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Abstract 
 

Software Product Lines (SPL), Component Based 
Software Engineering (CBSE) and Commercial Off the 
Shelf (COTS) components provide a rich supporting 
base for creating software architectures.  Further, they 
promise significant improvements in the quality of 
software configurations that can be composed from pre-
built components. Software architectural styles provide 
a way for achieving a desired coherence for such 
component-based architectures. This is because the 
different architectural styles enforce different quality 
attributes for a system. If the architectural style of an 
emergent system could be predicted in advance, the 
System Architect could make necessary changes to 
ensure that the quality attributes dictated by the system 
requirements were satisfied before the actual system 
was deployed. In this paper we propose a model for 
predicting architectural styles, and hence the quality 
attributes, based on use cases that need to be satisfied 
by a system configuration.  Our technique can be used 
to determine stylistic conformance and hence indicate 
the presence or absence of architectural drift. 
 
1. Introduction 
 

Software architecture styles represent a cogent form 
of codification [1, 2, 3] of critical aspects to which an 
architecture is expected to conform.  They differ from 
patterns in that patterns are the result of a discovery 
process, not a constraint process.  Of course, patterns 
may play an important role in the creation and 
specification of a style: commonly occurring patterns 
provide a useful basis for codification.  Part of the 
confusion comes from the fact that styles can be viewed 
both prescriptively (i.e., as a complex constraint that 
must be satisfied) and descriptively (i.e., as a 
description of what exists). 

In 1997 Mary Shaw and Paul Clements proposed a 
feature-based classification of architectural styles [3]. 
They proposed that different architectural styles can be 
discriminated among each other by focusing on the 
following feature categories. 
 Constituent Parts i.e. the components and 

connectors. 
 Control Factors i.e. the flow of control among 

components. 
 Data Factors i.e. details on how data is processed 
 Control/Data Interaction i.e. the relation between 

control and data. 
Even after years of software engineering research, 

the relationship between software components and 
architectural styles hasn’t been adequately explored. 
This, in fact, is surprising given the attention 
Component Based Software Engineering has received in 
the recent past. However, if we explore the motivation 
of these two disciplines, we would realize that the 
relationship may not be obvious.  

The focus of CBSE is to build software systems 
using pre-existing (including COTS) components thus 
reducing software costs and delivery time. Attention has 
mostly been directed towards understanding and 
resolving integration issues between the various 
components and establishing a common vocabulary for 
facilitating integration. The focus of Software 
Architecture, on the other hand, has been on the initial 
structure and constraints of complex software systems.  

The critical question is: when designing software 
systems from components, should we leave the 
emerging architectural styles of a software system to 
pure chance or should we investigate the component 
characteristics that need to be understood, to enforce an 
architectural style by choice. Since different 
architectural styles support distinct sets of quality 
attributes, the benefit of evaluating components for 
suitability to an architectural style is obvious, as the 
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desired quality attributes for a system are often dictated 
by the system requirements. Quality attributes are 
essentially the benchmarks that describe a system’s 
intended properties in the context of the environment 
for which it was built. It includes system characteristics 
such as performance, security, availability, usability etc. 
The ability to determine the architectural style for a 
system configuration will help us predict whether the 
desired quality attributes will be satisfied by the system 
prior to actual deployment.  

In this paper we propose a model for documenting 
component specifications and demonstrate how we can 
reason over the specifications to determine the emergent 
architectural style. We analyze the different feature 
categories proposed by Shaw and Clements and identify 
the component attributes that would help determine the 
architectural style of a system configuration. Section 2 
of the paper provides the background for our proposal 
while in Section 3 we perform the feature category 
analysis. Section 4 outlines the steps for style 
determination. Section 5 presents a case study 
conducted while in Section 6 we document related 
work. Section 7 concludes the paper. 
 
2. Background 
 

The context for the proposed research is outlined in 
this section. We start with the assumption that there 
exists a component repository in which software 
components relevant for a particular application domain 
have been specified using our asset specification model 
(briefly explained here) against our architectural 
specification. The System Architect identifies a 
deployment use-case or usage scenario (consisting of a 
list of services that needs to be delivered by the system) 
that needs to be implemented using pre-built 
components.  For identifying the configuration of 
components that are needed to satisfy the use case, the 
Architect queries the repository for the available 
components that can potentially be used to satisfy the 
targeted scenario. The architectural style related 
reasoning that we are proposing will be done on the set 
of components returned by the component repository 
based on the System Architect’s query. The envisioned 
reasoning capabilities will facilitate i) determining 
whether the set of components returned by the 
repository conform to any specific architectural style, ii) 
identifying a set of components that conform to a 
desired architectural style and hence support the desired 
set of quality attributes. 

Before we begin, we briefly explain with the help 
of UML diagrams, our specification approach which 
will be leveraged for the style related reasoning. Our 

specification model captures an architecture in terms of 
architectural elements. These elements are essentially 
the components and connectors that are relevant for the 
application domain and enable functional partitioning. 
Figure 1 elaborates architectural element specification. 
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Figure 1: Architectural Element Specification 
A key aspect of our model, the separation of the 

functional specs from the non functional specs, is 
elaborated in Figure 2 and Figure 3. 

 

 
       Figure 2: The Architectural Functionality Specs    
    

          
Figure 3: Arch Non-Functional Specifications 

In Figure 2, the  
• Interface Spec captures the interface information 

for the services provided. 
• Attribute Spec captures the domain data supported 

by the architectural element. 



• Behavioral Spec captures the state transitions 
supported by the architectural element. 
The Architectural Non-Functional Specs, shown in 

Figure 3, comprises of the Quality Attributes 
Constraints and Deployment Constraints. These are 
shown in Figure 4 and 5 respectively.  
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Figure 4: Quality Attribute Constraint 
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Figure 5: The Deployment Constraints 

Each entity in the Quality Attribute constraints and 
the Deployment Constraints are further characterized by 
a set of attributes. Since the list of attributes is quite 
detailed, we do not elaborate them here. 

With the above model for architectural element, we 
next explain the asset component specification. Asset 
components are the software components that have 
independent existence and are essentially the pre-built 
components using which a software architecture can be 
instantiated. The specification of the asset components 
are shown in Figure 6 below. 
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Figure 6: Asset Component Specification 

We model the asset components using the same 
model as the architectural elements so that the asset 
components can be easily evaluated for an architecture 
instantiation. We partition our specification exactly as 
we partitioned our architectural model - Functionality 
Specs [details of which are similar to the Architectural 
Functionality Specs in Figure 2] and Non-Functional 
Specs [similar to the Architectural Non-Functional 
Specs elaborated in Figures 3, 4 and 5]. There is one 
additional element in the specification: a certification 
spec. When specifying asset components it is important 
to capture some notion of dependability of a software 
component. The Certification Spec captures information 
such as the maturity of the development process, 
product and process related metrics and verification and 
validation data from the component development. With 
the above model for specification of asset components, 
we start our exploration for identifying attributes and 
algorithms necessary for doing architectural style based 
reasoning. 

 
3. Feature Category Analysis 
 

With the specification model in place, we analyze 
the various feature categories proposed by Shaw and 
Clements to ensure the information needed for 
architectural style discrimination is captured in our 
model and elaborate our approach for determining the 
feature categories for a given configuration of 
components. We start with the constituent elements of a 
configuration. Then we explore the Control Issues 
followed by Data Issues. Finally, we investigate the 
Control/Data interactions. 



3.1. Constituent Elements 
 
Components: From a review of the identified 
classifications, components have been classified into 
Stand-Alone Programs, Transducers, Procedures, 
Managers, Processes and Filters. Thus the components 
in the Pipes and Filter architectural style are 
Transducers whereas in the Batch Sequential style, the 
components are Stand Alone Programs. Hence the need 
for classifying the components during the specification 
process, as one of the component types mentioned 
above, becomes obvious. The Component Type attribute 
associated with the Asset Component Specs [Figure 6] 
captures whether a component is a Stand Alone 
Program, a Transducer, a Procedure, a Manager, a 
Process or a Filter. This piece of information will be 
captured when a component provider specifies a 
component using our model. The tool that is being built 
to facilitate the specification process will provide 
guidance for the component provider to classify the 
component accurately. 
Connectors: Connectors are usually distributed over 
many system components and often do not correspond 
to discrete elements of a software system. The different 
types of connectors identified in the classification 
include static calls, dynamic calls, shared 
representations, remote procedure calls, message-
passing protocols, data streams, ASCII stream, batch 
data, signals, transaction streams and direct data access. 
This information is captured by attributes in the 
Interaction Constraints of the Deployment Constraints 
explained in Figure 5. Thus during the specification 
process, the Connector Type attribute of the Interaction 
Constraints will capture the connector used by the 
component as one of the  different types of connector 
identified in the Shaw Clements classification.  

Though the components and connectors are the 
primary discriminators among styles, identifying the 
components and connectors often do not uniquely 
identify the style. Data and control issues and their 
interactions affect style distinctions. Hence we next 
consider the Control Issues 
 
3.2. Control Factors 
 

The Control Factors help understand the temporal 
flow of control between the various components in a 
configuration. The feature based classification focuses 
on Topology, Synchronicity and Binding Time. 
Topology: Topology is the geometric form of the 
control flow of a system. The identified control 
topologies are Linear, Acyclic, Arbitrary, Hierarchical 
and Star. For example a Batch Sequential data flow 

architecture has a Linear control topology while a data 
centered Blackboard style has a Star topology. The 
information for determining the topology of a system 
configuration is captured in the Asset Functionality 
Specs [analogous to the Architectural Functionality 
Specs for architectural elements elaborated in Figure 2]. 
Below we develop the algorithm for determining the 
control topology for a set of co-operating components 
in a configuration. 

The initial selection of the set of components for 
the configuration is done based on the usage scenario or 
use case specified by the System Architect that needs to 
be satisfied by the target configuration. For specifying a 
scenario, the Architect selects services from the 
Architectural Functionality Specs [Figure 2] of the 
application domain. Note that during the specification 
process for asset components, we capture the services in 
the architectural component that the component 
supports in the Provided Service Spec of the asset 
component [analogous to the Provided Service Spec for 
architectural elements elaborated in Figure 2].  Thus, we 
can identify the ‘best-fit’ components “registered” (i.e. 
supports the service specified in the architectural 
element) to the services in the scenario by searching the 
component repository for the component with the 
highest value of the Service Compliance Metrics [4] 
(the details of the metrics defined as part of this 
research is excluded from here due to constraints of 
space). Similarly, we can identify the set of components 
that are needed to satisfy all the services for the System 
Architect’s use case. For services for which no asset 
components can be found in the repository, notional 
components will be recommended.  

Next we explain the algorithm for determining the 
control topology. From step 1 to step 7, we build the 
Control Flow List (CF List) while in steps 8 to 12, we 
identify the topology from the CF List. The CF List is 
an ordered list of components for execution of the 
scenario. 
Step 1: Select service from the service list of the 
Scenario. 
Step 2: If the selected service is the last service in the 
scenario, go to Step 8. 
Step 3: Pick a component from the repository that is 
registered to the selected service and has the highest 
value of Service Compliance Metric [4]. 
Step 4: Add the component to the Control Flow (CF) 
List. 
Step 5: For all the events in the Input Event Specs of the 
service delivered by asset component identified in Step 
3, identify the asset components that generate the 
corresponding events (captured in the Output Event 
Specs).  If the identified list of components is not 
already in the CF List, add the components to the CF 



List before the component under consideration. The 
ordering of the event generators is done based on the 
pre-condition and post-condition dependencies among 
themselves. 
Step 6: For all the events in the Output Event Specs of 
the service delivered by asset component identified in 
Step 3, identify the asset components that consume the 
corresponding events (captured in the Input Event 
Specs).  Add the components to the CF List after the 
component under consideration. Again, the ordering of 
the event consumers is done based on the pre-condition 
and post-condition dependencies among themselves. 
Step 7: Select next service from Scenario and go to Step 
2. 
Step 8: If all components occur only once in the CF 
List, Control Topology is Linear. Exit program.  
Step 9: If the components in the CF List follow a tree- 
pattern, the Control Topology is Hierarchical. Exit 
program. 
Step 10: If the components in the CF List follow a ‘hub-
and-spoke’ pattern, the Control Topology is Star. Exit 
program. 
Step 11: If the first component in the CF List is different 
from the last, the Control Topology is Acyclic. Exit 
program. 
Step 12: The Control Topology is Arbitrary. 
Synchronicity: Synchronicity is the nature of the 
dependence of the component’s action upon each 
other’s control state. Shaw and Clements have classified 
synchronicity into Batch Sequential, Synchronous, 
Asynchronous and Opportunistic. We leverage the 
Control Flow List developed for determining the control 
topology for determining the synchronicity of the set of 
components. 

The determination of synchronicity is explained by 
a 4 step process. 
Step 1: In the Control Flow List, if the output events of 
one component are the same as that of the input-events 
of the next component, the synchronicity is Sequential 
Step 2: If at any point while traversing the Control Flow 
List, the list of output events of all preceding 
components exactly match the input events of the next 
component, the synchronicity is Synchronous 
Step 3: In the Control Flow List, if the input events for 
all components corresponds to only output events of 
services supported by the same component and does not 
match the output events generated by services of any 
other component, the synchronicity is Opportunistic. 
Examples of this are autonomous agents that work 
completely independently from each other in parallel. 
Step 4: If the synchronicity of a configuration couldn’t 
be determined by any of the three previous steps, the 
synchronicity is Asynchronous. 

Though the usage of events to determine the 
control flow may not seem intuitive, the generation and 
consumption of events are used here, as an indicator of 
passage of control from one component to another. 
Binding Time: Binding time is the time of establishing 
of the identity of a collaborating component for transfer 
of control. Typical control transfers are determined at 
program-write time, compile time, or invocation time. 
Given our level of treatment of components, at this time 
we do not think that the Binding Time can be identified 
from the component interaction. 

 
3.3. Data Factors 

Data factors investigate the movement of data in 
the system. It focuses on the topology of the data 
movement, the continuity of data flow, the mode and 
the binding time. In this section we elaborate our 
approach for determining the data topology and the data 
continuity 
Topology: Data topology explores a system’s data flow 
graph, the different classifications being the same as 
those for the control topology, namely Linear, Acyclic, 
Arbitrary, Hierarchical and Star. Examples of the Star 
topology are the Blackboard and the Repository 
architectural style while the Batch Sequential and Pipe 
and Filter architectural styles represent a Linear data 
topology. A Hierarchical data topology is demonstrated 
by the Layered architectural style. 

We can derive the data topology for the 
collaborating set of components using the Input and 
Output Data Specs associated with the Service Data 
Spec for the selected asset components. The derivation 
of the data topology is explained below.  

Just as in the Control Topology determination, we 
use the System Architect’s scenario to determine the 
Data Topology. Steps 1 to 7 builds the Data Flow List 
(DF List) which is analogous to the Control Flow List 
used for determining the Control topology. The 
subsequent steps help with the classification. 
Step 1: Select service from service list of Scenario. 
Step 2: If the selected service is the last service in the 
scenario go to Step 8. 
Step 3: Pick an asset component from the repository that 
is registered to the selected service and has the highest 
value of the Service Compliance Metric [4]. 
Step 4: Add the asset component to the Data Flow (DF) 
List. 
Step 5: Build a list of data entities referred to by the 
Input Data Spec for the service in the selected asset 
component. 
Step 6: For each data entity in the list, find the asset 
components which generate the data element (captured 
in the Output Data Specs). If the component is different 



from the one being considered, add it to the DF List 
before the component. The ordering of the data 
generators is done based on the pre-condition and post-
condition dependencies among themselves. 
Step 7: Select next service from Scenario and goto Step 
2 
Step 8: If all components occur only once in the DF 
List, then Data Topology is Linear. Exit program.  
Step 9: If the components in the DF List follow a tree- 
pattern, the Data Topology is Hierarchical. Exit 
program. 
Step 10: If the components in the DF List follow a ‘hub-
and-spoke’ pattern, the Data Topology is Star. Exit 
program. 
Step 11: If the first component in the DF List is 
different from the last, the Data Topology is Acyclic. 
Exit program. 
Step 12: The Data Topology is Arbitrary 

With the algorithm mentioned above, the data 
topology of most configurations can be determined. The 
main distinction between the approaches for 
determining the control topology and the data topology 
lies in the fact that for the control topology we need to 
identify all the asset components that generate the input 
events for a service as well as all the asset components 
that consume the output events of a service, and include 
them in the configuration. This is because if any event 
is not satisfied or consumed, the overall system may not 
perform to specifications. This is not true for the 
determination of the Data topology. For the Data 
Topology, we need to ensure that we include only the 
asset components that generate or produce the data that 
is needed by the service in the Architect’s scenario. 
Without all the data elements, the desired service may 
not function satisfactorily. However it is not necessary 
to ensure that the output data generated by the service in 
the usage scenario gets consumed, unlike the output 
events for the control topology.  
Continuity: Continuity is a measure of the flow of data 
through the system. While in a continuous flow system, 
new data is available at all times, in a sporadic flow 
system, new data is generated at specific intervals. The 
further categorization of data continuity into high 
volume and low volume will not be used for our 
discrimination, as the high and low categorization seems 
too subjective and does not lend themselves to any 
objective measurement. 

We propose the following algorithm for 
determining whether data continuity is continuous or 
sporadic. For all the services in the scenario (except the 
first and last in the DF List), if the asset component 
identified for supporting the scenario, requires a set of 
input data for executing the service, and generates 

output data as a result of executing the service, we call 
the system of components continuous, else we call the 
system sporadic. If there is generation and consumption 
of data at every service it is likely that the data 
continuity is continuous. Note that the first and last 
services in the DF List are not considered, because the 
first service not requiring any input data and the last 
service not generating any output data is a plausible 
deviation from the necessity of requiring input data and 
generating output data for the services in the scenario. 
Mode:  Data Mode refers to how the data is made 
available throughout the system. The identified modes 
include passed (for an object system), shared (for all 
data shared systems), copy-out-copy-in, broadcast, and 
multicast. Given our level of reasoning for the 
components, we do not use mode for our style 
distinction. 
Binding Time: Analogous to the binding time for 
Control Factors, binding time for data issues is the 
discrimination on the time when the identity of a partner 
in a transfer of control is identified. Just as the binding 
time for control issues, binding time for control issues is 
not used for our classification. 
 
3.4. Control/Data Interactions 
 
Control/Data Interaction describes the relationship 
between the data and control factors. 
Shape: The Shape for Control & Data interaction is an 
indicator of whether the control and data topologies are 
similar. If they are, the topologies are said to be 
Isomorphic. A number of architectural styles have their 
data and control topologies isomorphic, examples 
include Batch Sequential, Data Flow Network and Call 
Based Client Server. Some styles are not isomorphic 
e.g. Blackboard and the Main Program-Subroutine. 

If the control and data topologies identified using 
the algorithms developed earlier are the same, we 
determine the shape of the control and data interactions 
to be isomorphic. 
Directionality: Directionality is an indicator of whether 
the direction of flow is the same for the control and data 
for isomorphic configurations, or not. Directionality is 
irrelevant for non-isomorphic data and control 
topologies. We do not consider Directionality for our 
classification. 

This concludes our feature category analysis. With 
the approach defined for determining each of the feature 
category attributes for a configuration of components, 
we would be able to perform analysis for a 
configuration’s compliance to an architectural style. 
 



4. Architectural Style Determination 
 

Based on the feature category attributes determined 
in the previous section, we can predict the emergent 
architectural styles. We represent the value of the 
different feature category attributes and the 
corresponding architectural styles in a table format. This 
table was developed by Shaw and Clements as part of 
their approach for classifying architectural styles. 

With the knowledge captured in Table 1 we 
determine the architectural style that the set of 
components identified from the usage scenario 
conforms to. The prediction is based on the values of 
the feature category attributes determined using the 
approaches developed in Section 3. 

The process for predicting the emergent 
architectural style is outlined below. 
Step 1: The System Architect specifies a use 
case/scenario for which a software configuration needs 
to be built from the services specified in the 
Architectural Functionality Specs. 
Step 2: For each service in the use case, identify the best 
fit candidate from the component repository i.e. the 
component with the highest value of the Service 
Compliance Metric [4] and build the Base Component 
List.  
Step 3: For each component in the Base Component 
List, make note of its Component Type Attribute. If all 
the components are not of the same type, we consider 
the component type of the set of components to be the 
one that is predominant. 
Step 4: For each component in the Base Component 
List, make note of the Connector Type attribute in the 
Data Transport Spec. If all the connectors are not of the 
same type, we consider the connector type of the 
configuration to be the one that is predominant. 
Step 5: Determine the Control Topology of the set of 
components by developing the Control Flow List (refer 
Section 3.2). 
Step 6: Determine the Control Synchronicity of the 
configuration of the components (refer Section 3.2). 
Step 7: Determine the Data Topology of the 
configuration by developing the Data Flow List (refer 
Section 3.3). 
Step 8: Determine the Data Continuity of the 
configuration (refer Section 3.3). 
Step 9: Determine whether the Control and Data 
topologies are isomorphic (refer Section 3.4). 
Step 10: From the feature category attributes derived 
from Step 3 to Step 9, we reference Table 1 to 
determine the architectural style of the set of 
components. If no clear conclusion can be drawn, we 
try to determine the most probable architectural style by 

considering the maximum number of feature category 
attributes that can be used in making a prediction that is 
consistent with the classification shown in Table 1. 

The Conformance Confidence Index (CCI) 
described below provides an objective measure of how 
close a configuration of components corresponds to a 
given style. Higher the value of CCI, the more 
compliant is the configuration to the corresponding 
architectural style. CCI for a given style, s, is calculated 
as in below 

∑
∈

=
)( |)(|

*
sFCAfc

fcfc

sFCA
VwCCI  

Where 
 FCA(s): The set of feature category attributes 

relevant for a given style s. In our case FCA(s) = 
[Component, Connector, Control Topology, 
Synchronicity, Data Topology, Data Continuity, 
Isomorphic Shapes] for all styles per the Shaw 
Clements classification. The values for the different 
elements in the set FCA(s) are determined by 
performing the feature category analysis outlined in 
Section 3.  

 wfc = the weight of the feature category attribute in 
the determination of the style. This factor can be 
ignored if empirical analysis shows that all the 
feature category attributes have equal weighting. If 
they are found relevant (as likely they will be), the 
values have to be determined individually for each 
style. We have not determined the value of wfc for 
the different styles at this time. 

 Vfc = 1 if our approach reveals that the 
corresponding feature category for a configuration 
matches the Shaw Clements classification for the 
given style, 0 otherwise. 
In all likelihood it is the value of CCI that will 

guide Architects to the emergent architectural style as a 
perfect match of all feature category attributes is quite 
improbable for real-life systems. 

It is worth noting that identifying the architectural 
style or determining the degree of compliance to a given 
style is not the goal in itself. The real value of 
predicting the architectural style lies in the fact that 
using this information we will be able to predict the 
quality attributes of the emergent system.  

If it is determined from our architectural level 
analysis that the emerging style conforms to a pipe and 
filter system, the Architect would be able to deduce 
certain characteristics that the system would likely 
demonstrate upon deployment. In such a case, it can be 
inferred that there would be no complex interactions to 
manage and that system maintenance would be easy. 
Further, if required, the system can be made parallel or 
distributed to enhance its performance. On the 



downside, the system would likely not be able to 
support a highly interactive use case and overall 
performance may be poor because of the batch model of 
execution.  

Similarly if the emerging style is determined to be 
the Layered architectural style, the Architect would be 

able to infer that the system in general would be 
modifiable and portable. A high compliance index, CCI, 
with a value less than one, will imply that some layer 
bridging is likely happening, which may affect the goals 
of modifiability and portability. 

 

Table 1: Architectural Style Classification 
 

5. Validation of Approach 
 

We validated our proposal using a real life system 
that was available to us. The system is involved in a 
complex manufacturing process and essentially 
transforms data originating from the process, computes 
a number of indicators, generates reports and provides 
an interface for the end user to view the computed 
results and perform ad-hoc analysis on the data. 

The approach we took for the case study was to 
have the key architect of the project specify the 
components of the system using our specification model 
and then follow our algorithms for determining the 
architectural style of the system. No inputs were 
provided to the subject except for clarifications on the 
model and the algorithm details.  

The system was partitioned into 6 architectural 
elements with 35 services and 6 asset components. Each 
of the six asset components mapped uniquely to the six 
architectural components. This was primarily because 
we were reengineering the architecture from the 
deployed system and the architect’s thought process 
was influenced by the system that he was intimately 
familiar with. The services were specified at a 
significant level of detail though some clarifications had 
to be provided with respect to specification of events. 
The Behavioral Specification however was not filled 
out to any significant degree of detail.  Also the 
architectural non-functional specifications captured 
information only to the extent that was available in the 
project documents. 

The architect was first asked to define a usage 
scenario for performing the architectural style analysis. 

Constituent Parts Control Issues Data Issues Control/Da
ta 

Interaction 

Style 

Components Connectors Topology Synchronicity Topology Continuity Isomorphic 
Shapes 

Data Flow Architectural Styles 
Batch Sequential  Stand-alone 

programs 
Batch data Linear Sequential Linear Sporadic Yes 

Data-Flow 
Network 

Transducers Data Stream Arbitrary Asynchronous Arbitrary Continuous Yes 

Pipes and Filter Transducers Data Stream Linear Asynchronous Linear Continuous Yes 
Call and Return  
Main Program/ 
Subroutines 

Procedure Procedure 
Calls 

Hierarchical Sequential Arbitrary Sporadic No 

Abstract Data 
Types 

Managers Static Calls Arbitrary Sequential Arbitrary Sporadic Yes 

Objects Managers Dynamic 
Calls 

Arbitrary Sequential Arbitrary Sporadic Yes 

Call based Client 
Server 

Programs Calls or RPC Star Synchronous Star Sporadic Yes 

Layered - - Hierarchical Any Hierarchical Sporadic Often 
Independent Components 
Event Systems Processes Signals Arbitrary Asynchronous Arbitrary Sporadic Yes 
Communicating 
Processes 

Processes Message 
Protocols 

Arbitrary Any but 
Sequential 

Arbitrary  Sporadic Yes 

Data Centered 
Repository Memory, 

Computations 
Queries Star Asynchronous Star Sporadic Yes 

Blackboard Memory, 
Components 

Direct 
Access 

Star Asynchronous Star Sporadic No 



He picked the most common use case for the system. 
With the software system specified using our abstract 
model and the key use case identified the study then got 
into the feature category analysis. We had to make sure 
that the use case was defined in terms of the services 
that were already in the specified architecture. The 
architect initially had a lot of questions on the 
classification of the components and connectors as it 
wasn’t obvious what the appropriate component type 
and connector types should be. After some clarifications 
were provided the architect classified four of the six 
components as Transducers, one as a Manager and the 
sixth as a Filter. For the classification of the connectors, 
the architect was not sure whether to classify them as 
Data Stream or an ASCII stream and eventually decided 
on the ASCII stream for all the 5 connectors. 
Development of the Control Flow List was in fact quite 
straightforward as the event relationships were quite 
simple. The Control topology was determined to be 
Linear. Determining the Synchronicity was not as 
straightforward though – by the algorithm the 
Synchronicity came out to be Asynchronous though the 
architect grappled with the true implication of 
synchronicity and it seemed that an event based 
approach for determining synchronicity is counter-
intuitive. The Data Topology turned out to be Linear 
just like the Control Topology and the Data Continuity 
classification was Continuous. When we matched up the 
findings against Table 1, the architectural style was 
determined to be the Pipe and Filter style. This result 
corroborated the architect’s perception of the system.  

There were several interesting lessons from this 
case study. Even though the final results were 
satisfactory, it was obvious that for a more rigorous 
assessment of our proposal, the same individual/team 
should not be involved in the definition of the 
architecture and the specification of the asset 
components and architectural style analysis. Further it 
became evident that more clarity needs to be provided 
for facilitating the accurate classification of components 
and connectors. It seems that in all likelihood, for 
complex systems, style determination would never fit 
exactly into the style classifications proposed by Shaw 
and Clements and that our Conformance Confidence 
Index (CCI) would play an important role in providing 
the System Architect with insights into the degree of 
compliance with a given style. 

One of the drawbacks of the validation done so far 
is - we have not exercised our approach using a system 
that is yet to be built. The main reason for that has been 
the lack of opportunity for this research team to be 
involved in a component based development project 
during its inception phase. 
 

7. Related Work 
 

In 1989 Perry and Wolf ([5], published in 1992 [1]) 
introduced the notion of software architectural styles 
and demonstrated the concept using the “multi phased 
architectural style” of a compiler. Garlan and Shaw [6] 
categorized several architectural abstractions and 
demonstrated their applicability in real-life systems. 
Then in 1997, Shaw and Clements [3] proposed a 
feature based classification of architectural styles. These 
efforts firmly established the importance of architecture 
styles in software architecture. Along the way, different 
research efforts explored formal approaches for 
rigorously defining styles with the intent of enabling 
systematic analysis. Abowd et al. [2] formalized style 
descriptions and proposed a framework for their 
codification using Z. In 1998 le Metayer [7] used graph 
grammar for describing architectural styles and recently 
Bernardo et al. [8] used PI-calculus for the same 
purpose. Communication topologies in the context of 
styles have been explored by the Alfa framework of 
Mehta and Medvidovic [9]. Alfa enables the 
construction of style based software architectures from 
architectural primitives defined along five orthogonal 
characteristics of Data, Structure, Interaction, Behavior 
and Topology. 

Our work is essentially based on the style 
classification proposed by Shaw and Clements, with our 
contribution being the demonstration of the applicability 
of such classifications in predicting emergent styles 
during component based software construction. It is 
also possible to validate style conformance with our 
approach. 
 
7. Conclusion 
 

In this paper we have developed an approach for 
reasoning about architectural styles using component 
specification and a use case scenario which the System 
Architect’s desires to satisfy by using a configuration of 
components. We have also shared the findings from the 
case study we conducted. 

With our style prediction proposal, not only will a 
System Architect have the ability to evaluate several 
deployment options but will also have the ability to get 
a sense of the quality attributes of the final system 
before actually building it. This could prove to be an 
extremely valuable way of assessing the final system 
behavior a-priori.  

Given that we can determine the emerging stylistic 
characteristics of a configuration (whether global or 
“regional”) and determine how close it comes to 
satisfying a particular architectural style, we can also 



use our approach to determine the conformance of that 
configuration to particular style.  This will be 
particularly useful during the evolution of a system to 
detect either architectural drift, or even architectural 
erosion [1, 5, and 10]. 

We envision this research to evolve, resulting in 
tools that would make the System Architect’s job easier 
and more efficient. We have not come across any 
research so far that has attempted to bridge the gap 
between Software Architecture and Component Based 
Software Engineering, and in that sense we consider our 
work to be novel.  
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