
A Case for GUI Testing Using Symbolic Execution
Poster Abstract

Svetoslav Ganov, Sarfraz Khurshid, Dewayne Perry
University of Texas at Austin

{ganov, khurshid, perry}@ece.utexas.edu

A Graphical User Interface (GUI) consists of
virtual objects (widgets) that are more intuitive to use,
for example buttons, edit boxes, etc. While GUIs have
become ubiquitous, testing them remains largely ad-
hoc. In contrast with console applications where there
is only one point of interaction (the command line),
GUIs provide multiple points each of which might
have different states. This structure makes GUI testing
especially challenging because of its large input space.

Key Challenges in GUI Testing.
A classic challenge in GUI testing is how to select a

feasible number of event sequences, given the
combinatorial explosion due to arbitrary event
interleavings. To illustrate, consider testing a GUI with
five buttons, where any sequence of button clicks is a
valid GUI input. Exhaustive testing requires trying all
120 possible combinations because in the internal logic
of the GUI, triggering of one event before another may
cause execution of different code segments.

An orthogonal challenge is how to select values for
data widgets, i.e., GUI widgets that are used for user
input, such as textboxes, edit-boxes and combo-boxes,
and can have an extremely large space of possible
inputs. To illustrate, consider testing a GUI with one
textbox that takes a ten character string as input.
Exhaustive testing requires 2610 possible input strings
(assuming we limit each character to be from the
English alphabet in lower-case).

Traditional GUI Testing
Automation of GUI testing has traditionally

focused on minimizing the event sequences. Data
widgets have either been abstracted away by not
considering GUI behaviors dependent on data values,
or populated by values generated at random, or
selected from a manually constructed set consisting of
a small number of values [2]. As a consequence, data
dependent behaviors are inadequately tested. For
example, consider generating a string value that is
necessary for satisfying an if-condition. Random
selection is unlikely to generate the desired value.
Manual selection requires a tedious code inspection
and does not scale. A specification-based (black-box)
approach may find this “special” value, however it

would require detailed specifications, which are often
not feasible to write.

Symbolic Execution for GUI Testing
We envision a novel GUI testing approach based

on symbolic execution [1]. Our goal is to generate
values for data widgets and address data-flow as well
as event-flow of a GUI application. By symbolically
executing the underlying GUI code a test suite that
maximizes code coverage while minimizing the
number of tests needed to systematically check the
GUI could be obtained. During symbolic execution all
reachable paths of the program are explored and (for
decidable constraints) infeasible paths are detected.
For each feasible path an event sequence could be
generated as a test.

To illustrate the potential benefit of using symbolic
execution, we used random generation to obtain values
for the text input widgets of a small GUI application
that we developed. The widgets take String as well as
primitive integer values. We provide tight bounds on
the sets of possible values to assist random testing
perform optimally. Our results show that for achieving
95% branch coverage a test suite with two hundred
tests is needed. A quick inspection of the source code
shows that the GUI code has only fifty-four branches.
Since symbolic execution visits at least one new
branch during each path it explores, using symbolic
execution to generate tests requires at most one test to
cover each branch, significantly reducing the test suite
size and the time to test. Additionally, symbolic
execution can help with minimizing previously
generated tests, for example by removing tests that are
subsumed by other tests in the suite.

We are currently implementing Barad, our GUI
testing framework based on symbolic execution.

References

 [1] King J. C., Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

 [2] Memon, A., A comprehensive Framework For Testing
Graphical User Interfaces. Ph.D. Thesis, University of
Pittsburgh, Pittsburgh, 2001.

