
Predicting Emergent Properties of Component Based Systems

Sutirtha Bhattacharya, Dewayne E. Perry
Empirical Software Engineering Lab (ESEL)

ECE, The University of Texas at Austin
Austin, TX-78712

sutirtha.bhattacharya@intel.com
perry@ece.utexas.edu

Abstract

Software Product Lines (SPL), Component Based
Software Engineering (CBSE) and Commercial Off the
Shelf (COTS) components provide a rich supporting
base for creating software architectures. Further, they
promise significant improvements in the quality of
software configurations that can be composed from pre-
built components. Software architectural styles provide
a way for achieving a desired coherence for such
component-based architectures. This is because the
different architectural styles enforce different quality
attributes for a system. If the architectural style of an
emergent system could be predicted in advance, the
System Architect could make necessary changes to
ensure that the quality attributes dictated by the system
requirements were satisfied before the actual system
was deployed. In this paper we propose a model for
predicting architectural styles, and hence the quality
attributes, based on use cases that need to be satisfied
by a system configuration. Our technique can be used
to determine stylistic conformance and hence indicate
the presence or absence of architectural drift.

1. Introduction

Software architecture styles represent a cogent form
of codification [1, 2, 3] of critical aspects to which an
architecture is expected to conform. They differ from
patterns in that patterns are the result of a discovery
process, not a constraint process. Of course, patterns
may play an important role in the creation and
specification of a style: commonly occurring patterns
provide a useful basis for codification. Part of the
confusion comes from the fact that styles can be viewed
both prescriptively (i.e., as a complex constraint that
must be satisfied) and descriptively (i.e., as a
description of what exists).

In 1997 Mary Shaw and Paul Clements proposed a
feature-based classification of architectural styles [3].
They proposed that different architectural styles can be
discriminated among each other by focusing on the
following feature categories.
 Constituent Parts i.e. the components and

connectors.
 Control Factors i.e. the flow of control among

components.
 Data Factors i.e. details on how data is processed
 Control/Data Interaction i.e. the relation between

control and data.
Even after years of software engineering research,

the relationship between software components and
architectural styles hasn’t been adequately explored.
This, in fact, is surprising given the attention
Component Based Software Engineering has received in
the recent past. However, if we explore the motivation
of these two disciplines, we would realize that the
relationship may not be obvious.

The focus of CBSE is to build software systems
using pre-existing (including COTS) components thus
reducing software costs and delivery time. Attention has
mostly been directed towards understanding and
resolving integration issues between the various
components and establishing a common vocabulary for
facilitating integration. The focus of Software
Architecture, on the other hand, has been on the initial
structure and constraints of complex software systems.

The critical question is: when designing software
systems from components, should we leave the
emerging architectural styles of a software system to
pure chance or should we investigate the component
characteristics that need to be understood, to enforce an
architectural style by choice. Since different
architectural styles support distinct sets of quality
attributes, the benefit of evaluating components for
suitability to an architectural style is obvious, as the

mailto:sutirtha.bhattacharya@intel.com
mailto:perry@ece.utexas.edu

desired quality attributes for a system are often dictated
by the system requirements. Quality attributes are
essentially the benchmarks that describe a system’s
intended properties in the context of the environment
for which it was built. It includes system characteristics
such as performance, security, availability, usability etc.
The ability to determine the architectural style for a
system configuration will help us predict whether the
desired quality attributes will be satisfied by the system
prior to actual deployment.

In this paper we propose a model for documenting
component specifications and demonstrate how we can
reason over the specifications to determine the emergent
architectural style. We analyze the different feature
categories proposed by Shaw and Clements and identify
the component attributes that would help determine the
architectural style of a system configuration. Section 2
of the paper provides the background for our proposal
while in Section 3 we perform the feature category
analysis. Section 4 outlines the steps for style
determination. Section 5 presents a case study
conducted while in Section 6 we document related
work. Section 7 concludes the paper.

2. Background

The context for the proposed research is outlined in
this section. We start with the assumption that there
exists a component repository in which software
components relevant for a particular application domain
have been specified using our asset specification model
(briefly explained here) against our architectural
specification. The System Architect identifies a
deployment use-case or usage scenario (consisting of a
list of services that needs to be delivered by the system)
that needs to be implemented using pre-built
components. For identifying the configuration of
components that are needed to satisfy the use case, the
Architect queries the repository for the available
components that can potentially be used to satisfy the
targeted scenario. The architectural style related
reasoning that we are proposing will be done on the set
of components returned by the component repository
based on the System Architect’s query. The envisioned
reasoning capabilities will facilitate i) determining
whether the set of components returned by the
repository conform to any specific architectural style, ii)
identifying a set of components that conform to a
desired architectural style and hence support the desired
set of quality attributes.

Before we begin, we briefly explain with the help
of UML diagrams, our specification approach which
will be leveraged for the style related reasoning. Our

specification model captures an architecture in terms of
architectural elements. These elements are essentially
the components and connectors that are relevant for the
application domain and enable functional partitioning.
Figure 1 elaborates architectural element specification.

Architectural

Element Specs

Architectural
Functionality

Specs

Arch Non-
Functional

Specs
Figure 1: Architectural Element Specification
A key aspect of our model, the separation of the

functional specs from the non functional specs, is
elaborated in Figure 2 and Figure 3.

 Figure 2: The Architectural Functionality Specs

Figure 3: Arch Non-Functional Specifications

In Figure 2, the
• Interface Spec captures the interface information

for the services provided.
• Attribute Spec captures the domain data supported

by the architectural element.

• Behavioral Spec captures the state transitions
supported by the architectural element.
The Architectural Non-Functional Specs, shown in

Figure 3, comprises of the Quality Attributes
Constraints and Deployment Constraints. These are
shown in Figure 4 and 5 respectively.

Quality Attribute

Constraints

Runtime
Constraints

Static Constraints

Reliability
Constraints

Availability
Constraints

Performance
Constraints

Usability
Constraints

Modifiability
Constraints

Portability
Constraints

Reusability
Constraints

Integrability
Constraints

Testability
Constraints

Security
Constraints
Figure 4: Quality Attribute Constraint

D eploym ent
Constraints

Core
Infrastructure

Constraints

Interaction
Constraints

Com puting
Platform Const

D ynam ic
D isplay Const.

O perating
System s Const.

R untim e Env.
Const.

Peripheral Const.

N etwork Support
Const

D atabase Const

CO TS package
Const

Architectural
Elem ent Const.

R untim e
Libraries Const.

U ser Interface
Const.

Installation
Const.

Perform ance
M onitor Const.

D ata Transport
Const.

Figure 5: The Deployment Constraints

Each entity in the Quality Attribute constraints and
the Deployment Constraints are further characterized by
a set of attributes. Since the list of attributes is quite
detailed, we do not elaborate them here.

With the above model for architectural element, we
next explain the asset component specification. Asset
components are the software components that have
independent existence and are essentially the pre-built
components using which a software architecture can be
instantiated. The specification of the asset components
are shown in Figure 6 below.

Asset Component

Specs

Functionality
Specs

Non
Functional

Specs

Certification
Specs

Figure 6: Asset Component Specification

We model the asset components using the same
model as the architectural elements so that the asset
components can be easily evaluated for an architecture
instantiation. We partition our specification exactly as
we partitioned our architectural model - Functionality
Specs [details of which are similar to the Architectural
Functionality Specs in Figure 2] and Non-Functional
Specs [similar to the Architectural Non-Functional
Specs elaborated in Figures 3, 4 and 5]. There is one
additional element in the specification: a certification
spec. When specifying asset components it is important
to capture some notion of dependability of a software
component. The Certification Spec captures information
such as the maturity of the development process,
product and process related metrics and verification and
validation data from the component development. With
the above model for specification of asset components,
we start our exploration for identifying attributes and
algorithms necessary for doing architectural style based
reasoning.

3. Feature Category Analysis

With the specification model in place, we analyze
the various feature categories proposed by Shaw and
Clements to ensure the information needed for
architectural style discrimination is captured in our
model and elaborate our approach for determining the
feature categories for a given configuration of
components. We start with the constituent elements of a
configuration. Then we explore the Control Issues
followed by Data Issues. Finally, we investigate the
Control/Data interactions.

3.1. Constituent Elements

Components: From a review of the identified
classifications, components have been classified into
Stand-Alone Programs, Transducers, Procedures,
Managers, Processes and Filters. Thus the components
in the Pipes and Filter architectural style are
Transducers whereas in the Batch Sequential style, the
components are Stand Alone Programs. Hence the need
for classifying the components during the specification
process, as one of the component types mentioned
above, becomes obvious. The Component Type attribute
associated with the Asset Component Specs [Figure 6]
captures whether a component is a Stand Alone
Program, a Transducer, a Procedure, a Manager, a
Process or a Filter. This piece of information will be
captured when a component provider specifies a
component using our model. The tool that is being built
to facilitate the specification process will provide
guidance for the component provider to classify the
component accurately.
Connectors: Connectors are usually distributed over
many system components and often do not correspond
to discrete elements of a software system. The different
types of connectors identified in the classification
include static calls, dynamic calls, shared
representations, remote procedure calls, message-
passing protocols, data streams, ASCII stream, batch
data, signals, transaction streams and direct data access.
This information is captured by attributes in the
Interaction Constraints of the Deployment Constraints
explained in Figure 5. Thus during the specification
process, the Connector Type attribute of the Interaction
Constraints will capture the connector used by the
component as one of the different types of connector
identified in the Shaw Clements classification.

Though the components and connectors are the
primary discriminators among styles, identifying the
components and connectors often do not uniquely
identify the style. Data and control issues and their
interactions affect style distinctions. Hence we next
consider the Control Issues

3.2. Control Factors

The Control Factors help understand the temporal
flow of control between the various components in a
configuration. The feature based classification focuses
on Topology, Synchronicity and Binding Time.
Topology: Topology is the geometric form of the
control flow of a system. The identified control
topologies are Linear, Acyclic, Arbitrary, Hierarchical
and Star. For example a Batch Sequential data flow

architecture has a Linear control topology while a data
centered Blackboard style has a Star topology. The
information for determining the topology of a system
configuration is captured in the Asset Functionality
Specs [analogous to the Architectural Functionality
Specs for architectural elements elaborated in Figure 2].
Below we develop the algorithm for determining the
control topology for a set of co-operating components
in a configuration.

The initial selection of the set of components for
the configuration is done based on the usage scenario or
use case specified by the System Architect that needs to
be satisfied by the target configuration. For specifying a
scenario, the Architect selects services from the
Architectural Functionality Specs [Figure 2] of the
application domain. Note that during the specification
process for asset components, we capture the services in
the architectural component that the component
supports in the Provided Service Spec of the asset
component [analogous to the Provided Service Spec for
architectural elements elaborated in Figure 2]. Thus, we
can identify the ‘best-fit’ components “registered” (i.e.
supports the service specified in the architectural
element) to the services in the scenario by searching the
component repository for the component with the
highest value of the Service Compliance Metrics [4]
(the details of the metrics defined as part of this
research is excluded from here due to constraints of
space). Similarly, we can identify the set of components
that are needed to satisfy all the services for the System
Architect’s use case. For services for which no asset
components can be found in the repository, notional
components will be recommended.

Next we explain the algorithm for determining the
control topology. From step 1 to step 7, we build the
Control Flow List (CF List) while in steps 8 to 12, we
identify the topology from the CF List. The CF List is
an ordered list of components for execution of the
scenario.
Step 1: Select service from the service list of the
Scenario.
Step 2: If the selected service is the last service in the
scenario, go to Step 8.
Step 3: Pick a component from the repository that is
registered to the selected service and has the highest
value of Service Compliance Metric [4].
Step 4: Add the component to the Control Flow (CF)
List.
Step 5: For all the events in the Input Event Specs of the
service delivered by asset component identified in Step
3, identify the asset components that generate the
corresponding events (captured in the Output Event
Specs). If the identified list of components is not
already in the CF List, add the components to the CF

List before the component under consideration. The
ordering of the event generators is done based on the
pre-condition and post-condition dependencies among
themselves.
Step 6: For all the events in the Output Event Specs of
the service delivered by asset component identified in
Step 3, identify the asset components that consume the
corresponding events (captured in the Input Event
Specs). Add the components to the CF List after the
component under consideration. Again, the ordering of
the event consumers is done based on the pre-condition
and post-condition dependencies among themselves.
Step 7: Select next service from Scenario and go to Step
2.
Step 8: If all components occur only once in the CF
List, Control Topology is Linear. Exit program.
Step 9: If the components in the CF List follow a tree-
pattern, the Control Topology is Hierarchical. Exit
program.
Step 10: If the components in the CF List follow a ‘hub-
and-spoke’ pattern, the Control Topology is Star. Exit
program.
Step 11: If the first component in the CF List is different
from the last, the Control Topology is Acyclic. Exit
program.
Step 12: The Control Topology is Arbitrary.
Synchronicity: Synchronicity is the nature of the
dependence of the component’s action upon each
other’s control state. Shaw and Clements have classified
synchronicity into Batch Sequential, Synchronous,
Asynchronous and Opportunistic. We leverage the
Control Flow List developed for determining the control
topology for determining the synchronicity of the set of
components.

The determination of synchronicity is explained by
a 4 step process.
Step 1: In the Control Flow List, if the output events of
one component are the same as that of the input-events
of the next component, the synchronicity is Sequential
Step 2: If at any point while traversing the Control Flow
List, the list of output events of all preceding
components exactly match the input events of the next
component, the synchronicity is Synchronous
Step 3: In the Control Flow List, if the input events for
all components corresponds to only output events of
services supported by the same component and does not
match the output events generated by services of any
other component, the synchronicity is Opportunistic.
Examples of this are autonomous agents that work
completely independently from each other in parallel.
Step 4: If the synchronicity of a configuration couldn’t
be determined by any of the three previous steps, the
synchronicity is Asynchronous.

Though the usage of events to determine the
control flow may not seem intuitive, the generation and
consumption of events are used here, as an indicator of
passage of control from one component to another.
Binding Time: Binding time is the time of establishing
of the identity of a collaborating component for transfer
of control. Typical control transfers are determined at
program-write time, compile time, or invocation time.
Given our level of treatment of components, at this time
we do not think that the Binding Time can be identified
from the component interaction.

3.3. Data Factors

Data factors investigate the movement of data in
the system. It focuses on the topology of the data
movement, the continuity of data flow, the mode and
the binding time. In this section we elaborate our
approach for determining the data topology and the data
continuity
Topology: Data topology explores a system’s data flow
graph, the different classifications being the same as
those for the control topology, namely Linear, Acyclic,
Arbitrary, Hierarchical and Star. Examples of the Star
topology are the Blackboard and the Repository
architectural style while the Batch Sequential and Pipe
and Filter architectural styles represent a Linear data
topology. A Hierarchical data topology is demonstrated
by the Layered architectural style.

We can derive the data topology for the
collaborating set of components using the Input and
Output Data Specs associated with the Service Data
Spec for the selected asset components. The derivation
of the data topology is explained below.

Just as in the Control Topology determination, we
use the System Architect’s scenario to determine the
Data Topology. Steps 1 to 7 builds the Data Flow List
(DF List) which is analogous to the Control Flow List
used for determining the Control topology. The
subsequent steps help with the classification.
Step 1: Select service from service list of Scenario.
Step 2: If the selected service is the last service in the
scenario go to Step 8.
Step 3: Pick an asset component from the repository that
is registered to the selected service and has the highest
value of the Service Compliance Metric [4].
Step 4: Add the asset component to the Data Flow (DF)
List.
Step 5: Build a list of data entities referred to by the
Input Data Spec for the service in the selected asset
component.
Step 6: For each data entity in the list, find the asset
components which generate the data element (captured
in the Output Data Specs). If the component is different

from the one being considered, add it to the DF List
before the component. The ordering of the data
generators is done based on the pre-condition and post-
condition dependencies among themselves.
Step 7: Select next service from Scenario and goto Step
2
Step 8: If all components occur only once in the DF
List, then Data Topology is Linear. Exit program.
Step 9: If the components in the DF List follow a tree-
pattern, the Data Topology is Hierarchical. Exit
program.
Step 10: If the components in the DF List follow a ‘hub-
and-spoke’ pattern, the Data Topology is Star. Exit
program.
Step 11: If the first component in the DF List is
different from the last, the Data Topology is Acyclic.
Exit program.
Step 12: The Data Topology is Arbitrary

With the algorithm mentioned above, the data
topology of most configurations can be determined. The
main distinction between the approaches for
determining the control topology and the data topology
lies in the fact that for the control topology we need to
identify all the asset components that generate the input
events for a service as well as all the asset components
that consume the output events of a service, and include
them in the configuration. This is because if any event
is not satisfied or consumed, the overall system may not
perform to specifications. This is not true for the
determination of the Data topology. For the Data
Topology, we need to ensure that we include only the
asset components that generate or produce the data that
is needed by the service in the Architect’s scenario.
Without all the data elements, the desired service may
not function satisfactorily. However it is not necessary
to ensure that the output data generated by the service in
the usage scenario gets consumed, unlike the output
events for the control topology.
Continuity: Continuity is a measure of the flow of data
through the system. While in a continuous flow system,
new data is available at all times, in a sporadic flow
system, new data is generated at specific intervals. The
further categorization of data continuity into high
volume and low volume will not be used for our
discrimination, as the high and low categorization seems
too subjective and does not lend themselves to any
objective measurement.

We propose the following algorithm for
determining whether data continuity is continuous or
sporadic. For all the services in the scenario (except the
first and last in the DF List), if the asset component
identified for supporting the scenario, requires a set of
input data for executing the service, and generates

output data as a result of executing the service, we call
the system of components continuous, else we call the
system sporadic. If there is generation and consumption
of data at every service it is likely that the data
continuity is continuous. Note that the first and last
services in the DF List are not considered, because the
first service not requiring any input data and the last
service not generating any output data is a plausible
deviation from the necessity of requiring input data and
generating output data for the services in the scenario.
Mode: Data Mode refers to how the data is made
available throughout the system. The identified modes
include passed (for an object system), shared (for all
data shared systems), copy-out-copy-in, broadcast, and
multicast. Given our level of reasoning for the
components, we do not use mode for our style
distinction.
Binding Time: Analogous to the binding time for
Control Factors, binding time for data issues is the
discrimination on the time when the identity of a partner
in a transfer of control is identified. Just as the binding
time for control issues, binding time for control issues is
not used for our classification.

3.4. Control/Data Interactions

Control/Data Interaction describes the relationship
between the data and control factors.
Shape: The Shape for Control & Data interaction is an
indicator of whether the control and data topologies are
similar. If they are, the topologies are said to be
Isomorphic. A number of architectural styles have their
data and control topologies isomorphic, examples
include Batch Sequential, Data Flow Network and Call
Based Client Server. Some styles are not isomorphic
e.g. Blackboard and the Main Program-Subroutine.

If the control and data topologies identified using
the algorithms developed earlier are the same, we
determine the shape of the control and data interactions
to be isomorphic.
Directionality: Directionality is an indicator of whether
the direction of flow is the same for the control and data
for isomorphic configurations, or not. Directionality is
irrelevant for non-isomorphic data and control
topologies. We do not consider Directionality for our
classification.

This concludes our feature category analysis. With
the approach defined for determining each of the feature
category attributes for a configuration of components,
we would be able to perform analysis for a
configuration’s compliance to an architectural style.

4. Architectural Style Determination

Based on the feature category attributes determined
in the previous section, we can predict the emergent
architectural styles. We represent the value of the
different feature category attributes and the
corresponding architectural styles in a table format. This
table was developed by Shaw and Clements as part of
their approach for classifying architectural styles.

With the knowledge captured in Table 1 we
determine the architectural style that the set of
components identified from the usage scenario
conforms to. The prediction is based on the values of
the feature category attributes determined using the
approaches developed in Section 3.

The process for predicting the emergent
architectural style is outlined below.
Step 1: The System Architect specifies a use
case/scenario for which a software configuration needs
to be built from the services specified in the
Architectural Functionality Specs.
Step 2: For each service in the use case, identify the best
fit candidate from the component repository i.e. the
component with the highest value of the Service
Compliance Metric [4] and build the Base Component
List.
Step 3: For each component in the Base Component
List, make note of its Component Type Attribute. If all
the components are not of the same type, we consider
the component type of the set of components to be the
one that is predominant.
Step 4: For each component in the Base Component
List, make note of the Connector Type attribute in the
Data Transport Spec. If all the connectors are not of the
same type, we consider the connector type of the
configuration to be the one that is predominant.
Step 5: Determine the Control Topology of the set of
components by developing the Control Flow List (refer
Section 3.2).
Step 6: Determine the Control Synchronicity of the
configuration of the components (refer Section 3.2).
Step 7: Determine the Data Topology of the
configuration by developing the Data Flow List (refer
Section 3.3).
Step 8: Determine the Data Continuity of the
configuration (refer Section 3.3).
Step 9: Determine whether the Control and Data
topologies are isomorphic (refer Section 3.4).
Step 10: From the feature category attributes derived
from Step 3 to Step 9, we reference Table 1 to
determine the architectural style of the set of
components. If no clear conclusion can be drawn, we
try to determine the most probable architectural style by

considering the maximum number of feature category
attributes that can be used in making a prediction that is
consistent with the classification shown in Table 1.

The Conformance Confidence Index (CCI)
described below provides an objective measure of how
close a configuration of components corresponds to a
given style. Higher the value of CCI, the more
compliant is the configuration to the corresponding
architectural style. CCI for a given style, s, is calculated
as in below

∑
∈

=
)(|)(|

*
sFCAfc

fcfc

sFCA
VwCCI

Where
 FCA(s): The set of feature category attributes

relevant for a given style s. In our case FCA(s) =
[Component, Connector, Control Topology,
Synchronicity, Data Topology, Data Continuity,
Isomorphic Shapes] for all styles per the Shaw
Clements classification. The values for the different
elements in the set FCA(s) are determined by
performing the feature category analysis outlined in
Section 3.

 wfc = the weight of the feature category attribute in
the determination of the style. This factor can be
ignored if empirical analysis shows that all the
feature category attributes have equal weighting. If
they are found relevant (as likely they will be), the
values have to be determined individually for each
style. We have not determined the value of wfc for
the different styles at this time.

 Vfc = 1 if our approach reveals that the
corresponding feature category for a configuration
matches the Shaw Clements classification for the
given style, 0 otherwise.
In all likelihood it is the value of CCI that will

guide Architects to the emergent architectural style as a
perfect match of all feature category attributes is quite
improbable for real-life systems.

It is worth noting that identifying the architectural
style or determining the degree of compliance to a given
style is not the goal in itself. The real value of
predicting the architectural style lies in the fact that
using this information we will be able to predict the
quality attributes of the emergent system.

If it is determined from our architectural level
analysis that the emerging style conforms to a pipe and
filter system, the Architect would be able to deduce
certain characteristics that the system would likely
demonstrate upon deployment. In such a case, it can be
inferred that there would be no complex interactions to
manage and that system maintenance would be easy.
Further, if required, the system can be made parallel or
distributed to enhance its performance. On the

downside, the system would likely not be able to
support a highly interactive use case and overall
performance may be poor because of the batch model of
execution.

Similarly if the emerging style is determined to be
the Layered architectural style, the Architect would be

able to infer that the system in general would be
modifiable and portable. A high compliance index, CCI,
with a value less than one, will imply that some layer
bridging is likely happening, which may affect the goals
of modifiability and portability.

Table 1: Architectural Style Classification

5. Validation of Approach

We validated our proposal using a real life system
that was available to us. The system is involved in a
complex manufacturing process and essentially
transforms data originating from the process, computes
a number of indicators, generates reports and provides
an interface for the end user to view the computed
results and perform ad-hoc analysis on the data.

The approach we took for the case study was to
have the key architect of the project specify the
components of the system using our specification model
and then follow our algorithms for determining the
architectural style of the system. No inputs were
provided to the subject except for clarifications on the
model and the algorithm details.

The system was partitioned into 6 architectural
elements with 35 services and 6 asset components. Each
of the six asset components mapped uniquely to the six
architectural components. This was primarily because
we were reengineering the architecture from the
deployed system and the architect’s thought process
was influenced by the system that he was intimately
familiar with. The services were specified at a
significant level of detail though some clarifications had
to be provided with respect to specification of events.
The Behavioral Specification however was not filled
out to any significant degree of detail. Also the
architectural non-functional specifications captured
information only to the extent that was available in the
project documents.

The architect was first asked to define a usage
scenario for performing the architectural style analysis.

Constituent Parts Control Issues Data Issues Control/Da
ta

Interaction

Style

Components Connectors Topology Synchronicity Topology Continuity Isomorphic
Shapes

Data Flow Architectural Styles
Batch Sequential Stand-alone

programs
Batch data Linear Sequential Linear Sporadic Yes

Data-Flow
Network

Transducers Data Stream Arbitrary Asynchronous Arbitrary Continuous Yes

Pipes and Filter Transducers Data Stream Linear Asynchronous Linear Continuous Yes
Call and Return
Main Program/
Subroutines

Procedure Procedure
Calls

Hierarchical Sequential Arbitrary Sporadic No

Abstract Data
Types

Managers Static Calls Arbitrary Sequential Arbitrary Sporadic Yes

Objects Managers Dynamic
Calls

Arbitrary Sequential Arbitrary Sporadic Yes

Call based Client
Server

Programs Calls or RPC Star Synchronous Star Sporadic Yes

Layered - - Hierarchical Any Hierarchical Sporadic Often
Independent Components
Event Systems Processes Signals Arbitrary Asynchronous Arbitrary Sporadic Yes
Communicating
Processes

Processes Message
Protocols

Arbitrary Any but
Sequential

Arbitrary Sporadic Yes

Data Centered
Repository Memory,

Computations
Queries Star Asynchronous Star Sporadic Yes

Blackboard Memory,
Components

Direct
Access

Star Asynchronous Star Sporadic No

He picked the most common use case for the system.
With the software system specified using our abstract
model and the key use case identified the study then got
into the feature category analysis. We had to make sure
that the use case was defined in terms of the services
that were already in the specified architecture. The
architect initially had a lot of questions on the
classification of the components and connectors as it
wasn’t obvious what the appropriate component type
and connector types should be. After some clarifications
were provided the architect classified four of the six
components as Transducers, one as a Manager and the
sixth as a Filter. For the classification of the connectors,
the architect was not sure whether to classify them as
Data Stream or an ASCII stream and eventually decided
on the ASCII stream for all the 5 connectors.
Development of the Control Flow List was in fact quite
straightforward as the event relationships were quite
simple. The Control topology was determined to be
Linear. Determining the Synchronicity was not as
straightforward though – by the algorithm the
Synchronicity came out to be Asynchronous though the
architect grappled with the true implication of
synchronicity and it seemed that an event based
approach for determining synchronicity is counter-
intuitive. The Data Topology turned out to be Linear
just like the Control Topology and the Data Continuity
classification was Continuous. When we matched up the
findings against Table 1, the architectural style was
determined to be the Pipe and Filter style. This result
corroborated the architect’s perception of the system.

There were several interesting lessons from this
case study. Even though the final results were
satisfactory, it was obvious that for a more rigorous
assessment of our proposal, the same individual/team
should not be involved in the definition of the
architecture and the specification of the asset
components and architectural style analysis. Further it
became evident that more clarity needs to be provided
for facilitating the accurate classification of components
and connectors. It seems that in all likelihood, for
complex systems, style determination would never fit
exactly into the style classifications proposed by Shaw
and Clements and that our Conformance Confidence
Index (CCI) would play an important role in providing
the System Architect with insights into the degree of
compliance with a given style.

One of the drawbacks of the validation done so far
is - we have not exercised our approach using a system
that is yet to be built. The main reason for that has been
the lack of opportunity for this research team to be
involved in a component based development project
during its inception phase.

7. Related Work

In 1989 Perry and Wolf ([5], published in 1992 [1])
introduced the notion of software architectural styles
and demonstrated the concept using the “multi phased
architectural style” of a compiler. Garlan and Shaw [6]
categorized several architectural abstractions and
demonstrated their applicability in real-life systems.
Then in 1997, Shaw and Clements [3] proposed a
feature based classification of architectural styles. These
efforts firmly established the importance of architecture
styles in software architecture. Along the way, different
research efforts explored formal approaches for
rigorously defining styles with the intent of enabling
systematic analysis. Abowd et al. [2] formalized style
descriptions and proposed a framework for their
codification using Z. In 1998 le Metayer [7] used graph
grammar for describing architectural styles and recently
Bernardo et al. [8] used PI-calculus for the same
purpose. Communication topologies in the context of
styles have been explored by the Alfa framework of
Mehta and Medvidovic [9]. Alfa enables the
construction of style based software architectures from
architectural primitives defined along five orthogonal
characteristics of Data, Structure, Interaction, Behavior
and Topology.

Our work is essentially based on the style
classification proposed by Shaw and Clements, with our
contribution being the demonstration of the applicability
of such classifications in predicting emergent styles
during component based software construction. It is
also possible to validate style conformance with our
approach.

7. Conclusion

In this paper we have developed an approach for
reasoning about architectural styles using component
specification and a use case scenario which the System
Architect’s desires to satisfy by using a configuration of
components. We have also shared the findings from the
case study we conducted.

With our style prediction proposal, not only will a
System Architect have the ability to evaluate several
deployment options but will also have the ability to get
a sense of the quality attributes of the final system
before actually building it. This could prove to be an
extremely valuable way of assessing the final system
behavior a-priori.

Given that we can determine the emerging stylistic
characteristics of a configuration (whether global or
“regional”) and determine how close it comes to
satisfying a particular architectural style, we can also

use our approach to determine the conformance of that
configuration to particular style. This will be
particularly useful during the evolution of a system to
detect either architectural drift, or even architectural
erosion [1, 5, and 10].

We envision this research to evolve, resulting in
tools that would make the System Architect’s job easier
and more efficient. We have not come across any
research so far that has attempted to bridge the gap
between Software Architecture and Component Based
Software Engineering, and in that sense we consider our
work to be novel.

8. References

[1] Perry, D. E., Wolf, A. L., “Foundations for the Study of

Software Architectures”, ACM Software Engineering
Notes, 17, 4, October 1992, 40-52

[2] Abowd, G., Allen, R., Garlan, G., “Using Style to
Understand Descriptions of Software Architecture”,
Proceedings of the 1st ACM SIGSOFT Symposium on
Foundations of Software Engineering, 1993, 9-20

[3] Shaw, M., Clements, P., “A Field Guide to Boxology:
Preliminary Classification of Architectural Styles for
Software Systems”, Proceedings of the 21st International
Computer Software and Applications Conference, 1997

[4] Bhattacharya, S., Perry, D. E., “Contextual Reusability
Metrics for Event-Based Architectures”, Proceedings of
the 4th International Symposium on Experimental
Software Engineering (ISESE), Australia, November
2005

[5] Perry, D. E., Wolf, A. L., “Software Architecture”,
http://www.ece.utexas.edu/~perry/work/papers/swa89.pd
f, August1989

[6] Mary, S., Garlan, D.,“Software Architecture: Perspectives
on an Emerging Discipline”, Prentice Hall, 1996

[7] le Metayer, D., “Describing Architectural Styles using
Graph Grammars”, IEEE Transactions of Software
Engineering, 24, 1998, 521-533

[8] Bernardo, M., Ciancarini, P., Donatiello, L., “Architecting
Families of Software Systems with Process Algebra”,
ACM Transactions of Software Engineering and
Methodology, 11, 2002, 386-426.

[9] Mehta, N. R., Medvidovic, N., “Composing Architectural
Styles from Architectural Primitives”, Proceedings of the
Joint 10th European Software Engineering Conference
and the 11th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Helsinki, Finland,
September 2003

[10] Bhattacharya, S., Perry, D. E., “Architecture Assessment
Model for System Evolution”, Proceedings of the 6th
Working IEEE/IFIP Conference on Software
Architecture (WICSA), Mumbai, India, January 2007

[11] Gamma E., Helm R., Johnson R., Vlissides J., “Design
Patterns Elements of Reusable Object-Oriented
Software”, Addison-Wesley, 2002

[12] Perry, D. E., “Generic Descriptions for Product Line
Architectures”, ARES II Product Line Architecture

Workshop, Los Palmos, Gran Canaria, Spain, February
1998

[13] Habermann, A. N., Perry, D. E., “Well Formed System
Composition”, Carnegie-Mellon University, Technical
Report CMU-CS-80-117, March 1980

[14] Perry, D. E., “The Inscape Environment: A Practical
Approach to Specifications in Large-Scale Software
Development. A Position Paper”, January 1990

[15] Bhattacharya, S. “Specification and Evaluation of
Technology Components to Enhance Reuse”, Masters
Thesis, The University of Texas at Austin, July 2000

[16] Bhattacharya, S., Perry, D. E., “Predicting Architectural
Styles from Component Specifications - Extended
Abstract”, Proceedings of the 5th IEEE/IFIP Working
Conference on Software Architecture, Pittsburgh, PA,
November 2005

[17] Hirsch, D., Inverardi, P., Montanari, U., “Graph
Grammars and Constraint Solving for Software
Architecture Styles”, Proceedings of the 3rd International
Software Architecture Workshop (ISAW3), 69-72,
November 1998

[18] Wermelinger, M., “Towards a Chemical Model for
Software Architecture Reconfiguration”, IEEE
Proceedings - Software, 145(5):130-136, October 1998

[19] Medvidovic, N., Egyed, A., Grünbacher, P., “Stemming
Architectural Erosion by Coupling Architectural
Discovery and Recovery”, Proceedings of the 2nd
Second International Workshop from Software
Requirements to Architectures (STRAW), co-located
with ICSE 2003, Portland, Oregon, May 2003

[20] Yakimovich, D., Bieman, J. M., Basili, V. R., “Software
Architecture Classification for Estimating the Cost of
COTS Integration”, ICSE 1999, 296-302

http://www.ece.utexas.edu/%7Eperry/work/papers/swa89.pdf
http://www.ece.utexas.edu/%7Eperry/work/papers/swa89.pdf

	1. Introduction
	2. Background
	3. Feature Category Analysis
	3.1. Constituent Elements
	3.2. Control Factors
	3.3. Data Factors
	3.4. Control/Data Interactions

	4. Architectural Style Determination
	5. Validation of Approach
	7. Related Work
	7. Conclusion
	8. References

