
A Software Architecture for Cross-Layer Wireless Network
Adaptations

Soon-Hyeok Choi, Dewayne E. Perry and Scott M. Nettles
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712

{schoi, perry, nettles}@ece.utexas.edu

ABSTRACT
Conventional data networks are based on a layered architec-
ture. The introduction of wireless networks has created a
need to violate this layering discipline to create cross-layer
designs or adaptations. Ad-hoc implementations of such
cross-layer adaptations reduce the level of modularity and
abstraction in the network's implementation, giving rise to a
signi�cant increase in complexity. We present a taxonomy of
possible cross-layer adaptations that is then used to derive
an architecture for their implementation that signi�cantly
preserves the networks structure. We present implementa-
tion results that validate this architecture in the context of
a real wireless network implementation.

Keywords
Software architecture, Cross-layer wireless network adapta-
tions, Taxonomy

1. INTRODUCTION
The IP-based Internetwork has had an impact that its inven-
tors could hardly have imagined. An important underlying
key to the Internet's success is that its design and imple-
mentation is based �rmly on a well established architecture,
commonly referred to as the �hourglass model� [8]. The
hourglass model de�nes a set of layers, each of which im-
plements some aspect of the network, while leaving other
aspects to higher levels. This architecture is a fundamen-
tal software engineering strategy to manage complexity in
the design and implementation of a very large distributed
hardware and software artifact.
Although, strictly speaking, the Internet is based on the

hourglass model, for our purposes it is more useful to con-
sider another layering model for networks, the OSI seven
layer model [12], which for the four layers on which we will
focus somewhat re�nes the hourglass model. Fig. 1 shows
the layers and how they communicate in a conventional net-
work implementation. The lowest layer is the physical layer,
or the PHY. The PHY is responsible for actually sending

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Transport

MAC

PHY

Network

Other layers

Transport

MAC

PHY

Network

Other layers

Wired link

Figure 1: Conventional layered architecture

data across a physical link, such as a wire or �ber, and
must deal with both the analog physical world and the dig-
ital world of data communications. The next layer is the
link/media access control layer, or the MAC. The MAC is
responsible for managing communication a single hop in the
network, including coordinating which sender is allowed to
use a shared medium like the radio frequency (RF) spec-
trum. The next layer is the Network layer, which is re-
sponsible for connecting individual links into a multihop
network that can deliver data from a sender to a receiver
that are not directly connected. For our purposes the �nal
layer is the Transport layer. The Transport layer is respon-
sible for coordinating end-to-end communication along the
connections created by the Network layer. In particular,
reliable transport protocols like the Transport Control Pro-
tocol (TCP) create reliable communication paths using the
inherently unreliable connections provided by Network layer
protocols such as the Internet Protocol (IP). The key point
is that each layer implements some key functionality with a
well de�ned interface and leaves other functionality for the
higher layers to implement. Taken together, we refer to the
layers that make up the network as the stack. Fig. 1 shows
that in the conventional architecture each layer of the stack
only communicates with the layer above and below it.
For networks made up of wired links, the networks lay-

ered architecture is remarkably successful and the key as-
sumptions and abstraction boundaries work well. However,
the introduction of wireless links based on RF communica-
tion has revealed that the abstractions are not as cleanly
de�ned as one might expect or hope and that higher layers
may make unwarranted assumptions about lower ones. The
classic example is when TCP is run over a wireless link [34,
1, 25]. Because wireless links are subject to transmission er-
rors, sometimes they drop a packet. Although TCP has no
problem retransmitting the lost packet, it also interprets the
drop as a sign that some node in the network is overloaded

Wireless link

Transport

MAC

PHY

Network

Other layers

Transport

MAC

PHY

Network

Other layers

Figure 2: Cross-layer communication paths

and dropped the packet to reduce its load. TCP reacts by
slowing the rate at which it sends data. This is an incor-
rect choice when the drop is due to a transmission error and
results from an invalid assumption that TCP makes about
the reliability of the PHY, a layer that resides several lev-
els down the stack. This is just one example where there
needs to be enhanced communication across the layers and
of late the area of �cross-layer design� has become a very
active one [13].
In general wireless �links� di�er from wired ones in many

ways. For example, they are lossy and their bandwidth and
latency may vary with time. In fact, if the power level or
transmission rate is changed, the set of nodes that are di-
rectly connected �neighbors� may even change. This leads to
possible interactions between nonadjacent layers. For exam-
ple, by changing power, a PHY property, the network layer
might cause di�erent routes to be discovered and used. Even
adjacent layers may need to communicate in ways not pos-
sible in the current architecture. Later we will present an
example where the MAC must obtain information from the
PHY that is not part of normal packet processing. Fig. 2
shows just some of the ways that information may need to
cross between layers. In fact decision making processes at
any layer may need information from any other layer or even
a set of other layers. As further shown in Fig. 2, informa-
tion might also be needed from other layers on other nodes,
while the current architecture only allows communication
between peer layers. Thus, in general, cross-layer designs
and implementations (or as we will refer to them adapta-
tions) may need almost arbitrary violation of the basic lay-
ering structure. Our goal is to develop an architecture that
can accommodate this without destroying the current lay-
ered architecture with its advantages of modularity and ro-
bustness. Note that although our examples and research
prototype focus on interaction between the MAC and PHY,
our architecture accommodates other interactions, such as
the Transport layer/MAC layer interactions needed to ad-
dress the TCP over wireless problem.
Unfortunately, most of the work on cross-layer design has

proceeded in an undisciplined way and has disregarded the
design and implementation advantages of the layered net-
work architecture [30, 19]. The result are systems that are
basically spaghetti code with limited structure. Thus far
there has been no general consideration of how to construct
cross-layer adaptations in a systematic and modular man-
ner. Our goal is to remedy this by providing a framework
for building cross-layer protocols that maintains to a signif-
icant degree the advantages of modularity and abstraction
found in the layered design. As such our focus in this paper

MAC

PHY

C
T

SD
A

T
A

+
da

ta
 r

at
eInform of

data-rate by
piggybacking

(Calculates data rate)

Obtain channel
status by
direct call

Si
gn

al
(D

A
T

A
) Signal

(C
T

S) 0

1

2

3

4

Figure 3: Cross-layer rate control

is not on any particular cross-layer adaptation (except as
an example), but rather on the software engineering issues
that arise from the need to violate layering in general. Our
strategy for achieving this is to �rst create a taxonomy that
allows us to describe the design space of possible cross-layer
adaptations. We then use this taxonomy as a framework
to de�ne a conceptual software architecture that allows us
to implement adaptations within this space in a systematic
way that preserves modularity. This architecture further
motivates a concrete architecture that allows us to validate
our concepts in a working wireless network prototype.
We begin in Section 2 with several example adaptations,

which will be used throughout the rest of the paper. Sec-
tion 3 presents our taxonomy. Section 4 illustrates our ar-
chitecture and Section 5 contains our validation results. We
present some insight into the validity of our framework in
Section 6 and discuss related work in Section 7. We conclude
in Section 8.

2. MOTIVATING EXAMPLES
We developed and validated our taxonomy and architecture
by considering a wide variety of example cross-layer adap-
tations [6]. Here we motivate our discussion using two of
these, cross-layer rate control [28] and cross-layer protocol
recon�guration.
For rate control the idea is simple. The rate at which

data can be sent depends on how good the RF connection
(or channel) is between the sender and receiver. Ideally one
sends at the highest rate possible, but the quality of the
channel may change from packet to packet. One feasible so-
lution arises because it is possible to measure the quality of
the channel just before the data is sent. This is because in
MACs such as the distributed coordination function (DCF)
mode of IEEE 802.11 [16], prior to data transmission there
is an exchange of control messages between the sender and
receiver to coordinate channel access. The sender �rst sends
a request-to-send (RTS) to the receiver, which, if it is ac-
ceptable to send, replies with a clear-to-send (CTS). The
sender's PHY receives the CTS and as a side e�ect can de-
termine the quality of the channel from the receiver to the
sender. The senders MAC can access this information and
use it to set the transmission rate of the immediately fol-
lowing data transmission. The need for cross layering arises
because only the PHY can determine the channel state, but
only the MAC knows which transmissions are control pack-
ets (and thus sent at a �xed low rate) and which are data
(and thus candidates for sending at a higher rate).
Fig. 3 shows the process in detail. In step 0, the PHY

receives some data and decodes it estimating the channel

Configuration
Manager

PHY
Inform of a new
communication standard

Set
configurations

(Find proper
configuration)

1

2 3

Signal

0

MAC

Transport

Network

Figure 4: Cross-layer protocol recon�guration

quality as a side e�ect. In step 1, if the data was a CTS,
the MAC makes a call into the PHY to get the channel
information. In step 2, the MAC calculates the correct rate.
In step 3, the MAC communicates the correct rate to the
PHY by actually attaching the rate to the data packet, a
process we refer to as piggybacking. Finally, in step 4, the
PHY uses the rate to send the packet in the proper manner.
We also consider an additional example [11] that is a slight

re�nement of the one above. In the case that the channel
quality from the sender to the receiver is not the same as in
the opposite direction, we can use the RTS to measure the
channel quality. In this case, the MAC on the receiver must
read the channel quality from the PHY and then piggyback
that information on the CTS, which eventually results in
the MAC on the sender obtaining the information. Thus
this case require internode communication.
The second main example we consider is cross-layer proto-

col recon�guration, which allows a node to switch from using
one wireless protocol to another. This cross-layer adapta-
tion has a di�erent processing style from rate control. Sup-
pose that we want to allow a mobile device to move from an
IEEE 802.11 wireless network to a Bluetooth network. One
approach is autonomous recon�guration of the protocol lay-
ers by monitoring the wireless communication environment.
Essentially the node listens for other nodes using di�erent
protocols and recon�gures itself to use the new protocols as
needed. Such recon�gurations are not triggered by or co-
ordinated with packet reception or transmission, but rather
occur when a node detects that other nodes in its vicinity
are using the di�erent protocol.
Fig. 4 shows the process in detail. The PHY is able to hear

all the signals in the wireless environment and thus detects
that the alternative communication standard is in use. In
this multi-standard environment, the base requirement for
the PHY itself is the ability to decode the various waveforms
de�ned by each standard. In step 1, When the PHY de-
tects a new standard, it informs the recon�guration process
about the change. This noti�cation serves as the trigger for
recon�gurations. In step 2, the adaptation process �nds the
proper con�gurations of protocol layers that meet the new
standard and, in step 3, it changes the con�guration of the
stack. Notice that the actual recon�guration is coordinated
outside of the protocol processing modules. Since the adap-
tation process requires global information about the protocol
layers, using a global manager makes it easy to manage all
the con�guration parameters for all layers. Further, since
the manager is not part of the protocol stack, it can change
any layer and is not a�ected by such changes.
Another example, which is worth mentioning brie�y, is

the cross-layer extensions for the local agile routing proto-
col [29]. In this case, nodes monitor the channel condition
and exchange information between themselves to assist in

Cross-Layer Adaptation

Information Delivery Method Adaptation Process

Status

Control

Out-of-band Synchronous

Role Path Time

Intra node

Range

Inside of
protocol processor

Location

In band Inter node Asynchronous
Outside of

protocol processor

Figure 5: Our taxonomy of cross-layer adaptation

creating advantageous routes. For our purpose, the key as-
pect of this protocol is that it exchanges information be-
tween nodes without regard to whether the nodes are car-
rying data tra�c or not.

3. TAXONOMY
We use cross-layer rate control and protocol recon�gura-
tion to motivate the development of our taxonomy. Broadly
speaking, the goal of developing this taxonomy is to char-
acterize the design space of all reasonable cross-layer adap-
tations. As importantly, the taxonomy also de�nes a vo-
cabulary that we can use to describe cross-layer adaptations
and their implementation in our architecture. Finally, the
taxonomy serves to guide the creation of our architecture
itself.
Considering rate control, we see that there are three pri-

mary constituents involved [27]. First, at its heart there is
some process that actually e�ects the cross-layer adaptation,
in this case, the process that decides the rate given a chan-
nel condition. Second, some information is communicated
across layers, in this case, the channel condition and the rate.
Third, there are the delivery mechanisms that are used to
communicate the information to and from the process, in
this case, a direct call to gather the channel state and pig-
gybacking the rate on the data packet. Fig. 5 shows our
complete taxonomy, with these three basic categories, Infor-
mation, Delivery Method, and Adaptation Process, making
up the top-level.
Using our rate control example, we can partially re�ne

each category. For information, there is one re�nement
based on the role of the information. The two subcate-
gories are Status and Control, the roles of which are ob-
vious. For Delivery Mechanism, this example illustrates a
distinction based on the path the information takes. Out-of-
band information, such as the channel status, takes a path
that is di�erent from the actual packet data, in this case
a procedure call from the MAC to the PHY. In-band data,
such as the rate, takes the same path as the packet data
and can in general be piggybacked on the packet, as it is in
this case. Finally, we see two attributes of the Adaptation
Process. The �rst is based on the time that the adaptation
is performed. This example illustrates just one possibility
in which the adaptation is Synchronous. This means that
the adaptation is synchronized with the reception or trans-
mission of a packet. In our example, the rate calculation is
triggered by receiving the CTS and must take place before
transmitting the actual data. The second attribute is based
on the location of the adaptation process. Again, this exam-
ple only illustrates one possibility in which the adaptation
is actually part of the MAC implementation itself. In gen-

eral, we classify this adaptation as being Inside the protocol
processor.
The internode version of rate control gives rise to an ad-

ditional distinction for the Delivery Method based on range.
For the basic rate control protocol, the range is Intranode
and for the internode version it is Internode. These dis-
tinctions are important because any mechanism that com-
municates information between nodes over the RF link is
inherently more expensive and failure prone than one that
does not. For Intranode delivery, the distinction of In-band
and Out-of-band is obvious as discussed above. But this
classi�cation is also applicable for Internode delivery. When
the Internode version piggybacks the channel condition on
the CTS, this is In-band information that is piggybacked on
an `existing' packet that is already being delivered to an-
other node. In contrast, in some cases, we might create a
new packet to deliver Out-of-band information using an ad-
ditional delivery path dedicated to cross-layer information.
The protocol recon�guration example allows us to com-

plete our taxonomy by further re�ning the Adaptation Process.
As a complement to Synchronous adaptations, the recon�g-
uration process is an Asynchronous adaptation. This re-
con�guration process is not coordinated with packet trans-
mission or reception, but rather is triggered asynchronously
when the PHY detects a new standard being used in its
vicinity. Further, while rate control needs to �nish its adap-
tation before the data transmission, the recon�guration process
can achieve its goal even if the actual time of adaptation is
somewhat delayed after detection. Another signi�cant re-
�nement is that the recon�guration process occurs Outside
the protocol processor. Such adaptations are not part of
the packet processing �ow and thus might occur when the
process needs to coordinate between a number of protocol
layers, as might be needed in the control of quality of service
or energy consumption.

4. AN ARCHITECTURE FOR IMPLEMENT-
ING CROSS-LAYER ADAPTATIONS

Developing the taxonomy allowed us to describe the pos-
sible cross-layer adaptations succinctly. Our goal in devel-
oping an architecture is fundamentally to provide a set of
mechanisms that can be used to implement a wide variety
of cross-layer adaptations. In the sense of [18], our main ar-
chitecture is a conceptual one, which shows in general a set
of components and their relationships in a system at a high-
level abstraction. Thus our conceptual architecture helps us
to understand how we can implement the desired adapta-
tion processes using our framework and in practice serves
as a reference model from which a variety of concrete archi-
tectures can be derived. This concrete architecture shows
more detailed implementation issues that arise when we im-
plement our framework on a speci�c wireless system. Thus,
in the sense of [26], our architecture is a generic architecture,
which can describe a range of cross-layer architectures.
We begin by presenting a series of high level goals and

requirements for the architecture [7]. We then present some
key architectural decisions. We then use the rate control and
protocol recon�guration examples to �esh out the details of
the architecture. Finally we motivate a few aspects of the
architecture that were not covered by the examples.
The most important goal of our architecture is to pro-

vide a set of mechanisms that support the implementation

of all reasonable cross-layer adaptations described by our
taxonomy. There are a number of secondary goals, which
are fundamentally motivated by a desire to maintain the
advantages of the existing layered architecture to the extent
possible. The �rst goal is to preserve the modularity of exist-
ing protocol modules to the greatest extent possible. This is
key, because otherwise we would be free to simply implement
any cross-layer adaptation in an ad-hoc manner. The next
goal is to allow cross-layer adaptations to be implemented
in as �exible and extensible a manner as possible as well as
to facilitate implementing multiple adaptations in a single
system. Finally, we want to allow our implementations to
be portable to a variety of protocol implementations. For
example, ideally if we implement rate adaptation for one
particular MAC, it would be easy to move this implementa-
tion to some other MAC implementation as long as it have
the same underlaying structure.

4.1 Key Architectural Decisions
Fig. 6 shows our taxonomy after we have applied two key ar-
chitectural decisions. The �rst decision is simple. Although
functionally di�erent, the implementation of cross-layer in-
formation does not vary based on whether the data is used
as status or control. Thus we can merge these two categories
for the purpose of the architecture.
The other change, the elimination of the �Inside the proto-

col processor� location for the Adaptation Process requires
more discussion. The motivation is simple, if we imple-
ment an adaptation as part of a protocol module, we will
by necessity make changes that compromise the modularity
of our system. Furthermore because these changes will be
intertwined with the implementation of the base protocol,
�exibility, extensibility, and portability will also be compro-
mised. Thus the key challenge in creating our architecture
becomes a question of whether we can achieve our goal of
comprehensive cross-layer adaptation support, without al-
lowing substantive changes to the protocol modules them-
selves.

4.2 Example Driven Architecture Development
Fig. 7 shows the progression of high level stages that are
required to map our rate control example to our proposed
architecture. We consider each stage in turn, explaining the
architectural features required.
The �rst stage (Fig. 7(a)) shows the mechanisms needed

to support a Synchronous adaptation process outside of the
protocol module. Note that the rate control adaptation has
been placed in a separate cross-layer module. A key require-
ment is that when the packet moves from the PHY to the
MAC, the adaptation process must be noti�ed if that packet
is a CTS. Thus we see that in step 0, we have added a MAC-
PHY interceptor module. This module is inserted between
the two existing layers and provides each with the same in-
terface and thus does not compromise our modularity goal.
In general, this interceptor is a kind of connector, but it will
be implemented as a �shim� layer in the stack and so we do
not group it with the other connectors discussed below. In
step 1, the interceptor has detected a CTS and noti�es the
Synchronous event handler that connects the protocol mod-
ule to the cross-layer module. Finally, in step 2 the event
handler noti�es the rate control process itself.
The second stage (Fig. 7(b)) shows the support needed

for Out-of-band delivery. In step 1, the rate control process

Cross-Layer Adaptation

Information Delivery Method Adaptation Process

Status
and

Control

Out-of-band Synchronous

Role Path Time

Intra node

Range Location

In band Inter node Asynchronous

Outside of
protocol processor

Figure 6: Re�nement of our taxonomy based on ar-
chitectural decisions

����
�������

	
� �

��� �������

Protocol ModuleCross-Layer Module

	
�

���

�������
� !"#$"%!&#

'(
)*
+,
-)
-.
/

01
2)
3
45
)6
72
,

Notify the CTS
is passing

Notify
synchronous
event

0

12

(a) Components for Synchronous process

����
�������

	
� �

��� �������

Protocol ModuleCross-Layer Module

	
�

���

�������
����� �!���

"#
$%
&'
($
()
*

+,
-$
.
/0
$1
2-
'

34
56
78
69
:;
<

=7
;;
>?
57
@

Length of
Data packet

Get Length and
Channel Status

A��B��C�D
EFGHIJK

A���D�����
EFGHIJK

Channel Status

1

2
Calculate
Data rate

3

(b) Components for Out-of-band delivery

����
�������

	
� �

��� �������

Protocol ModuleCross-Layer Module

	
�

���

�������
����� �!���

Set Data rate

"��#���$��%�&
�'�!���

(��#�������
�'�!���

Data rate

12

3

Notify
synchronous
event Notify

data packet
passing event

4

)*
+,
-.
/+
/0
1

23
4+
5
67
+8
94
.

:0
5;
/<
;=
7+
8

>/
++
4,
5/
.

(c) Reusing the components for the rest of
process

Figure 7: Architectural solutions for cross-layer rate
control

communicates to the Out-of-band connector that it needs
the length of the packet and the channel status. Notice
that unlike the case where the process is part of the MAC,
it needs to access MAC as well as PHY information. In
step 2, the connector communicates with the getLength and
GetChannel adaptors attached to the MAC and PHY. The
adaptation requires that we be able to query the proto-
col modules, by structuring these queries in terms of spe-
cial adaptors we are able to minimize (but not eliminate)
changes to the protocol modules. Finally, in step 3, the rate
control process calculates the new rate.
The �nal stage (Fig. 7(c)) shows how we use the existing

mechanisms to complete the rate control process. In step 1
and 2, the interceptor noti�es the rate control process that
the data packet is being sent. In step 3 and 4, the rate con-
trol process sets the rate in the PHY using the setDataRate
Adaptor.
To implement the protocol recon�guration process, we can

use most of the mechanisms introduced for rate control. In
our example, a global con�guration manager already per-
formed the recon�guration process outside of protocol mod-
ule. Further, the existing Out-of-band connector allows the
manager to read and update information inside protocol
modules such as the communication standard stored in the
PHY and the con�gurations of the protocol layers.
The only new requirement is triggering the recon�guration

process when the PHY detects a new communication stan-
dard, which is an Asynchronous adaptation process. One
solution is to allow the PHY to notify the manager of the
detected standard information, as described in our example.
The problem with this active noti�cation is however that
the PHY implementation needs to be changed to be aware
of the manager. This makes the PHY dependent on the
manager. To address this problem, we introduce an Asyn-
chronous event handler that periodically polls the standards
information stored in the PHY and triggers the manager
when it detects a change. Such a polling mechanism only
requires an additional Adaptor attached to the PHY and
thus maintains the modularity of the PHY. Although the
periodic polling may cause some bounded delay before de-
tecting changes, the Asynchronous adaptation process is a
process that can tolerate such delays according to the de�-
nition in our taxonomy and so this is not an issue.

4.3 Completing the Architecture
Fig. 8 shows all the details of our architecture. Most as-
pects of this diagram have already been presented, the main
re�nement is in the connectors presented and their relation
to whether the cross-layer processer is synchronous or asyn-
chronous. These all are typical software connectors [23].
Disregarding the event handler aspect for now, we see four
kinds of connectors, corresponding to the four delivery mech-
anisms in the taxonomy. The Intranode connectors are used
inside a single node to integrate existing protocol modules
with our architecture [10]. The In-band connector accesses
the data stored in a packet's internal structure when the
packet passes though an interceptor, while the Out-of-band
connector uses adaptors to access data in the protocol mod-
ules themselves. The Internode connectors require that any
information must be placed in a packet and sent from one
node to another. In the In-band case the information can
be piggybacked on the protocol packet. Thus this case is
shown intercepting the data in the packet delivery path. In

�����������
	��
�����

	����
��
��
�����

Inter node/In band

Protocol Module

������������

�����������

���
���

�����
�
���

Inter node/Out-of band

Intra node/In band

Asynchronous
event handler

Synchronous
event handler

	����
��
��
��������
���

�����
�
���

Cross-Layer Module

Intra node/Out-of band

Asynchronous
event handler

Synchronous
event handler

Figure 8: A conceptual architecture for cross-layer
adaptations in wireless networks

the Out-of-band case, the information must be formatted
into its own packet and sent independently. Thus this is
shown as a separate communication path. Returning to the
event handlers, we see that the asynchronous versus synchro-
nous nature of the processes is fundamentally captured by
the type of the event handler. Synchronous event handlers
are driven by the passage of packets through the intercep-
tors. However, Asynchronous events (and thus processes)
are triggered, when the event handler inside Intranode ver-
sion of Out-of-band connector detects a change of informa-
tion within a protocol processor or when the Internode ver-
sion of event handler receives a new information from coun-
terpart in another node.

4.4 Further Refinements
Thus far our architecture is a conceptual one, which de-
scribes at a high-level abstractions the key mechanisms that
are required to support a wide variety of cross-layer adapta-
tions. If we wish to actually implement an adaptation in a
loosely coupled way, our conceptual architecture can serve
as a concrete one as well, by simple re�nement of the frame-
work to conform to the implementation environment of a
target wireless system. One exemplary re�nement will be
shown in the next section.
However, in the interest of performance, we may wish to

use a concrete architecture that has less overhead. We might
merge the Interceptors into the layer above or below them.
For example, the MAC in our rate control example can be
changed so that, when the MAC receives a CTS, it actively
noti�es of the Synchronous event, thus reducing the amount
of packet handling caused by the Interceptor. Similarly, the
Asynchronous event handling may be merged into the pro-
tocol processing. The PHY in our protocol recon�guration
example can notify the event handler as soon as it detects
a change without periodic polling process. We might even
merge the cross-layer processing into a particular protocol
processor, thus eliminating a substantial amount of commu-
nication. Such implementation techniques might introduce
further changes in the protocol processing. Never-the-less,
we believe the existence of the conceptual model should al-
low us to make such optimizations in a systematic and dis-
ciplined manner.

5. VALIDATION
Initial validation of our taxonomy and architecture was done

by careful consideration and paper design of the examples
found in Section 2, as well as others. We are conducting a
more substantial validation using the basic strategy of im-
plementing our architectural framework and a number of
our examples in a realistic wireless network testbed. We ex-
pect this experience to allow us to re�ne our approach, in
particular with respect to what concrete architectures are
desirable.

5.1 Hydra
Our implementation has been done in the context of our
Hydra testbed [21]. Hydra is a prototype multihop wireless
network, which is designed to allow experimentation with
implementations of PHYs, MACs, and cross-layer adapta-
tions, using functional hardware and software, rather than
simulation.
Hydra uses an RF frontend, the universal software radio

peripheral (USRP) [4] from Ettus Research, which allows
experimentation with various frequency bands and which al-
lows a limited amount of signal processing to be done using
a �eld programmable gate array. The USRP connects to the
Hydra PHY over USB 2.0. The PHY is implemented using
the GNU Radio framework [3] and all signal processing is
done using the general purpose processor. Hydra's MAC in-
terfaces to the PHY using interprocess communication and
is implemented using the Click modular router infrastruc-
ture [24]. Click also provides network support and inter-
faces to the Linux TCP/IP stack allowing full end-to-end
application to application experiments. Both GNU Radio
and Click allow us to implement �exible network protocols.
Using the GNU Radio framework, we create a set of �sig-
nal processing blocks�, each of which implements a signal
processing algorithm. Then we can compose a PHY proto-
col by connecting these small blocks into a signal processing
�ow graph. Similarly, the Click modular router allows us to
create a set of �packet processing elements�, each of which
implements some task required for packet processing and to
compose a new protocol by connecting the elements. Thus
Hydra allows us to �exibly con�gure a protocol by chang-
ing the connection graph that is composed of a set of small
components.
The current Hydra implementation is similar to 802.11a [17].

It supports orthogonal frequency division multiplexing (OFDM)
at the physical layer, with support for multiple transmission
rates. The MAC is essentially the 802.11 DCF MAC brie�y
discussed in Section 2. Because both the MAC and PHY
are primarily implemented in C++, modi�cation of each is
straight forward. Hydra is currently operational. In addi-
tion to experiments on cross-layer adaptations, the major
next implementation step is to add support for multiple an-
tenna algorithms, principally multiple input multiple output
(MIMO).

5.2 A Concrete Architecture for Hydra
We re�ned our conceptual architecture to implement it

inside Hydra. The key challenge was that protocols in Hy-
dra are implemented using three di�erent protocol modules.
The MAC and Network layers are implemented using Click
while the PHY uses GNU Radio. Further the TCP/IP pro-
tocol stack implements the Transport layer. This meant that
the Interceptors and Adaptors needed to be implemented
di�erently to conform to each implementation environment.
To address this problem, we divided all of the connectors

into two levels, except the Internode version of the Out-of-
band connector that is not connected to the protocol mod-
ules. Each local connector is implemented conforming to im-
plementation environment provided by each protocol mod-
ule and thus easily manages the Interceptors and Adaptors
that are implemented using the same environment. Then
the local connectors communicate with global connectors
that provide cross-layer processors with event noti�cation
and data delivery. Thus this concrete architecture still al-
lows the cross-layer adaptations to be independent of the
existing protocol implementations.

5.3 Rate Adaptation
We have implemented both the Intranode and Internode ver-
sions of rate control, discussed in Section 2, using our fully
decoupled architecture. We have also implemented both ver-
sions of rate control in the ad-hoc manner that might be con-
sidered �conventional� to compare both the implementation
techniques.
Fig. 9 shows an experiment result using the Internode ver-

sion of rate control. (Note, this result was �rst presented in
our paper describing Hydra [21].) The X-axis is the packet
sequence number and the Y-axis on the left is for the re-
ceived signal to noise ratio (SNR), which was used to esti-
mate the channel condition. A higher SNR fundamentally
represents a better channel status and thus allows the rate
control process to select a higher data rate. Each packet is
plotted at the SNR threshold for the rate at which it was
transmitted. In this experiment, the transmit power (the
Y-axis on the right) was decreased and then increased in
steps to control the received SNR. We see that in general
when changes in power cause the received SNR to cross a
threshold, rate control process adapts the data rate of the
transmission as expected. We also see instances of packets
that are transmitted at higher or lower data rates than most
packets at the same power level. These show the rate control
process can adapt to short term �uctuations in the channel.
The conventional implementation required a set of changes

to the existing MAC and PHY implementations. To im-
plement both the Intranode and Internode version of rate
control processes:

1. A set of Click elements were created and modi�ed:
- to allow the MAC to obtain the channel status infor-
mation,
- to allow the MAC to perform rate adaptation, and
- to conform to the new CTS packet format that de-
livers the channel information from the receiver to the
transmitter.

2. A GNU Radio block was changed:
- to allow the MAC to access the channel status infor-
mation.

3. The interfaces between the MAC and PHY were changed:
- to allow cross-layer information piggybacked on pack-
ets to be marshalled and unmarshalled when they move
between the MAC and PHY.

The key problem was that such changes cause individual
protocol processors to become dependent on others. At one
point we changed the rate control in the MAC to use a
di�erent type of channel information, from an integer valued
received signal strength indication (RSSI) to a �oating point

valued SNR. This required that the interfaces between the
MAC and PHY and the signal processing block in the PHY
all needed to change to deal with the new type of channel
information.
We then implemented the rate control processes based

on our loosely coupled architecture. These implementations
were encouraging in that they did not introduce any signif-
icant changes into the existing protocol processors. After
implementation of the global and local connectors, to im-
plement both the Intranode and Internode version of rate
control processes:

1. A set of Click elements were created:
- to add the Interceptors into the MAC, and
- to attach an Adaptor that accesses data length infor-
mation.

2. A GNU Radio block was created:
- to attach an Adaptor that accesses channel status
information.

3. Rate control processor was created:
- to execute rate control.

Although a set of protocol processors were created and in-
serted into Click and GNU Radio to implement our architec-
tural components, these components did not introduce any
signi�cant changes in the existing protocol implementations.
An Interceptor noti�es the Synchronous event handler of the
passage of a CTS packet and transparently changes the for-
mat of the CTS packet. Further the Adaptors augmented
the interfaces of the MAC and the PHY without a�ecting
core functionality of the existing protocol processors. The
only change caused by the Adaptor was to expose some vari-
ables inside the protocol processors to allow the Adaptor to
access the information.
We implemented the Internode version of rate control by

extending the Intranode version. To extend the adapta-
tion process in a conventional implementation, we needed
to modify a few more packet processing elements in Click.
The problem was that the dependency between the Click
elements changed. However, the implementation based on
our architecture only required extension of the existing rate
control processor after inserting a few more Interceptors into
Click. This shows that our architecture allows rate control
to be independent of the infrastructure and to freely change
its operation without signi�cant impact on existing protocol
implementations.

5.4 Frequency Selection
To explore the issues in Asynchronous event handling and
Out-of-band delivery, we have implemented a cross-layer fre-
quency selection process, which is similar in operation to our
protocol recon�guration example. Our preliminary conclu-
sion based on this implementation is that our architecture
substantially meets its goals.
In most of wireless communication standards, a large fre-

quency band is divided into a set of smaller frequency bands,
each of which can be used independently of the other bands.
A possible problem with such multiple bands is that a set
of nodes may use the same band and su�er from high load
while another band is not used by any node. This causes
an ine�ciency in utilizing the scarce wireless bandwidth re-
source. To address the problem, our frequency selection

0 50 100 150 200 250

15

20

25

30

35 Transmission power
Received SNR
Data rate of packet
Dropped packet

Sequence number of packet

R
ec

ei
ve

d
SN

R
 [d

B]
Transm

ission Pow
er [dBm

]

12

7

2

-3

-8

Figure 9: Trace for experiment with cross-layer rate control.

process monitors the tra�c load on a frequency band, which
can be accurately measured by the MAC. Then, when the
load becomes high, it changes the frequency used by the
PHY to another one to balance the load among multiple
bands. Thus this adaptation is another example that per-
forms Asynchronous processing using the Out-of-band com-
munication path.
We have implemented frequency selection both using our

loosely coupled architecture and in the ad-hoc manner. First,
to implement the adaptation process in the ad-hoc manner:

1. A Click element was created:
- to allow the MAC to monitor the load on a frequency,
and
- to allow the MAC to select and change the frequency.

2. The interfaces between the MAC and PHY were changed:
- to create an additional communication path dedi-
cated for the frequency information,
- to allow the frequency information to be marshalled
and unmarshalled, and
- to allow the MAC to access the frequency information
in the PHY.

In contrast to rate control, the frequency selection process
does not need to be coordinated with existing packet process-
ing. Thus the implementation required insigni�cant changes
to the existing protocol processors. However, the new com-
munication path introduces interdependency between the
MAC and the PHY. Additional communication paths and
message formats need to be de�ned to allow the frequency
information to move between the MAC and PHY. Thus, a
change of information and communication requires the mod-
i�cation both the MAC and the PHY.
We then implemented the adaptation process based on our

architecture. After implementing the Asynchronous event
handler that periodically polled for the relevant information,
to implement the adaptation process:

1. Two Click elements were created:
- to allow the MAC to monitor the load of a frequency,
and
- to attach an Adaptor that accesses the load informa-
tion.

2. Two GNU Radio blocks were created:
- to attach the Adaptors that access the frequency in-
formation.

3. A frequency selection processor was created:
- to select and change the frequency.

As in the rate control example, our architecture did not in-
troduce any signi�cant changes in the existing protocol im-
plementations. It only added a set of Adaptors to access the
load information stored in the MAC and frequency informa-
tion in the PHY. Thus the implementation did not introduce
interdependencies between the MAC and the PHY. Another
bene�t of using our architecture was that we were able to
implement the adaptation by reusing the Out-of-band con-
nector implemented for rate control. We expect many of the
mechanisms implemented for these examples to be reusable
across other adaptations including protocol recon�guration.

5.5 A Final Example
The remaining aspect of our architecture that needs valida-
tion is the Internode version of the Out-of-band connector.
We plan to implement cross-layer extensions for the local
agile routing protocol [29] to explore these aspects. This
adaptation acquires channel conditions for the local area to
build robust routes that reach multihop neighbor nodes and
thus requires periodic exchanges of channel information be-
tween nodes regardless of whether packets are being deliv-
ered. Thus implementing cross-layer extensions for the local
agile routing protocol will allow us to validate Internode ver-
sion of Out-of-band communications.

6. DISCUSSION
This paper presents some of the examples we used to develop
and validate our taxonomy and architecture. They capture
the key issues in implementation of cross-layer adaptations
and classify them into a compact framework by considering
a wide variety of cross-layer adaptations. For example, the
rate control techniques discussed in Section 2 are only two
examples among a set of rate control processes [28, 11, 14, 2,
20, 15] we investigated. We also took into account a wide va-
riety of adaptation processes that occur between other than
between the MAC and PHY, including the aforementioned
local agile routing protocol, and TCP and applications that
optimize the their performance over wireless links.
We believe that our taxonomy and architecture is generic

enough to cover a wide variety of cross-layer adaptations.
The three top-level categories in our taxonomy (Informa-
tion, Delivery Method, and Adaptation Process) capture the
three basic elements that comprise software systems [27] and
thus should hold in general. Further, the subcategories cap-
ture the key issues in implementation of adaptation process
using high-level abstractions. But, as our understanding
of cross-layer adaptation improves, our current framework
might need to be extended. Our taxonomy allows such ex-
tensions by allowing new subcategories to be added to each
top-level category. This will lead us to add a new compo-

nent to our architecture in a systematic way. Our taxonomy
also allows further re�nement of each subcategory based on
detailed implementation issues. For example, the MAC pro-
tocol is generally runs on a network interface card while the
routing protocols run on the general purpose processor. To
allow data exchange between those layers, Intranode deliv-
ery requires interprocess communication mechanisms. Thus
we can further divide Intranode delivery into one that occurs
within the same address space and one that crosses di�er-
ent address spaces. This detailed re�nement allows us to
consider what concrete architecture is desirable.
Another use of our taxonomy and architecture is to al-

low us to synthesize new cross-layer adaptation processes in
a systematic way. For example, we were able to design a
new cross-layer routing protocol using the proposed frame-
work. The main goal of this network algorithm is to improve
throughput of multihop wireless network by mitigating in-
terference between nodes. Mitigating interference requires a
node to cooperate with a set of local neighbor nodes, each
of which can be reached directly or reached by a few in-
termediate hops. Further this adaptation requires complex
interactions across the multiple layers including the MAC,
PHY, and Network layers. Our framework allowed us to
decompose the issues in design and implementation of such
a complex adaptation process into manageable pieces. We
designed an adaptation process to exchange a set of cross-
layer information with the local neighbor nodes using the
Internode version of the Out-of-band and the In-band deliv-
ery mechanism. We then re�ned the adaptation to commu-
nicate across the multiple layers using the Intranode version
of delivery and event handling mechanisms.

7. RELATED WORK
A set of software architectures [30, 32, 9, 5, 31, 33, 22,
35] have been proposed to coordinate the implementation of
both the protocol layers and cross-layer adaptation processes.
The unique aspect of our architecture that distinguishes it
from the preexisting architectures is its general considera-
tion of how to implement cross-layer adaptations in a sys-
tematic way starting from an understanding of the complex
and wide design space of cross-layer adaptations.
The cross-layer architecture that is most similar to ours is

E�cient cross-layer architecture for wireless protocol stacks
(ECLAIR) [32]. In ECLAIR, a tuning layer (TL) attached to
a protocol layer provides interfaces, which allows a protocol
optimizer (PO) to read and update data inside the proto-
col layer and also to be noti�ed of certain events generated
by the protocol layer. Then a PO implements a cross-layer
adaptation outside of the protocol stack by using TLs. Thus
the TLs serve as the Intranode version of the Out-of-band
connector and the Asynchronous event handler, while the
PO can be mapped to our cross-layer processor. However,
ECLAIR does not consider the In-band and Internode de-
livery cases. Further ECLAIR does not support the Syn-
chronous event handler, since it views that the Synchronous
adaptation process can block the operations of a protocol
processor and can introduce performance degradation in ex-
isting protocol process. However, our taxonomy shows there
are cases where the adaptation process needs to be synchro-
nized with packet processing and we believe that optimiza-
tions of the connectors can to a signi�cant degree reduce the
possible performance degradation.
The mobile metropolitan ad-hoc networks (MobileMAN)

system [9] preserves the modularity of the existing protocol
implementation by providing standardized interfaces, which
allows a protocol layer to indirectly communicate with the
other layers. Thus MobileMAN allows a protocol layer to be
maintained or replaced with a new release without a�ect-
ing other protocols. However, MobileMAN disregards the
advantages of modular design and implementation of cross-
layer adaptations and thus merges the adaptation processes
into the protocol processors. The changes to the cross-layer
adaptation process can cause modi�cation or replacement of
existing protocol implementations. In MobileMAN, a proto-
col layer delivers data and noti�es an event to another proto-
col by using the Out-of-band delivery path using standard-
ized interfaces. However, MobileMAN does not pay much
attention to the In-band and the Internode delivery cases,
since its main concern is the indirect communications be-
tween layers within a node over a global connector.
To our best knowledge, ECLAIR is the most sophisti-

cated architecture among ones that coordinate the adapta-
tion processes with the existing protocols outside of the pro-
tocol module. Further, MobileMAN shows a typical model
of a set of another existing architectures, which maintain the
modularity of existing protocol implementations by indirect
communication between layers. Thus describing the archi-
tectures using our framework shows that our architecture
can cover a variety of preexisting cross-layer architectures
and thus validates our architecture as a generic model that
allows us to derive a wide set of concrete architectures.

8. CONCLUSION
In a wireless network, it is useful for a wide variety of adapta-
tions to violate the networks traditional layered architecture.
Unfortunately doing so in an undisciplined way is likely to
result in a poorly structured system and to greatly increase
the complexity of an already complex system. We presented
a taxonomy that describes the design space of such cross-
layer adaptations. Based on this taxonomy, we derived an
architecture that supports the implementation of cross-layer
adaptations in a controlled disciplined manner. Perhaps the
most important design decision in this architecture is for the
cross-layer adaptations to be decoupled from the implemen-
tation of the basic protocols, thus minimizing changes to the
basic layered structure of the network. Finally, we presented
a validation of our approach using a wireless networking pro-
totype. This validation suggests that our architecture can
indeed achieve its goals.

9. REFERENCES
[1] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz.

Improving TCP/IP Performance over Wireless
Networks. In Proceedings of the 1st International
Conference on Mobile Computing and Networking,
pages 2�11, Berkeley, CA, November 1995.

[2] J. C. Bicket. Bit-rate Selection in Wireless Networks.
Master's thesis, MIT, February 2005.

[3] E. Blossom. GNU Radio.
http://www.gnu.org/software/gnuradio/index.html.

[4] E. Blossom. UniversalSoftwareRadioPeripheral.
http://comsec.com/wiki?UniversalSoftwareRadioPeripheral.

[5] G. Carneiro, J. Ruela, and M. Ricardo. Cross-Layer
Design in 4G Wireless Terminals. IEEE Wireless
Communications, 11:7�13, Apr. 2004.

[6] S.-H. Choi. A Software Architecture for Cross-layer
Wireless Networks. Proposal report, January 2007.

[7] L. Chung, B. A. Nixon, and E. Yu. Using
Non-Functional Requirements to Systematically Select
Among Alternatives in Architectural Design. In In
Proceedings of ICSE Workshop on Software
Architecture, pages 31�43, Seattle, WA, April 1995.

[8] Computer Science and Telecommunications Board,
National Research Council. Realizing the Information
Future: The Internet and Beyond. National Academy
Press, Washington, D.C., 1994.

[9] M. Conti, S. Giordano, G. Maselli, and G. Turi.
MobileMAN: Mobile Metropolitan Ad Hoc Networks.
Lecture Notes in Computer Science, 2775:169�174,
2003.

[10] A. Egyed and R. Balzer. Unfriendly COTS Integration
- Instrumentation and Interfaces for Improved
Plugability. In Proceedings of the 16th IEEE
International Conference on Automated Software
Engineering, pages 223�231, San Diego, CA,
November 2001.

[11] N. V. Gavin Holland and P. Bahl. A Rate-Adaptive
MAC Protocol for Multi-Hop Wireless Networks. In
Proceedings of International Conference on Mobile
Computing and Networking, Rome, Italy, July 2001.

[12] H. Zimmerman. The OSI Model of Architecture for
Open Systems Interconnection. IEEE Transactions on
Communications, 28(4):425�432, April 1980.

[13] Z. J. Haas. Design Methodologies for Adaptive and
Multimedia Networks. IEEE Communications
Magazine, 39:106�107, November 2001.

[14] I. Haratcherev, K. Langendoen, R. Lagendijk, and
H. Slips. Hybrid Rate Control for IEEE 802.11. In
ACM International Workshop on Mobility
Management and Wireless Access Protocols,
Philadelphia, PA, October 2004.

[15] I. Haratcherev, J. Taal, K. Langendoen, R. Lagendijk,
and H. Sips. Automatic IEEE 802.11 rate control for
streaming applications. Wireless Communications and
Mobile Computing, 5:421�437, June 2005.

[16] IEEE 802.11 Working Group. Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
Speci�cation, November 1997.

[17] IEEE 802.11 Working Group. Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
speci�cations: High-speed Physical Layer in the 5
GHz Band, September 2000.

[18] R. C. H. Ivan T. Bowman and N. V. Brewster. Linux
as a Case Study: Its Extracted Software Architecture.
In Proceedings of the 21st International Conference on
Software Engineering, pages 555�563, Los Angeles,
CA, May 1999.

[19] V. Kawadia and P. R. Kumar. A Cautionary
Perspective on Cross Layer Design. IEEE Wireless
Communications, 12:3�11, February 2005.

[20] M. Lacage, M. H. Manshaei, and T. Turletti. IEEE
802.11 Rate Adaptation: A Practical Approach. In
Proceedings of the 7th ACM International Symposium
on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, pages 126�134, Venice, Italy, Oct.
2004.

[21] K. Mandke, S.-H. Choi, G. Kim, R. Grant, R. Daniels,

W. Kim, R. Heath, and S. Nettles. Early Results on
Hydra: A Flexible MAC/PHY Multihop Testbed. In
IEEE 65th Vehicular Technology Conference, Dublin,
Ireland, April 2007.

[22] P. J. Marrón, A. Lachenmann, D. Minder, J. Hähner,
R. Sauter, and K. Rothermel. TinyCubus: A Flexible
and Adaptive Framework for Sensor Networks. In
Proceedings of the 2nd European Workshop on
Wireless Sensor Networks, pages 278�289, Istanbul,
Turkey, Jan. 2005.

[23] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards
a Taxonomy of Software Connectors. In Proceedings of
International Conference on Software Engineering,
pages 178�187, Limerick, Ireland, June 2000.

[24] R. Morris, E. Kohler, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. In Symposium
on Operating Systems Principles, pages 217�231,
Kiawah Island Resort, SC, December 1999.

[25] K. Pentikousis. TCP in Wired-Cum-Wireless
Environments. IEEE Communications Surveys, pages
2�14, Fourth Quarter 2000.

[26] D. E. Perry. Generic Architecture Descriptions for
Product Lines. In Proceedings of the 2nd International
ESPRIT ARES Workshop on Development and
Evolution of Software Architectures for Product
Families, pages 51 � 56, Las Palmas de Gran Canaria,
Spain, February 1998.

[27] D. E. Perry and A. L. Wolf. Foundations for the
Study of Software Architecture. ACM SIGSOFT
Software Engineering Notes, 17:40�52, October 1992.

[28] D. Qiao, S. Choi, and K. G. Shin. Goodput Analysis
and Link Adaptation for IEEE 802.11a Wireless
LANs. IEEE Transactions on Mobile Computing,
1:278�292, October 2002.

[29] C. A. Santivanez, R. Ramanathan, and I. Stavrakakis.
Making Link-State Routing Scale for Ad Hoc
Networks. In Proceedings of International Symposium
on Mobile Ad hoc Networking and Computing, pages
22�32, Long Beach, CA, October 2001.

[30] V. Srivastava and M. Motani. Cross-Layer Design: A
Survey and the Road Ahead. IEEE Communications
Manazine, 43:112�119, December 2005.

[31] T. Stevens, B. Davies, and A. Fapojuwo. Cross Layer
Signaling in Wireless Ad-hoc Networks Using
Embedded Computers. In Wireless 2005, pages 62�67,
Calgary, Alberta, Canada, July 2005.

[32] V. T.Raisinghani and S. Iyer. Cross-Layer Feedback
Architecture for Mobile Device Protocol Stacks. IEEE
Communications Manazine, 44:85�92, Jan. 2006.

[33] R. Winter, J. H. Schiler, N. Nikaein, and C. Bonnet.
CrossTalk: Cross-Layer Decision Support Based on
Global Knowledge. IEEE Communications Manazine,
44:93�99, Jan. 2006.

[34] S. Xu and T. Saadawi. Does the IEEE 802.11 MAC
Protocol Work Well in Multihop Wireless Ad Hoc
Networks? IEEE Communications Manazine,
39:130�137, June 2001.

[35] W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, and
R. H. Kravets. Design and Evaluation of a Cross-Layer
Adaptation Framework for Mobile Multimedia
Systems. In Proceedings of Multimedia Computing and
Networking, Santa Clara, CA, Jan. 2003.

