

Symbolic Execution for GUI Testing

Svetoslav Ganov
Laboratory of Experimental Software

Engineering
University of Texas at Austin

001-832-366-4884
svetoslavganov@mail.utexas.edu

Sarfraz Khurshid
Software Testing and Verification

Group
University of Texas at Austin

001-512- 232-7927
khurshid@ece.utexas.edu

Dewayne Perry
Laboratory of Experimental Software

Engineering
University of Texas at Austin

001-512- 232-3343
perry@ece.utexas.edu

ABSTRACT
A Graphical User Interface (GUI) is an abstraction providing
users with a more natural way of interacting with computers. It
consists of objects like buttons, text boxes, toolbars etc. The
communication between users and GUIs is event driven. Users
can modify the state of a GUI and trigger events that lead to the
execution of different code fragments. Hence, in order to test a
GUI one should execute event sequences simulating user
behaviors. While the state of some GUI widgets is limited to a
small number of values (the value of a radio button), others have
a wide range of possible states (the value of a text box). Such
widgets are used for data input from the user in the form of text
(alphabetic or numeric). Since program execution may depend on
the user input, it is a challenge to select suitable values in a way
that allows thorough testing. We propose symbolic execution for
obtaining these inputs. During symbolic execution, each branch of
the program is visited and the constraints for control variables
are resolved determining if it is reachable or not. Thus, by
symbolically executing code that depends on user input, we can
obtain values that ensure visiting each reachable branch in the
program.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
Symbolic execution, Testing tools

General Terms
Verification.

Keywords
Software testing, GUI testing, Symbolic execution

1. INTRODUCTION

A Graphical User Interface (GUI) provides the user with a more
convenient and intuitive way for interaction with the computer. It
was first introduced by Dough Englebart, an employee in
Stanford Research Institute in 1965, and the first publicly
affordable computer with a GUI— the Macintosh—appeared in
1984 [17]. A GUI is a set of virtual objects (widgets) that are
more intuitive to use, for example buttons, edit boxes, etc. In
other words, it is a way of facilitating communication between
humans with their complex vision of the world and computers and
their software systems. GUIs are ubiquitous. Almost every
computer user takes advantage of the convenience provided by
that abstraction. In contrast with console applications where there
is only one point of interaction (the command line), GUIs provide
multiple points each of which might have different states. This
structure makes GUI testing especially challenging because of its
large input space. If one wants to test a form with five buttons (a
button being the simplest active GUI widget), he must try all the
120 possible combinations. This is necessary because in the
internal logic of the GUI triggering of one event before another
may cause the execution of different code segments. This
limitation relates to the black-box testing of GUIs. Further, there
are some GUI widgets that are used for user input (text boxes, edit
boxes, combo boxes etc.) and could have an extremely large
space of possible inputs. However, their content might cause
some branching in the program. The most trivial approach in this
case could be choosing inputs in a random fashion, but the large
space of possible values makes it very likely that some parts of
the underlying code would remain unexecuted. It is enough for
one to consider the possible values for a ten character word and a
program that executes a piece of code for a particular value of that
input. It is almost certain that in this case randomization would
not find that “special” value.
A specification-based (black-box) approach may find such inputs,
however it would require detailed specifications, which are often
not feasible to write. We propose a white-box testing approach
for identifying these values: symbolically execute the underlying
GUI code and generate a test suite that gives high (ideally full)
coverage.
Our approach is particularly suited for testing GUI applications
that take user input in the form of text as parameters and have
complex branching behavior that depends on the values of these
parameters. Existing GUI testing methodologies are not effective
at testing such GUIs as the focus of traditional work on GUI
testing has been on checking properties of event sequences and
not data dependent behavior [8] [11] [15] [16]. Data is typically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

abstracted using a small set of expected values. Since the focus of
our technique is on data, it is complementary to the existing
approaches and leads to an increased branch and code coverage.
Moreover, our approach enables a reduction in the number of tests
needed to systematically check a GUI, since it inherits the
strengths of symbolic execution, which enables exploring
different program paths systematically and (for decidable
constraints) detecting infeasible paths. We have implemented a
prototype Barad for testing GUI applications developed in C#.
We make the following contributions:

• Symbolic execution for GUI testing. We introduce the
idea of systematically testing GUI applications using
symbolic execution.

• Algorithm. We present an algorithm for systematic
testing of GUIs; the algorithm implements an efficient
solver for constraints on primitives and strings; it also
minimizes generated test suites.

• Implementation. Our prototype Barad implements our
algorithm for testing C# applications.

• Evaluation. We evaluate our approach using GUI
subjects inspired by commercial applications.

This paper is organized as follows. Section 2 gives an overview.
Section 3 provides some background information. Section 4
presents Barad. Section 5 is a case study. Sections 6, 7, 8 give
some related work, future work and conclusions, respectively.

2. OVERVIEW
This section provides the basics of how our technique is applied
to GUI testing. The goal is to give an overview of the
methodology and show an example where conventional GUI
testing techniques would fail to achieve high coverage unless a
prohibitively large test suite were used.

2.1 Example application
The example GUI presented in Figure 1 is specially designed for
the current research. It is inspired by an industrial application that
the first author developed in C# during his past work. It is a
simple GUI program that calculates the amount due for a plane
ticket depending on the distance, passenger class, and selected
airline.

The main calculation is performed after the button “Calculate” is
pressed. In order for some calculation to be done the user must
choose at least one company and enter his name and ID. There are
different passenger classes—namely—“Business”, “Child”,

“Student” and “Privileged”. The first three categories are offered
in a combo box menu and the last one should be typed explicitly.
(Note that only when the user enters this special value manually
will the corresponding code be executed) Moreover, if the
“Passenger class” contains a value that is not in the above
enumeration an exception is thrown. Each company has its own
coefficient that is used during the calculation. Further, the
different passenger classes have different base prices depending
on the distance to be traveled, which is the absolute difference
between the value in the boxes “From” and “To”. The main goal
was to create an application with several branches the execution
of which depends on user input both in the form of text and event
sequence (i.e. selecting a radio button).
Figure 2 shows a code fragment for the “Business” class. The
source code for the other passenger classes is similar. As one can
see there are five different branches that may be visited if the
traveled distance is in a definite range. The calculation method
has 22 branches plus one for the exception thrown if the
“Passenger class” value is unacceptable. The conditions are
nested three levels. In order to visit all of these branches, one
must select a company, a passenger class, and enter at least one
combination of departure and destination codes so that their
absolute difference satisfies the specified branch condition.
Moreover, to reach that code the user should have been entered
his name and ID.

Our technique performs the following steps: Tested code is
instrumented using the symbolic data type system. Follows
execution of that code during which control text files and a test
suite are generated. The last phase is execution of the test suite on
the application. Figure 3 depicts the flow of this process.
During instrumentation, two simple rules are followed: 1)
variables and operations on them are replaced by the
corresponding symbolic types; 2) the branching constructs are
substituted by the respective chooser classes. Section 5 presents a
case study and examples of instrumented code. The generated test
suite is a C# source file. To execute the tests we open the source
file in Visual Studio, compile it, and run it.
During test execution on the example application one of the tests
fails because it attempts to explore a branch where the input for
passenger class is not recognized. In this way the branch that
throws an exception in case of unacceptable input is explored.
Branch coverage, code coverage and execution time for this test
suite are presented in Table 1.

1 {
2 case "Business":
4 {
5 if (0 <= distanceRange && distanceRange < 50)
6 amountDue = 120 * coeficient;
7 if (50 <= distanceRange && distanceRange < 60)
8 amountDue = 130 * coeficient;
9 if (60 <= distanceRange && distanceRange < 70)
10 amountDue = 145 * coeficient;
11 if (70 <= distanceRange && distanceRange < 80)
12 amountDue = 150 * coeficient;
13 if (80 <= distanceRange && distanceRange < 100)
14 amountDue = 160 * coeficient;
15 break;
16 }

Figure 1. Example application

Figure 2. Code fragment for the “Business” class

Table 1. Results of symbolically generated test suite

Number
Of Tests

Branch
Coverage Line Coverage

Execution
Time

23 100% 100% 4.92 sec

These results are not surprising since all the branches of the tested
code are reachable.
We next compare our approach to random test generation. Our
methodology to create a random test suite is as follows. During
the symbolic execution it was ascertained that the execution of the
code depends on the selection of a company (clicking on a radio
button). The randomization for that case is modeled by selecting
one of the three options—Air Company1, Air Company2, and
neither. Since there are three possible values for the passenger
class plus one that should be typed explicitly, a random choice is
made out of the following values—one of the passenger types in
the enumeration, the one that should be typed explicitly and just
leaving the control empty, which is equivalent to incorrect input.
The input for the text boxes “From” and “To” is a number
between 0 and 99 and is chosen randomly. For the randomization,
the C# random class is used. In order to provide more accurate
results fifty test suites, each with different seed, are generated and
the results averaged. Table 2 presents these results.

 Table 2. Results of randomly generated test suite

Number
Of Tests

Branch
Coverage Line Coverage

Execution
Time

400 97.1% 98.86% 46.17 sec

The results of the random test suite show that it should be about
twenty times larger in order to achieve high coverage. This
explains the significant difference of the execution time. The
number of tests is ascertained with running smaller test suites and
intermittently increasing the number of tests until almost full
coverage is achieved. Results in Table 2 are to be interpreted as
follows: since 4/5 of the input for passenger class is valid, the
absolute difference between departure and destination, and a radio
button selection are primarily responsible for visiting a particular
branch. As can be seen from this example, during the symbolic
execution it is ascertained that one of the radio buttons for
choosing company should be pressed for a particular code
segment to be executed. This further proves the applicability of

the symbolic execution not only for generation of user inputs but
also for modification of the GUI state in a manner suitable for
reaching a particular branch.

3. BACKGROUD
This section provides the reader with an overview about the
processes of symbolic execution and GUI testing.

3.1 Symbolic Execution
The process of symbolic execution is actually execution of the
original program, but instead of concrete values its variables are
symbolic. Hence, every time a variable is modified, its current
value becomes a function of its initial symbolic state and the
accumulated operations up to that moment. During symbolic
execution the program has different values for each symbolic
variable, a program counter, and a path condition. The path
condition contains accumulated constraints over the input
variables that must be satisfied in order for this branch to be
executed. It is a quantifier-free Boolean formula, such that if
evaluated as true then there is at least one combination of input
values that will execute the current branch. Intuitively, if the path
condition evaluates to false that means no input satisfies that
expression and this branch is unreachable. Every time the
program encounters a branch statement, all the possible outcomes
must be taken into account. Hence, if execution reaches an “if”
statement, there are two possible scenarios that must be
considered. This exploration of all possible paths forms the
“execution tree” of the program with nodes representing the
possible states and edges representing state transitions. Consider
the example in Figure 4. The initial values of the variables “x”
and “y” are set to symbolic ones. Every time a symbolic variable
is modified it accumulates the update as an expression. When a
branch is reached all the possible paths are explored and after
entering a branch the path condition (PC) is updated and its
validity checked.

3.2 GUI Testing
Since most contemporary software uses GUIs to interact with
users, verifying a GUI’s reliability becomes important. In general,
there are two distinct approaches to testing GUIs. The first keeps
the GUI as light-weight as possible and move all the business
logic into the background, thus avoiding this step of GUI testing.

Code instrumentation

Execution of instrumented code

Test suite execution

4

22

8

x:X, y:Y
PC: X >= Y

8

x:X, y:Y
PC: (X >= Y) && (X<Y)
 FALSE!

x:X , y:Y
PC: X < Y

x:X, y:Y
PC: X >= Y

x:X + Y , y:Y
PC: X < Y

1

x:X, y:Y
PC: true

1. int x, y;
2. if (x < y)
3. {
4. x = x + y;
5. }
6. else
7. {
8. if (x < y)
9. printf(“no”);
10. else
11. printf(“yes”);
12. }

Figure 3. Test process flow

Figure 4. Program and its execution tree.

In this case the GUI could be considered as a “skin” for the
software. Since the main portion of the application code is not in
the GUI, it may be tested using conventional software testing
techniques. This approach however, places architectural
limitations on system designers. The second uses some sort of
GUI testing to verify its correctness. There are several different
ways for one to accomplish this. First, there is the null case of
omitting the GUI testing; this leads to production of lower quality
software. Second, the GUI is tested with tools that can record and
replay event sequences performed by the tester such as the one
presented in [18]. This technique is laborious and time
consuming. Hence, it is difficult for the tester to come up with a
large test suite. Another approach is to use tools for automatic test
generation, execution and assessment like the ones presented in
[8] and [11]. These appear to be the only such complete
frameworks and they also have the same author.
All mentioned techniques, however, (aside from omitting testing)
have a common drawback concerning the user input. They do not
propose any mechanism of obtaining input values that would
affect the program flow and lead to execution of different code
sections [8] [11] [15] [16]. In manual test generation the tester
must be aware of such “special” inputs in order to create relevant
tests. The same is true for the automatic testing where during test
generation values are read from a filled in advance database [8]
[11].

4. BARAD: Symbolic Execution for GUI
Testing
In general there are two different ways for one to do symbolic
execution. First one is to use a model checker, since
contemporary model checkers can perform symbolic execution. In
this case the tested code must be either translated into the
language of the model checker (construction of a model) or it
should be instrumented and used as input for a model checker that
supports the implementation language. This approach is used in
[5] where Java programs are instrumented and run with the Java
PathFinder model checker [20]. A second approach for
implementing symbolic execution is to create symbolic system of
classes representing each corresponding basic data types (integer,
string, Boolean etc.) and to define the semantics of the operations
on them.
Since the goal of the current project was to explore the
applicability of symbolic execution for GUI testing in C#, the
only available model checker for that language was Zing [1]. Zing
is still in development and does not support symbolic operations
on strings. The goal of this research was to obtain interesting
input values for GUI testing, and this input, in general, is in the
form of strings for both alphabetical and numeric data. If there is
a transformation from strings to numbers, it is done explicitly in
the code. Of course, for string representations in a model checker,
an abstraction could be used; however, operations like “substring”
are still challenging.
For the purpose of this research, a framework for symbolic
execution in C# was implemented. It is called Barad and deals,
with some limitation, with all basic data types, namely integer,
numeric (double), Boolean, character, and string. Barad does not
yet support automatic instrumentation, which is performed
manually in a way to guarantee the execution of each branch of

the program and is the only time consuming manual step in the
process.
The next paragraphs give an overview of the data type system
implementation, the semantics on supported data types, the
constraint resolving techniques, and the test case generation
algorithm.

4.1 Data types
All the basic data types in Barad implement a common interface
that defines auxiliary methods used during the execution of a
symbolic model. There are three main types of integer entities—
constant, variable, and operation. The following operations are
currently supported for integer expressions—and, or, addition,
difference, multiplication, division, less than, greater than, greater
that or equal, less than or equal. Each integer operation is a class
that inherits the class for integer operation which implements an
integer interface. The integer interface on the other hand inherits
the common interface. This results in a class system capable of
representing symbolic operations over integers and allows their
unbounded nesting. Boolean data type is not explicitly
implemented, since it is straightforward to use integers instead of
Booleans. Doubles are represented in a similar way to integers.
Supported operations are: and, or, addition, difference,
multiplication, division, less than, greater than, greater than or
equal, less than or equal. Strings are represented by analogous
class system. Currently implemented operations are equal, not
equal, concatenation, and substring. The character type could be
viewed as string with length one.
During symbolic execution, the constraints over input variables
should be resolved when entering a new branch. Hence, a
technique for resolving these constraints is needed.

4.2 Constraint solving
For resolving of numeric constraints, the previous version of
Barad used a theorem prover CVC3 [21] capable of evaluating
complex expressions. However, CVC3 evaluates formulas in a
given logical context declaring them as valid or invalid without
providing concrete assignments to the input variables. This is a
serious drawback since we aim to generate input values for the
GUI. Because of that limitation a constraint solver is implemented
in Barad. It can handle relatively simple constraints for integers
and doubles and uses set restriction to evaluate the range of
possible values for each variable. This technique does not handle
the general case but solves all numeric constraints in the tested
GUIs. Currently under development is a constraint solver that
uses linear optimization (simplex method) for solving constraints
and generation of concrete inputs. It will recognize the simple
case in which all constraints are or could be represented as
difference constraints, thus solving them and generating concrete
values could be cast to a shortest path problem.
We use the idea that each GUI widget used for keyboard input has
a maximal length for solving string constraints. Each string
variable or constant is represented as a bounded set of characters,
each of which could take a bounded set of possible values. The
difference between a variable and a constant is that the constant
has only one possible value for each character. Equality is
represented as intersection of the corresponding sets while
inequality is represented as the exclusion of that intersection.
Concatenation of strings is concatenation of the representation

sets. Substring is a subsection of the corresponding set. Since only
the allowed values for a character are stored in these sets, a
random number generator is used for choosing a value iterating
for every position of the string. However, this technique has a
limitation. Consider the following example. A two character
string variable S is represented as a set of sets with possible
values and length two. If one imposes a constraint that S!=“ab”
characters “a” and “b” are removed from the corresponding sets.
Now, if one adds a new constraint that S=“aa” the condition
would be unfeasible because “a” is no longer present in the first
set. However, this representation works fine for the values and
operations found in the tested applications.
Moreover, Java String Analyzer [2] performs static analysis of
Java programs and generates a context-free grammar for each
string expression represented as a multilevel automaton.
Unfortunately, this tool works only on Java programs. However,
this technique could also be implemented in C# since only the
front end of the tool is language dependant.
In some cases a string variable is used to represent the value of a
combo box implemented as a drop down list that can take only a
finite set of possible values. In such case the variable contains an
enumeration of the possible values. When an enumeration is
provided it has precedence over the set representation.
Note that the main contribution of this paper is the idea of using
symbolic execution for GUI testing, rather than offering general
solutions for string representation and constraint solving.
Implemented solvers are effective enough for evaluating all the
constraints in the tested applications. Therefore, we could
successfully assess the applicability of symbolic execution for
GUI testing.

4.3 DFS traversal and backtracking
The technique of symbolic execution imposes visiting of all
branches of the program. This is performed by two classes—
“ChooseBool” and “ChoosePath”—which are used during the
instrumentation phase to replace the standard branching
constructs—“if” and “switch”, respectively. (The case study
section contains examples of instrumented code using these
classes) These objects choose non-deterministically all possible
paths in a loop until all paths are explored. This implementation
provides a DFS traversal of the program execution tree.
Path condition is implemented as a separate class. It accumulates
constraints over input variables and generates tests. Path condition
is subscribed for the new branch event generated by each path
chooser and every time a new path is selected the event handler
executes an algorithm performing the following steps:
1. Accumulated constraints are evaluated.
2. If all constraints evaluate to true and are not contained in

any existing test record, a new test record is created, and
values for the input variables are generated.

3. If at least one constraint evaluates to false, a test record is
created (containing only constraints without input values)

4. Unneeded constraints are removed
5. Program variables are restored
Constraints are stored in a dynamic array (ArrayList object).
Before a new branch is taken by the path choosers, an auxiliary
object that has twofold purpose is added to the array. First, it

serves as a separator of the constraints added by different
choosers containing the unique ID of the chooser that created it.
Second, it stores values of the program variables before entering
the new branch. When a new branch event is generated all
constraints and constraint dividers beginning form the end are
removed consecutively until a constraint divider with ID equal to
the event sender is reached. Then all program variables are
updated with values stored in the constraint divider and it is
removed from the array list.

4.4 Test case generation
The initial idea was for each leaf operation of the execution tree a
separate test case to be generated. However, this approach does
not provide the minimal number of tests. Moreover, if there are
several branches of the program with the same condition there
would be doubling of tests which is undesirable. Further, it is
possible that one test covers several leaf operations. Consider the
example in Figure 5.

The message boxes on line 2 and 6 are part of different leafs of
the execution tree. Hence, a constraint for message box on line 2
to be shown is: x > 5 and constraints for showing the one on line 6
are: x > 5 and x > 10; However, all the constraints for executing
the code on line 2 are included in the constraints for execution of
the one on line 6. Hence, we don’t need to generate two separate
test cases. Rather, the one for executing line 6 would guarantee
execution of the code on line 2. In this way we reduce the number
of tests.
Another possibility for test reduction is the merging of compatible
tests. For example, let us have two input variables and two
branches the execution of which depends only on one of these
variables, respectively. These branches correspond to different
leafs of the execution tree and their constraints are not contained
in one another. Hence, there will be two separate test cases
generated. It is possible these two tests can be merged. We use a
simple heuristic to detect when we can merge tests. There are two
conditions that have to be met: First, neither variable should be
modified inside the branches determined by the other one.
Second, this techniques cannot be applied if one of the branches
in the execution tree is “terminal” i.e. contains a return statement.
We verify that there is no reduction in coverage. If there is such
we do not merge the tests.
During the symbolic execution, potential test cases are stored in a
data structure. Every time a new branch is executed, if all of its
constraints are valid, these constraints are checked to see if they
are a subset of the ones belonging to any of the stored potential
tests. If true, no test object is instantiated. However, this
guarantees only that every potential test is not covered by
previously generated ones and there is no guarantee that
previously generated tests are not covered by the current one.
Therefore, after completion of symbolic execution the data
structure containing potential tests is traversed. During the first

1 if (x > 5)
2 MessageBox.Show("x > 5");
3
4 if (x > 5)
5 if (x > 10)
6 MessageBox.Show("x > 10 && x > 10");

Figure 5. Overlapping tests example.

traversal all the overlapping test cases are dropped using the first
reduction heuristic. If the option for merger of test cases is set to
true another traversal is made and compatible tests are merged
using the second reduction heuristic.
Once potential tests are reduced a C# source file containing the
test suite is generated. Moreover, for each potential test a text file
is created containing information of the constraints, their
feasibility, variables and concrete values, if any. Note that for
each unreachable branch a potential test case is generated, even
though it is not considered during the test reduction phase. Since
it is unreachable no test is added to the test suite and only a text
file containing the corresponding constraints is created. This is
useful for identifying and fixing unreachable branches.

5. CASE STUDY
This section provides a case study using a more complicated, real
application and provides a preliminary assessment for the
applicability of symbolic execution in GUI testing.

5.1 Application under test
The application under test is a workout generator used by the
members of sports club Apolon. This automation facilitates
clients in designing workout that fits their needs, speeds up the
process and leads to economies reducing the number of personal
instructors. The program takes as input user’s personal biometric
characteristics such as gender, height, weight, age, metabolism
and his or her experience level. On the basis of this input data the
application generates a suitable week workout program. Figure 6
shows a screenshot of the Workout Generator GUI.

The application has several event handlers corresponding to
clicking on each of the buttons. All of them except the one for
clicking the “Generate” button do not perform any calculations,
but rather have auxiliary functions as resetting the form, printing
the workout etc. Since the current implementation of Barad still
does not support automatic code instrumentation this process has
to be done by hand. The code itself first checks if all the user
input is provided and if not it shows a message urging the user to
enter the required data.

The input widgets consist of three drop-down lists and three text
boxes. Each of the drop-down lists provides enumeration of
possible values: for “Gender” are “Male” and “Female”; for
“Metabolism” are “Slow”, “Normal” and “Fast”; and for
“Experience” are “Beginner”, “Intermediate” and “Advanced”.
These controls do not allow other way of interaction than
selection of an item from the list and are properly initialized.
Hence, it is not possible for the user not to provide values for
these widgets.
However, the text boxes are initially empty and require input of
corresponding values. They accept only numeric characters and
for each of them a check if it is empty is performed. The logic of
the main generation algorithm has fifty-four branches that depend
on values provided by the user. During results generation,
coefficients for the reps, sets and cardio level are adjusted
depending on the group to which the user belongs. Further,
depending on the user level of experience different number and
kinds of exercises are added to the workout.

5.2 Results
The length of code that is instrumented is 460 lines and has 54
branches. Figure 7 shows an example of instrumented “if”
statement using the path chooser ChooseBool. The object cb11
(line 1) chooses non-deterministically (enumerates) one of the
two possible paths corresponding to the “if” and the “else”
statement of the construct. On line 6 the constraint for visiting the
particular branch is added to the path condition. Lines 8-15 are
equivalent to:
 rtBox1 += “string value”;
 rtBox1 += “string value”;
In this case there is no “else” statement in the “if” construct.

Figure 8 shows an example of an instrumented “switch” statement
using the path chooser ChoosePath. The object cp5 (line 1)
receives as a parameter the number of branches that are to be
explored and the path condition, which registers for receiving the
new branch event of cp5. cp5 chooses branches non-
deterministically—it just enumerates all integer values from one
up to the initialization value minus one. This value is used for
conditional switch statement (line 4). On lines 8, 14, 20 and 26,
belonging to different branches of the switch statement, constrains
are added to the path condition. On lines 9, 15, 21, and 27
calculations adjusting the cardio coefficient are performed and
have the following equivalent:
 coefficient = coefficient * double constant

Figure 6. Screenshot of the workout generator

Figure 7. Instrumented code example

1 ChooseBool cb11 = new ChooseBool(pc);
2 while (!cb11.allExplored())
3 {
4 if (cb11.nextPath())
5 {
6 pc.AddConstraint(experience.SEQ("Advanced"));
7
8 rtBox1.CONCAT("\t\tInclined Bench Press(head up) –
9 " + setCoef.getStrValue() + " sets X " 10 +
10 repCoef.IADD(5).getStrValue() + " reps\n");
12
13 rtBox1.CONCAT("\t\tDumbel fly -- " +
14 setCoef.getStrValue() + " sets X " +
15 repCoef.IADD(5).getStrValue() +"reps\n");
16 }
17 }

The rest of the code is instrumented similarly. After successful
instrumentation, the code is run and a test suite of thirty tests is
generated. Text files containing control data are also created. A
sample of such file containing the constraints and values for input
variables, if constraints are feasible, is presented in Figure 9.

During test case generation a library provided by NuntitForms
[18], a new record/replay tool for testing C# GUIs is used. Figure
10 shows an example of a generated unit test. In order to test a
GUI, an instance of the form has to be instantiated and run (lines
3, 4). Further, for each widget of the GUI an object of the
corresponding tester class must be created (lines 6-15). For
example, the class ButtonTester is used for testing a button
control and takes as a parameter for its constructor the name of a
button (line 6).

The next step is to execute a sequence of events on the GUI such
as clicking a button, inputting text, and so forth (lines 17-22).
Once created the test suite is run on the GUI with an add-in for
Visual Studio called TestDriven.net [19]. This tool executes tests
in a separate process that is kept alive in case other tests are to be
run. Is also provides detailed information about the line coverage
attained during testing. The created test suite consists of thirty
tests and after its execution the results in Table 3 are obtained.

Table 3. Results of symbolically generated test suite

Number
Of Tests

Branch
Coverage Line Coverage

Execution
Time

30 100% 100% 4.35 sec

The results from execution of the test suite derived by symbolic
execution achieve maximal branch and line coverage. This is not
a surprise since generated tests guarantee execution of each
feasible branch and all the branches of the instrumented code are
reachable. Thus, a test suite obtained by executing symbolically
the code under test gives the tester confidence in the thoroughness
of performed testing.
However, to assess the advantages of the proposed technique it
should be compared to other approach for testing the GUI. To the
best of our knowledge all other work in GUI testing is focused on
event sequences and does not provide any mechanism for
generating user data inputs. These techniques are black box
testing approaches and abstract the GUI as a graph, FSM etc [8]
[11] [15] [16]. The problem with the user input is either not
considered [15] [16] or it is looked-up in a database [8] [11].
However, the question that arises is how to fill that database. In
general, there are two possible approaches: perform some sort of
code analysis or generate random values. Since the technique
proposed in this paper generates inputs by code analysis and to
the best of our knowledge there is no other such one applied in
GUI testing, it should be compared to random input generation.
Such a comparison should provide answers to the following
question: Is the proposed approach better? How much better is
this technique than the alternatives?

1 public void Test8()
2 {
3 WorkoutGenerator formToBeTested=new WorkoutGenerator()
4 formToBeTested.Show();
5
6 ButtonTester button1 = new ButtonTester("button1");
7 ButtonTester button2 = new ButtonTester("button2");
8 ButtonTester button3 = new ButtonTester("button3");
9 ButtonTester button4 = new ButtonTester("button4");
10 TextBoxTester textBox1 = new TextBoxTester("textBox1");
11 TextBoxTester textBox2 = new TextBoxTester("textBox2");
12 TextBoxTester textBox3 = new TextBoxTester("textBox3");
13 ComboBoxTester comboBox1=newComboBoxTester("comboBox1")
14 ComboBoxTester comboBox2=newComboBoxTester("comboBox2")
15 ComboBoxTester comboBox3=newComboBoxTester("comboBox3")
16
17 textBox1.Enter("38");
18 textBox2.Enter("53");
19 textBox3.Enter("194");
20 comboBox2.Select(2);
21 comboBox3.Select(1);
22 button1.Click();
23 }

1 ChoosePath cp5 = new ChoosePath(4, pc);
2 while (!cp5.allExplored())
3 {
4 switch 4(cp5.nextPath())
5 {
6 case 0:
7 {
8 pc.AddConstraint(age.IGTEQ(0).IAND(age.ILTEQ(20)));
9 cardCoef.SetOp(cardCoef.DMUL(0.5f));
10 break;
11 }
12 case 1:
13 {
14 pc.AddConstraint(age.IGT(20).IAND(age.ILTEQ(30)));
15 cardCoef.SetOp(cardCoef_expr.DMUL(1.2f));
16 break;
17 }
18 case 2:
19 {
20 pc.AddConstraint(age.IGT(30).IAND(age.ILTEQ(45)));
21 cardCoef.SetOp(cardCoef.DMUL(2.3f));
22 break;
23 }
24 case 3:
25 {
26 pc.AddConstraint(age.IGT(45));
27 cardCoef.SetOp(cardCoef.DMUL(1.6f));
28 break;
29 }
30 }
31}

1 TestCase30

2 Constraint: (Convert.ToInt16(textBox1.Text) > 0) ; Valid: True;

3 Constraint: (Convert.ToDouble(textBox2.Text) > 0) ; Valid: True;

4 Constraint: (Convert.ToDouble(textBox3.Text) > 0) ; Valid: True;

5 Constraint: (comboBox3.Text = "Male") ; Valid: True;

6 Constraint: (comboBox2.Text = "Beginner") ; Valid: True;

7 Constraint: ((Convert.ToInt16(textBox1.Text) >= 0) AND

8 (Convert.ToInt16(textBox1.Text) <= 20)) ; Valid: True;

9

10 Variable: Convert.ToInt16(textBox1.Text); Value: 11;

11 Variable: Convert.ToDouble(textBox2.Text); Value: 245;

12 Variable: Convert.ToDouble(textBox3.Text); Value: 27;

13 Variable: comboBox3.Text; Value: Male;

14 Variable: comboBox2.Text; Value: Beginner;

Figure 8. Instrumented code example

Figure 9. Control text file example

Figure 10. Generate test case

Test suites of different sizes are created using randomization and
run on the GUI. For generation of each test suite, a different
random seed is used. We generate fifty test suites for each of sizes
twenty five, fifty, one hundred and two hundred tests. These tests
are generated using the following approach: For drop down list
(combo boxes), a random choice of value is made. The same is
done for the text boxes indicating age, height and weight. Since
there are no widely accepted lower or upper bounds for age in
order to workout, and the maximal input length is two digits, a
value from the whole range is selected. The text boxes for weight
and height accept three digit input. However, there is some
realistic upper bound on these biometric characteristics. Upper
bound of 220 centimeters for height and 200 kilos for weight are
adopted. For concrete value generation the standard C# random
generator is used. Notice that this way of random test generation
uses some domain knowledge to restrict the number of possible
values and this differs from pure randomization, thus increasing
the effectiveness of generated test suite.
The main observed testing criterion is branch coverage, since it is
the most realistic indicator for the effectiveness of testing. Even
though, there is a correlation between line and branch coverage, it
is not guaranteed that almost full line coverage would result in
nearly the same branch coverage. The reason for that is that
length of the code in different branches may vary significantly.
However, if one achieves full branch coverage, the full line
coverage is guaranteed. Obtained results are presented in Figure
11. As it is well known random test generation is quite successful
in the beginning but as one comes closer to full coverage,
progress gets much slower. Note that the results of this study are
congruent with that fact. The first twenty five tests achieve 76%
branch coverage but after doubling the size of the test suite branch
coverage increases only with 6.8% up to 82.8. Our data show that
for almost full branch coverage a test suite with approximately
200 tests is needed. Compared to the test suite obtained by
symbolic execution this is almost seven times larger. Moreover, it
does not guarantee that all branches of the program are visited. It
is possible that exactly the missed small fraction of the branches
contains a fault. Hence, branch coverage under 100% does not
provide absolute confidence of program correctness. Table 4
shows the results after execution of test suite with size 200.

Branch Coverage of Random Test Suites

76
82.8

91.7 96.8

0
10
20
30
40
50
60
70
80
90

100

25 50 100 200

Number of Tests

Br
an

ch
 C

ov
er

ag
e

%

Table 4. Results of randomly generated test suite

Number
Of Tests

Branch
Coverage Line Coverage Execution

Time
200 96.8% 99.2% 25.8 sec

As one can see, the execution time of the test suite is about six
times greater that the one needed for running the tests obtained by
symbolic execution. Note that presented results are average of
fifty runs and vary slightly from run to run. Moreover, the time
needed for generation of the symbolic and random test suites are
less than a second. In conclusion, using random strategy imposes
larger test suite, and which is more important, does not guarantee
full coverage.
There is one more possible approach, though unrealistic, for
testing the GUI—exhaustive testing. It is enough for one to
consider the possible input space for the program to see that this
is not an option. For example, the Workout Generator has inputs
state of 2 x 3 x 3 x 100 x 1000 x 1000 = 1.8 x 109 combinations.
The large input space is a result of the large number of possible
values for the text box controls (and they only take numeric
input). For example it is possible for one to use increments of 10
for the age and a range from 0 to 100 years, increments of 20 for
the weight and range from 0 to 200 kilos, increments of 20 for the
height and range from 0 to 200 centimeters. This would
significantly reduce the input space but does not guarantee full
coverage and still the possible inputs are 2 x 3 x 3 x 10 x 10 x 10
= 1.8 x 104. To explore this option a test suite using the upper
conditions is generated and run on the GUI. Results are presented
in Table 5.

Table 5. Results of randomly generated test suite

Number
Of Tests Branch Coverage Execution Time

18000 88.8% 4671.88 sec

It is enough for one to compare the execution time to the one
needed to run the tests obtained by symbolic execution or random
testing to be convinced of the inapplicability of this approach.
Moreover, because of the chosen increment factor some branches
were left unexecuted.
Our results show a significant advantage of the test suite
generated by symbolic execution over random generation in terms
of branch coverage and size. However, one should notice that this
technique is effective for GUIs that take user input and their
execution follows different paths according to this input. Even
though many GUIs do not belong to this class, a methodology of
testing such programs is needed and no testing technique proposes
a mechanism of dealing with such GUIs.
Another advantage of our technique is that during symbolic
execution, for all unreachable paths, there are generated
corresponding text files describing the constraints upon inputs that
are unsatisfiable, in this way revealing code errors and facilitating
their localization and correction. This is the opposite of testing
with random values where such faults could remain unnoticed,
and even though one has less than full code coverage, it is
possible that all reachable code is executed. In such a case
increasing the number of tests would not lead to any
improvement. These constant results might be a clue to

Figure 11. Branch coverage of randomly generated test
suites

unreachable code, but the program has to be inspected manually
in order to reveal such faults.

6. RELATED WORK
To the best of our knowledge the technique of symbolic execution
is not applied in GUI testing. Because of this lack of related work,
the following section is limited to investigating several
approaches for GUI testing and some areas where symbolic
execution is used for test input generation, program verification
and testing.
In his Ph.D. Thesis [8] Memon presents a framework for GUI
testing that generates, runs, and assesses GUI tests. This is the
first introduced framework capable of performing the whole
process of test generation, execution, assessment on GUIs. The
author represents GUIs as a graph and obtains test cases
performing different traversals on that graph. One weakness of
this approach is that there in no technique for the generation of
user stream input. Input values are read from a predefined data-
base. Descriptions of the main components of that framework
with further optimizations and improvements of the process may
be found in [9], [10], [12], [13].
Memon, Banarjee and Nagarajan present a framework for
regression testing of nightly/daily builds of GUI applications [11].
This tool addresses the rapidly evolving GUI applications
executing small enough test suite that the test process could be
accomplished in less than a day/night. Since this tool is based on
the one in [8] it suffers the same limitation concerning user input
streams.
Another approach is the GUI to be represented as a Variable
Finite State Machine from which after a transformation to an
FSM, tests are obtained [15]. However, this approach has the
same limitations as the previous ones.
A technique that transforms GUIs into a FSM and uses different
techniques to reduce the states of the FSM and avoid state space
explosion is proposed in [16]. However, here again the authors are
focusing only on collaborating selections and user sequences over
different objects in the GUI. Again the problem of the user input
is not taken into consideration.
Forrester and Miller conduct an empirical study for reliability of
GUI programs for Windows NT [4]. Authors test thirty different
GUIs on Windows NT by using random streams of keyboard
input, mouse events, and Win32 messages and observe if the
application crashes or hangs. This technique shows the presence
of bugs in about fifty percent of the tested applications but no
information about what fragment of the code was problematic is
provided.
Symbolic execution for test data generation is used in [14]. The
program is represented as a deterministic FSM and using
symbolic execution test data is generated. This paper deals
exclusively with numeric constraint and examined programs are
not GUIs.
The technique of symbolic execution is also used for program
verification. It is applied for verification of safety-critical systems
[3]. The paper proposes a framework that could be used for
verification of code written in safe-C, which is the language used
for most safety-critical systems.
Khurshid, Pasareanu and Visser use traditional symbolic
execution and translate a program source to source thus allowing

symbolic execution to be performed by a model checker [5]. This
permits testing programs manipulating complex data structures to
avoid the problem of state space explosion.
Symbolic execution is also performed on standard library classes
[6]. The authors use an abstract representation of these classes as
symbolic objects and define the semantics for operations on them.
This way they avoid unnecessary symbolic execution of the code
of standard library classes.

7. FUTURE WORK
As seen from the previous sections the proposed approach leads to
increasing the effectiveness of GUI test suites. However, to
perform the symbolic execution, the tester needs to instrument the
code under test manually. We plan to explore ways of automating
the process for C#, similar to what is presented in [7] where Java
byte code is instrumented. The ultimate goal is a framework that
performs the following steps: analyzing the GUI for applicability
of symbolic execution, automated instrumentation of the GUI
code, execution of the instrumented version, test generation and
execution. Further, the implementation of symbolic strings needs
to be improved and the constraint solver used by Barad needs to
be upgraded. Another issue that should be addressed is a
refinement of test case reduction. Even though the current
implementation reduces successfully and significantly the number
of tests, there is still room for improvement and make Barad more
effective.

8. CONCLUSIONS
The main contribution is introducing the use of symbolic
execution for GUI testing. Even though some aspects of the
process of symbolic execution implemented in Barad need
optimization, it was capable of handling all the constraints in the
tested GUIs and our results show that the idea of using symbolic
execution in GUI testing provides significantly better
performance compared to random input generation in terms of
line and branch coverage. It is also capable of capturing
modifications that are to be made on the GUI in order to execute a
particular segment of code. However, this approach does not
pretend to replace traditional ones. Rather, it complements them
by providing a technique for testing a class of GUIs that they are
not capable to effectively verify. We believe that combining our
approach with frameworks such as [8] and [11] would be
beneficial and is worth exploring. Our technique addresses their
main weakness and we deem that this would facilitate the
development of a complete framework capable to handle all types
of GUIs. Even though our results are encouraging, it would be
useful to apply our approach to more applications in order to
rigorously demonstrate its effectiveness.

9. REFERENCES
[1] Andrews, T., Quadeer, S., Rajamani, K., Rehof,.J., and Xie,

Y. Zing:A model checker for Concurrent Software. In
Computer Aided Verification (ISBN: 978-3-540-22342-9),
Springer Berlin / Heidelberg, Berlin, 484-487, 2004.

[2] Christensen, A., S., Møller, A., and Schwartzbach, M., I.
Precise Analysis of String Expressions. SAS 2003, 1-18,
2003.

[3] Coen-Porisini, A., Denaro, G., Ghezzi, C., and Pezzè, M.
Using symbolic execution for verifying safety-critical
systems. In ESEC / SIGSOFT FSE 2001, 142-151, 2001.

[4] Forrester, J.E., and Miller, B.P. An Empirical Study of the
Robustness of Windows NT Applications Using Random
Testing. In 4th USENIX Windows Systems Symposium,
Seattle, August 2000.

[5] Khurshid, S., Pasareanu, C., and Visser, W. Generalized
Symbolic Execution for Model Checking and Testing. In 9th
International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS 2003),
Warsaw, Poland. Apr 2003.

[6] Khurshid, S., and Suen, S. Generalizing Symbolic Execution
to Library Classes. In 6th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering (PASTE 2005), Lisbon, Portugal. Sep 2005.

[7] Khurshid, S.,Garcia, I., and Suen, I. Repairing Structurally
Complex Data. 12th International SPIN Workshop on Model
Checking of Software (SPIN), San Francisco, CA. Aug 2005.

[8] Memon, A. A comprehensive Framework For Testing
Graphical User Interfaces. Ph.D. Thesis, University of
Pittsburgh, Pittsburgh, 2001.

[9] Memon, A., Banarjee, I., and Nagarajan, A. GUI Ripping:
Reverse Engineering of Graphical User Interfaces for
Testing. In Reverse Engineering, 2003, WRCE 2003.
Proceedings. 10th Working Conference on, (November 13-
16, 2003), 2003, 260-269.

[10] Memon, A., and McMaster, S. Call Stack Coverage for GUI
Test-Suite Reduction. In Proceedings of the 17th IEEE
International Symposium on Software Reliability
Engineering (ISSRE 2006), Raleigh, NC, USA, Nov. 6-10
2006.

[11] Memon, A., Banarjee, I., and Nagarajan, A. “DART: A
Framework for Regression Testing Nightly/Daily Builds of
GUI Applications”. In International Conference on Software
Maintenance 2003 (ICSM'03), Amsterdam, The Netherlands,
Sep. 22-26, 2003, pages 410-419. (BibTeX).

[12] Memon, A., Banarjee, I., and Nagarajan, A. What Test
Oracle Should I use for Effective GUI Testing?. In IEEE
International Conference on Automated Software
Engineering (ASE'03), Montreal, Quebec, Canada, Oct. 6-10
2003, pages 164-173. (BibTeX).

[13] Memon, A. Using Tasks to Automate Regression Testing of
GUIs. In IASTED International Conference on ARTIFICIAL
INTELLIGENCE AND APPLICATIONS (AIA 2004),
Innsbruck, Austria, Feb. 16-18, 2004. (BibTeX).

[14] Zhang, J., Xu, C., and Wang, X. Path-Oriented Test Data
Generation Using Symbolic Execution and Constraint
Solving Techniques. In Software Engineering and Formal
Methods (SEFM 2004), p.242-250, 2004

[15] Shehady, R., K., and Siewiorek, D., P. A Method to
Automate User Interface Testing Using Variable Finite State
Machines. In 27th International Symposium on Fault-
Tolerant Computing (FTCS '97), p. 80, 1997.

[16] White, L., and Almezen, H. Generating Test Cases for GUI
Responsibilities Using Complete Interaction Sequences. In
11th International Symposium on Software Reliability
Engineering (ISSRE'00), p.110, 2000.

[17] “Section 1: history of writing technologies”
http://imrl.usu.edu/OSLO/technology_writing/004_003.htm
Date Accessed: 02 December 2006.

[18] “NunitForms windows.forms unit testing”
http://nunitforms.sourceforge.net/ Date accessed: 02
December 2006.

[19] “TestDriven.net” http://www.testdriven.net/overview.aspx>
Date Accessed: 02 December 2006.

[20] “What is Java PathFinder?”
http://javapathfinder.sourceforge.net/ Date accessed: 02
December 2006.

[21] “CVC3 Home Page” http://www.cs.nyu.edu/acsys/cvc3/>
Date accessed: 02 December 2000.

