
A Case for White-box Testing Using Declarative Specifications
Poster Abstract

Danhua Shao Sarfraz Khurshid Dewayne E. Perry

Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin, TX 78712

 {dshao, khurshid, perry}@ece.utexas.edu

Software testing, the most commonly used
technique for validating the quality of software, is a
labor intensive process, and typically accounts for
about half the total cost of software development and
maintenance. Automating testing not only reduces the
cost of producing software but also increases the
reliability of modern software.

White-box testing and black-box testing are two
commonly used techniques that have complementary
strengths. White-box testing uses the internal
structures (such as control flow or data flow) of
programs. Black-box uses an external interface.

Automated approaches to black-box testing make
extensive use of specifications, e.g., to specify test
inputs or test oracles. In unit testing of object-
oriented code, preconditions, which define
constraints on legal method inputs, and
postconditions, which define expected behavior and
outputs, form an integral part of specifications.

Black-box testing using TestEra. TestEra [1] is a

specification-based black-box testing for Java
programs. Using a Java method’s precondition,
TestEra automatically generates all nonisomorphic
test inputs up to the given bound, executes the
method on each test input, and uses the method
postconditions as an oracle to check the correctness
of each output.

Although TestEra provides efficient enumeration
of structurally complex data structures according to
given constraints, it is not efficient in generating tests
for code coverage. A precondition does not specify a
method’s implementation. For example, consider the
contains() method for LinkedList, which
implements doubly-linked circular lists. Four test
cases are enough to cover all the branches. However,
TestEra generates 148 test cases.

White-box testing using TestEra. To extend the

existing specification-based testing to support white-
box testing, we propose a novel framework, Whispec.
Given a Java method’s precondition as a declarative
constraint, Whispec systematically integrates it with

the control flow of the program and generates test
inputs to maximize the code coverage.

Alloy as an enabling technology. In Whispec, the

specifications are declared as first-order logic
formulas. As an enabling technology, Whispec uses
the SAT-based Alloy toolset [2]. Alloy is a first-order
declarative language based on sets and relations.
Alloy Analyzer is an automatic tool that finds
instances of Alloy specifications, i.e., finds
assignments of values to the sets and relations in the
specification such that the specification formulas
evaluate to true. Instances of the constraints are
translated to concrete inputs to run on the program.

Combining preconditions with desired path

conditions. The key idea of Whispec is the
integration of both preconditions and path conditi-
ons [3] using relational logic so that they are solved
together for test generation. Given the precondition
of the method under test, we first solve it with the
Alloy Analyzer. The solution is concretized to a test
input. Next, we execute the method on that input and
build path conditions by negating some branch
predicates in the execution path. We run the analyzer
on a conjunction of the precondition and one of the
generated path conditions. The solutions are
translated to test inputs which execute previously
unexplored paths. The iterative execution of Whispec
can systematically enumerate inputs that maximize
code coverage.

Preliminary results using our prototype indicate
that for achieving a desired level of code coverage,
Whispec generates significantly fewer tests than
TestEra.

References
[1] D. Marinov and S. Khurshid. TestEra: A novel
framework for automated testing of Java programs. ASE’01
[2] D. Jackson. Software Abstractions: logic, language, and
analysis. MIT Press, Cambridge, MA, 2006.
[3] J. C. King. Symbolic execution and program testing.
Communications of the ACM, Volume 19, Issue 7, July
1976.

