   pc.AddConstraint(experience.SEQ("Advanced"));         
7                               
8   rtBox1.CONCAT("\t\tInclined Bench Press(head up) –     
9           " + setCoef.getStrValue() + " sets X " 10  +  
10          repCoef.IADD(5).getStrValue() + " reps\n"); 
12     
13  rtBox1.CONCAT("\t\tDumbel fly -- " +                   
14          setCoef.getStrValue() + " sets X " +  
15          repCoef.IADD(5).getStrValue() +"reps\n"); 
16  } 
17 } 



 
 
 
The rest of the code is instrumented similarly. After successful 
instrumentation, the code is run and a test suite of thirty tests is 
generated. Text files containing control data are also created. A 
sample of such file containing the constraints and values for input 
variables, if constraints are feasible, is presented in Figure 9.  

 
 
 
During test case generation a library provided by NuntitForms 
[18], a new record/replay tool for testing C# GUIs is used. Figure 
10 shows an example of a generated unit test. In order to test a 
GUI, an instance of the form has to be instantiated and run (lines 
3, 4). Further, for each widget of the GUI an object of the 
corresponding tester class must be created (lines 6-15). For 
example, the class ButtonTester is used for testing a button 
control and takes as a parameter for its constructor the name of a 
button (line 6). 

 
 
 
The next step is to execute a sequence of events on the GUI such 
as clicking a button, inputting text, and so forth (lines 17-22). 
Once created the test suite is run on the GUI with an add-in for 
Visual Studio called TestDriven.net [19]. This tool executes tests 
in a separate process that is kept alive in case other tests are to be 
run.  Is also provides detailed information about the line coverage 
attained during testing. The created test suite consists of thirty 
tests and after its execution the results in Table 3 are obtained. 

Table 3. Results of symbolically generated test suite 

Number 
Of Tests 

Branch 
Coverage Line Coverage 

Execution 
Time 

30 100%  100% 4.35 sec 

 
The results from execution of the test suite derived by symbolic 
execution achieve maximal branch and line coverage. This is not 
a surprise since generated tests guarantee execution of each 
feasible branch and all the branches of the instrumented code are 
reachable. Thus, a test suite obtained by executing symbolically 
the code under test gives the tester confidence in the thoroughness 
of performed testing.  
However, to assess the advantages of the proposed technique it 
should be compared to other approach for testing the GUI. To the 
best of our knowledge all other work in GUI testing is focused on 
event sequences and does not provide any mechanism for 
generating user data inputs. These techniques are black box 
testing approaches and abstract the GUI as a graph, FSM etc [8] 
[11] [15] [16]. The problem with the user input is either not 
considered [15] [16] or it is looked-up in a database [8] [11]. 
However, the question that arises is how to fill that database. In 
general, there are two possible approaches: perform some sort of 
code analysis or generate random values. Since the technique 
proposed in this paper generates inputs by code analysis and to 
the best of our knowledge there is no other such one applied in 
GUI testing, it should be compared to random input generation. 
Such a comparison should provide answers to the following 
question: Is the proposed approach better? How much better is 
this technique than the alternatives?  

1 public void Test8() 
2 { 
3  WorkoutGenerator formToBeTested=new WorkoutGenerator() 
4  formToBeTested.Show(); 
5 
6  ButtonTester button1 = new ButtonTester("button1"); 
7  ButtonTester button2 = new ButtonTester("button2"); 
8  ButtonTester button3 = new ButtonTester("button3"); 
9  ButtonTester button4 = new ButtonTester("button4"); 
10 TextBoxTester textBox1 = new TextBoxTester("textBox1"); 
11 TextBoxTester textBox2 = new TextBoxTester("textBox2"); 
12 TextBoxTester textBox3 = new TextBoxTester("textBox3"); 
13 ComboBoxTester comboBox1=newComboBoxTester("comboBox1") 
14 ComboBoxTester comboBox2=newComboBoxTester("comboBox2") 
15 ComboBoxTester comboBox3=newComboBoxTester("comboBox3") 
16 
17 textBox1.Enter("38");    
18 textBox2.Enter("53");   
19 textBox3.Enter("194");   
20 comboBox2.Select(2);     
21 comboBox3.Select(1);     
22 button1.Click(); 
23 } 

1 ChoosePath cp5 = new ChoosePath(4, pc); 
2 while (!cp5.allExplored()) 
3 { 
4  switch 4(cp5.nextPath()) 
5  { 
6   case 0: 
7   { 
8    pc.AddConstraint(age.IGTEQ(0).IAND(age.ILTEQ(20))); 
9    cardCoef.SetOp(cardCoef.DMUL(0.5f)); 
10   break; 
11  } 
12  case 1: 
13  { 
14   pc.AddConstraint(age.IGT(20).IAND(age.ILTEQ(30)));   
15   cardCoef.SetOp(cardCoef_expr.DMUL(1.2f)); 
16   break; 
17  } 
18  case 2: 
19  { 
20   pc.AddConstraint(age.IGT(30).IAND(age.ILTEQ(45))); 
21   cardCoef.SetOp(cardCoef.DMUL(2.3f)); 
22   break; 
23  } 
24  case 3: 
25  { 
26   pc.AddConstraint(age.IGT(45)); 
27   cardCoef.SetOp(cardCoef.DMUL(1.6f)); 
28   break; 
29  } 
30 } 
31} 

 

1                                        TestCase30 

2  Constraint:  (Convert.ToInt16(textBox1.Text) > 0) ; Valid: True; 

3  Constraint:  (Convert.ToDouble(textBox2.Text) > 0) ; Valid: True; 

4  Constraint:  (Convert.ToDouble(textBox3.Text) > 0) ; Valid: True; 

5  Constraint:  (comboBox3.Text = "Male") ; Valid: True; 

6  Constraint:  (comboBox2.Text = "Beginner") ; Valid: True; 

7  Constraint:  ( (Convert.ToInt16(textBox1.Text) >= 0)  AND   

8                      (Convert.ToInt16(textBox1.Text) <= 20) ) ; Valid: True; 

9 

10 Variable: Convert.ToInt16(textBox1.Text); Value: 11; 

11 Variable: Convert.ToDouble(textBox2.Text); Value: 245; 

12 Variable: Convert.ToDouble(textBox3.Text); Value: 27; 

13 Variable: comboBox3.Text; Value: Male; 

14 Variable: comboBox2.Text; Value: Beginner; 

Figure 8. Instrumented code example  

Figure 9. Control text file example 

Figure 10. Generate test case 



Test suites of different sizes are created using randomization and 
run on the GUI. For generation of each test suite, a different 
random seed is used. We generate fifty test suites for each of sizes 
twenty five, fifty, one hundred and two hundred tests. These tests 
are generated using the following approach: For drop down list 
(combo boxes), a random choice of value is made. The same is 
done for the text boxes indicating age, height and weight. Since 
there are no widely accepted lower or upper bounds for age in 
order to workout, and the maximal input length is two digits, a 
value from the whole range is selected. The text boxes for weight 
and height accept three digit input. However, there is some 
realistic upper bound on these biometric characteristics. Upper 
bound of 220 centimeters for height and 200 kilos for weight are 
adopted. For concrete value generation the standard C# random 
generator is used. Notice that this way of random test generation 
uses some domain knowledge to restrict the number of possible 
values and this differs from pure randomization, thus increasing 
the effectiveness of generated test suite.  
The main observed testing criterion is branch coverage, since it is 
the most realistic indicator for the effectiveness of testing. Even 
though, there is a correlation between line and branch coverage, it 
is not guaranteed that almost full line coverage would result in 
nearly the same branch coverage. The reason for that is that 
length of the code in different branches may vary significantly. 
However, if one achieves full branch coverage, the full line 
coverage is guaranteed.  Obtained results are presented in Figure 
11. As it is well known random test generation is quite successful 
in the beginning but as one comes closer to full coverage, 
progress gets much slower. Note that the results of this study are 
congruent with that fact. The first twenty five tests achieve 76% 
branch coverage but after doubling the size of the test suite branch 
coverage increases only with 6.8% up to 82.8. Our data show that 
for almost full branch coverage a test suite with approximately 
200 tests is needed. Compared to the test suite obtained by 
symbolic execution this is almost seven times larger. Moreover, it 
does not guarantee that all branches of the program are visited. It 
is possible that exactly the missed small fraction of the branches 
contains a fault. Hence, branch coverage under 100% does not 
provide absolute confidence of program correctness. Table 4 
shows the results after execution of test suite with size 200. 
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Table 4. Results of randomly generated test suite  

Number 
Of Tests 

Branch 
Coverage Line Coverage Execution 

Time 
200 96.8% 99.2% 25.8 sec 

 
As one can see, the execution time of the test suite is about six 
times greater that the one needed for running the tests obtained by 
symbolic execution. Note that presented results are average of 
fifty runs and vary slightly from run to run. Moreover, the time 
needed for generation of the symbolic and random test suites are 
less than a second. In conclusion, using random strategy imposes 
larger test suite, and which is more important, does not guarantee 
full coverage.  
There is one more possible approach, though unrealistic, for 
testing the GUI—exhaustive testing. It is enough for one to 
consider the possible input space for the program to see that this 
is not an option. For example, the Workout Generator has inputs 
state of 2 x 3 x 3 x 100 x 1000 x 1000 = 1.8 x 109 combinations. 
The large input space is a result of the large number of possible 
values for the text box controls (and they only take numeric 
input). For example it is possible for one to use increments of 10 
for the age and a range from 0 to 100 years, increments of 20 for 
the weight and range from 0 to 200 kilos, increments of 20 for the 
height and range from 0 to 200 centimeters. This would 
significantly reduce the input space but does not guarantee full 
coverage and still the possible inputs are 2 x 3 x 3 x 10 x 10 x 10 
= 1.8 x 104. To explore this option a test suite using the upper 
conditions is generated and run on the GUI. Results are presented 
in Table 5.         

Table 5. Results of randomly generated test suite  

Number 
Of Tests Branch Coverage Execution Time 

18000 88.8% 4671.88 sec 

 
It is enough for one to compare the execution time to the one 
needed to run the tests obtained by symbolic execution or random 
testing to be convinced of the inapplicability of this approach. 
Moreover, because of the chosen increment factor some branches 
were left unexecuted. 
Our results show a significant advantage of the test suite 
generated by symbolic execution over random generation in terms 
of branch coverage and size. However, one should notice that this 
technique is effective for GUIs that take user input and their 
execution follows different paths according to this input. Even 
though many GUIs do not belong to this class, a methodology of 
testing such programs is needed and no testing technique proposes 
a mechanism of dealing with such GUIs.  
Another advantage of our technique is that during symbolic 
execution, for all unreachable paths, there are generated 
corresponding text files describing the constraints upon inputs that 
are unsatisfiable, in this way revealing code errors and facilitating 
their localization and correction. This is the opposite of testing 
with random values where such faults could remain unnoticed, 
and even though one has less than full code coverage, it is 
possible that all reachable code is executed. In such a case 
increasing the number of tests would not lead to any 
improvement. These constant results might be a clue to 

Figure 11. Branch coverage of randomly generated test 
suites 



unreachable code, but the program has to be inspected manually 
in order to reveal such faults.      

6. RELATED WORK 
To the best of our knowledge the technique of symbolic execution 
is not applied in GUI testing. Because of this lack of related work, 
the following section is limited to investigating several 
approaches for GUI testing and some areas where symbolic 
execution is used for test input generation, program verification 
and testing.   
In his Ph.D. Thesis [8] Memon presents a framework for GUI 
testing that generates, runs, and assesses GUI tests. This is the 
first introduced framework capable of performing the whole 
process of test generation, execution, assessment on GUIs. The 
author represents GUIs as a graph and obtains test cases 
performing different traversals on that graph. One weakness of 
this approach is that there in no technique for the generation of 
user stream input. Input values are read from a predefined data-
base. Descriptions of the main components of that framework 
with further optimizations and improvements of the process may 
be found in [9], [10], [12], [13].    
Memon, Banarjee and Nagarajan present a framework for 
regression testing of nightly/daily builds of GUI applications [11]. 
This tool addresses the rapidly evolving GUI applications 
executing small enough test suite that the test process could be 
accomplished in less than a day/night. Since this tool is based on 
the one in [8] it suffers the same limitation concerning user input 
streams.   
Another approach is the GUI to be represented as a Variable 
Finite State Machine from which after a transformation to an 
FSM, tests are obtained [15]. However, this approach has the 
same limitations as the previous ones.      
A technique that transforms GUIs into a FSM and uses different 
techniques to reduce the states of the FSM and avoid state space 
explosion is proposed in [16]. However, here again the authors are 
focusing only on collaborating selections and user sequences over 
different objects in the GUI. Again the problem of the user input 
is not taken into consideration.   
Forrester and Miller conduct an empirical study for reliability of 
GUI programs for Windows NT [4]. Authors test thirty different 
GUIs on Windows NT by using random streams of keyboard 
input, mouse events, and Win32 messages and observe if the 
application crashes or hangs. This technique shows the presence 
of bugs in about fifty percent of the tested applications but no 
information about what fragment of the code was problematic is 
provided. 
Symbolic execution for test data generation is used in [14]. The 
program is represented as a deterministic FSM and using 
symbolic execution test data is generated. This paper deals 
exclusively with numeric constraint and examined programs are 
not GUIs.  
The technique of symbolic execution is also used for program 
verification. It is applied for verification of safety-critical systems 
[3]. The paper proposes a framework that could be used for 
verification of code written in safe-C, which is the language used 
for most safety-critical systems.  
Khurshid, Pasareanu and Visser use traditional symbolic 
execution and translate a program source to source thus allowing 

symbolic execution to be performed by a model checker [5]. This 
permits testing programs manipulating complex data structures to 
avoid the problem of state space explosion.   
Symbolic execution is also performed on standard library classes 
[6]. The authors use an abstract representation of these classes as 
symbolic objects and define the semantics for operations on them. 
This way they avoid unnecessary symbolic execution of the code 
of standard library classes.  

7. FUTURE WORK 
As seen from the previous sections the proposed approach leads to 
increasing the effectiveness of GUI test suites. However, to 
perform the symbolic execution, the tester needs to instrument the 
code under test manually. We plan to explore ways of automating 
the process for C#, similar to what is presented in [7] where Java 
byte code is instrumented. The ultimate goal is a framework that 
performs the following steps: analyzing the GUI for applicability 
of symbolic execution, automated instrumentation of the GUI 
code, execution of the instrumented version, test generation and 
execution. Further, the implementation of symbolic strings needs 
to be improved and the constraint solver used by Barad needs to 
be upgraded. Another issue that should be addressed is a 
refinement of test case reduction. Even though the current 
implementation reduces successfully and significantly the number 
of tests, there is still room for improvement and make Barad more 
effective.   

8. CONCLUSIONS 
The main contribution is introducing the use of symbolic 
execution for GUI testing. Even though some aspects of the 
process of symbolic execution implemented in Barad need 
optimization, it was capable of handling all the constraints in the 
tested GUIs and our results show that the idea of using symbolic 
execution in GUI testing provides significantly better 
performance compared to random input generation in terms of 
line and branch coverage. It is also capable of capturing 
modifications that are to be made on the GUI in order to execute a 
particular segment of code.  However, this approach does not 
pretend to replace traditional ones. Rather, it complements them 
by providing a technique for testing a class of GUIs that they are 
not capable to effectively verify. We believe that combining our 
approach with frameworks such as [8] and [11] would be 
beneficial and is worth exploring. Our technique addresses their 
main weakness and we deem that this would facilitate the 
development of a complete framework capable to handle all types 
of GUIs. Even though our results are encouraging, it would be 
useful to apply our approach to more applications in order to 
rigorously demonstrate its effectiveness. 

9. REFERENCES 
[1] Andrews, T., Quadeer, S., Rajamani, K., Rehof,.J., and Xie, 

Y. Zing:A model checker for Concurrent Software. In 
Computer Aided Verification (ISBN: 978-3-540-22342-9), 
Springer Berlin / Heidelberg, Berlin, 484-487, 2004. 

[2] Christensen, A., S., Møller, A., and  Schwartzbach, M., I. 
Precise Analysis of String Expressions.  SAS 2003, 1-18, 
2003. 



[3] Coen-Porisini, A., Denaro, G., Ghezzi, C., and  Pezzè, M. 
Using symbolic execution for verifying safety-critical 
systems. In ESEC / SIGSOFT FSE 2001, 142-151, 2001. 

[4] Forrester, J.E., and Miller, B.P. An Empirical Study of the 
Robustness of Windows NT Applications Using Random 
Testing. In 4th USENIX Windows Systems Symposium, 
Seattle, August 2000.  

[5] Khurshid, S., Pasareanu, C., and Visser, W. Generalized 
Symbolic Execution for Model Checking and Testing. In 9th 
International Conference on Tools and Algorithms for 
Construction and Analysis of Systems (TACAS 2003), 
Warsaw, Poland. Apr 2003.     

[6] Khurshid, S., and Suen, S. Generalizing Symbolic Execution 
to Library Classes. In 6th ACM SIGPLAN-SIGSOFT 
Workshop on Program Analysis for Software Tools and 
Engineering (PASTE 2005), Lisbon, Portugal. Sep 2005. 

[7] Khurshid, S.,Garcia, I., and Suen, I. Repairing Structurally 
Complex Data. 12th International SPIN Workshop on Model 
Checking of Software (SPIN), San Francisco, CA. Aug 2005.  

[8] Memon, A.  A comprehensive Framework For Testing 
Graphical User Interfaces. Ph.D. Thesis, University of 
Pittsburgh, Pittsburgh, 2001.  

[9] Memon, A., Banarjee, I., and Nagarajan, A.  GUI Ripping: 
Reverse Engineering of Graphical User Interfaces for 
Testing. In Reverse Engineering, 2003, WRCE 2003. 
Proceedings. 10th Working Conference on, (November 13-
16, 2003), 2003, 260-269. 

[10] Memon, A., and McMaster, S. Call Stack Coverage for GUI 
Test-Suite Reduction. In Proceedings of the 17th IEEE 
International Symposium on Software Reliability 
Engineering (ISSRE 2006), Raleigh, NC, USA, Nov. 6-10 
2006. 

[11] Memon, A., Banarjee, I., and Nagarajan, A. “DART: A 
Framework for Regression Testing Nightly/Daily Builds of 
GUI Applications”. In International Conference on Software 
Maintenance 2003 (ICSM'03), Amsterdam, The Netherlands, 
Sep. 22-26, 2003, pages 410-419. (BibTeX). 

[12] Memon, A., Banarjee, I., and Nagarajan, A. What Test 
Oracle Should I use for Effective GUI Testing?. In IEEE 
International Conference on Automated Software 
Engineering (ASE'03), Montreal, Quebec, Canada, Oct. 6-10 
2003, pages 164-173.  (BibTeX). 

[13] Memon, A. Using Tasks to Automate Regression Testing of 
GUIs. In IASTED International Conference on ARTIFICIAL 
INTELLIGENCE AND APPLICATIONS (AIA 2004), 
Innsbruck, Austria, Feb. 16-18, 2004.  (BibTeX). 

[14] Zhang, J., Xu, C., and Wang, X. Path-Oriented Test Data 
Generation Using Symbolic Execution and Constraint 
Solving Techniques. In Software Engineering and Formal 
Methods (SEFM 2004), p.242-250, 2004 

[15]  Shehady, R., K., and Siewiorek, D., P. A Method to 
Automate User Interface Testing Using Variable Finite State 
Machines. In 27th International Symposium on Fault-
Tolerant Computing (FTCS '97), p. 80, 1997. 

[16] White, L., and Almezen, H. Generating Test Cases for GUI 
Responsibilities Using Complete Interaction Sequences. In 
11th International Symposium on Software Reliability 
Engineering (ISSRE'00), p.110, 2000. 

[17] “Section 1: history of writing technologies” 
http://imrl.usu.edu/OSLO/technology_writing/004_003.htm 
Date Accessed: 02 December 2006. 

[18] “NunitForms windows.forms unit testing” 
http://nunitforms.sourceforge.net/ Date accessed: 02 
December 2006. 

[19] “TestDriven.net” http://www.testdriven.net/overview.aspx> 
Date Accessed: 02 December 2006. 

[20] “What is Java PathFinder?” 
http://javapathfinder.sourceforge.net/ Date accessed: 02 
December 2006. 

[21]  “CVC3 Home Page” http://www.cs.nyu.edu/acsys/cvc3/> 
Date accessed: 02 December 2000.

 


