
Improving Design Intent Research for Software Maintenance

Paul S Grisham1, Hajimu Iida2, and Dewayne E. Perry3
1,3Empirical Software Engineering Laboratory

Electrical and Computer Engineering
The University of Texas at Austin
{grisham, perry}@ece.utexas.edu

2Software Design Laboratory
Graduate School of Information Science
Nara Institute of Science and Technology

iida@itc.naist.jp

Abstract

Design intent is a collection of decision-making
factors that explain a design. Annotating software
architecture models with design knowledge such as
design intent may benefit maintenance activities.
Unfortunately, researchers do not understand how
software maintainers conduct design activities and use
design documentation. This position paper presents a
summary of design activities and design knowledge,
research ideas on its use in software maintenance and
design intent documentation in global developments.

1. Software Architecture and Intent
Software engineering relies on the expertise and

judgment of designers to evaluate early designs. For
this reason, understanding the intent of designers is
critical when adapting or evolving software designs.
As much as 80% of time spent in software
development is spent in discovery or rediscovery of
legacy systems [1]. Much of this time is spent trying to
determine the original intent of a legacy design [2].

The Perry/Wolf model of software architecture
explicitly includes rationale [3], although we now
prefer to use the term design intent to describe a
collection of decision-making factors that explain the
design—including, but not limited to, rationale [2, 4].
Architectural drift occurs when changes to the
implementation are not reflected in the design. Erosion
is caused by changes that violate implicit or explicit
design constraints. Although work in static analysis of
architectures has provided some metrics to measure
drift and erosion [5, 6], implied design rules remain
difficult to infer from the final system design [7].

2. Research Trends
Current research focuses on schemas and tools for

modeling knowledge about the design instead of how
that knowledge is used in a maintenance context. This
focus may reflect software researchers’ natural bias

toward technology and systems building and away
from the social, behavioral and cognitive sciences.

There are also practical reasons for a lack of studies
into design knowledge and maintenance. A clear and
immediate benefit is necessary to inject a modeling
technique into an initial design process. Also, the
practicability of obtaining realistic design knowledge
makes maintenance documentation studies difficult.

3. Initial Design Activities
Design rationale (DR) modeling [8] was proposed

as a means of capturing knowledge about designs, but
software design does not follow a rational process [9].

Modern software design is mainly a problem
structuring activity producing satisficing solutions
[10]. Early studies showed that software designers rely
on emergent knowledge and drift between problems at
different levels of abstraction [11]. Experienced
designers do not spend much time on problem analysis,
but structure the problem to fit known solutions and to
scope subsequent problem-solving [12]. Moreover,
designers may not even be aware they are making
critical decisions at the time, only discovering the
impact later in the design process. As a consequence,
structuring the design process around rationale tends to
impede problem solving for initial development [13].

For these reasons we suggest that research
deemphasize DR modeling and study how data is
being consumed during maintenance.

4. Maintenance Design Activities
In a survey of software professionals, 80% claimed

that DR is necessary to understand a design [14], but
the study does not identify specific maintenance
benefits. In a software change analysis study, there was
a positive benefit in cost and accuracy of changes with
DR documentation in a simple program, but the impact
was inconclusive on a more complex program [15].

In a study of design maintenance in the aerospace
domain, participants used rationale documentation

opportunistically (apply specific DR when questions
could not be answered from the design) and
extensively (scan through DR to identify design issues
and use the design to understand how design solutions
fit together) [16]. In an exploratory study, we found
that participants did not know how to terminate
searches over unstructured design documentation [4].

These results suggest that more research is required
on how software maintainers solve problems and
interact with documentation.

5. Design Intent Research Questions
We are developing new studies for understanding

maintenance designers and their work processes. We
believe the results from these studies will help
researchers improve tools and notations for modeling
and reusing design knowledge.
• Given that maintenance design is more

constrained than initial design, is there a cognitive
and behavioral difference in design activities?

• Senior designers create the initial system design of
one project and then move to a new project.
Maintenance is often left to novice architects [17].
How does expertise affect maintenance design?

• How do consumers of documentation identify
information relevant to their needs and terminate
searches? How can we structure intent knowledge
to provide clear separation of concerns?

• What modeling principles should be used? Initial
designers tend to favor modeling positive
knowledge [14], but since maintenance design is
more constrained, recording mitigating actions
[18] and anticrises [19] may be more useful.

6. Impact on Global Development
Software companies may outsource their

maintenance activities to other companies and
countries. There is no agreed-upon set of notations or
tools for modeling meta-knowledge about designs.
Software designs are often documented using word
processing and spreadsheet tools, rather than
specialized design environments [17]. Design
knowledge is often only available as natural language
documentation. We have not yet explored how
language and cultural differences may prove to be a
barrier to the adoption of design intent.

7. Acknowledgements
This research was supported in part by the JSPS

2007 Summer Program, the NSF 2007 East Asia and
Pacific Summer Institute (EAPSI) Program, and NSF
CISE grant CCR–0306613 “Transforming requirement
specifications into architectural prescriptions.”

8. References
[1] J. W. Davison, D. M. Mancl, and W. F. Opdyke,
"Understanding and Addressing the Essential Costs of Evolving
Systems," Bell Labs Tech. Journ., vol. 5, pp. 44-54, Apr. 2000.
[2] D. E. Perry and P. S. Grisham, "Architecture and Design
Intent in Component and Cots-Based Systems," in Int'l Conf. on
COTS-Based Software Systems, Orlando, FL, 2006.
[3] D. E. Perry and A. L. Wolf, "Foundations for the Study of
Software Architecture," ACM SIGSOFT Software Engineering
Notes, vol. 17, pp. 40-52, October 1992.
[4] P. S. Grisham, M. J. Hawthorne, and D. E. Perry,
"Architecture and Design Intent: An Experience Report," in 2nd
Workshop on SHAring and Reusing architectural Knowledge -
Architecture, rationale and Design Intent (SHARK/ADI)
Minneapolis, MN, 2007.
[5] E. Johansson and M. Höst, "Tracking Degradation in
Software Product Lines through Measurement of Design Rule
Violations," in 14th int'l conf. on Software Engineering and
Knowledge Engineering (SEKE) Ischia, Italy, 2002.
[6] S. Bhattacharya and D. E. Perry, "Architecture Assessment
Model for System Evolution," in 8th Working Int'l Conf. on
Software Architecture (WICSA) Mumbai, India, 2007.
[7] J. v. Gurp and J. Bosch, "Design Erosion: Problems and
Causes," Journ. of Sys. & Soft., vol. 61, pp. 105-119, Mar. 2002.
[8] J. Lee, "Design Rationale Systems: Understanding the
Issues," IEEE Expert, vol. 12, pp. 78-85, May/Jun 1997.
[9] D. L. Parnas and P. C. Clements, "A Rational Design
Process: How and Why to Fake It," IEEE Transactions on
Software Engineering, vol. 12, pp. 251-258, February 1986.
[10] C. Zannier, M. Chiasson, and F. Maurer, "A Model of
Design Decision Making Based on Empirical Results of
Interviews with Software Designers," Information and Software
Technology, vol. 49, pp. 637-653, June 2007.
[11] R. Guindon, "Designing the Design Process: Exploiting
Opportunistic Thoughts," Human-Computer Interaction, vol. 5,
pp. 305-344, 1990.
[12] N. Cross, "Expertise in Design: An Overview," Design
Studies, vol. 25, pp. 427-441, September 2004.
[13] S. B. Shum and N. Hammond, "Argumentation-Based
Design Rationale: What Use at What Cost?," Int'l Journal of
Human-Computer Studies, vol. 40, pp. 603-652, April 1994.
[14] A. Tang, M. A. Babar, I. Gorton, and J. Han, "A Survey of
Architecture Design Rationale," Journal of Systems and
Software, vol. 79, pp. 1792-1804, December 2006.
[15] L. Bratthall, E. Johansson, and B. Regnell, "Is a Design
Rationale Vital When Predicting Change Impact?" in 2nd
International Conference on Product Focused Software Process
Improvement (PROFES) Oulu, Finland, 2000.
[16] L. Karsenty, "An Empirical Evaluation of Design Rationale
Documents," in SIGCHI Conf. on Human Factors in Computing
Systems Vancouver, British Columbia, Canada, 1996.
[17] P. Avgeriou, P. Kruchten, P. Lago, P. Grisham, and D.
Perry, "Architectural Knowledge and Rationale – Issues, Trends,
Challenges," ACM SIGSOFT Software Engineering Notes, vol.
32, p. 41-46, July 2007.
[18] W. Wu and T. Kelly, "Managing Architectural Design
Decisions for Safety-Critical Software Systems," 2nd Int'l Conf.
on the Quality of Soft. Arch. (QoSA) Västerås, Sweden, 2006.
[19] P. Kruchten, "An Ontology of Architectural Design
Decisions in Software Intensive Systems," in 2nd Groningen
Workshop on Software Variability Groningen, The Netherlands,
2004.

	1. Software Architecture and Intent
	2. Research Trends
	3. Initial Design Activities
	4. Maintenance Design Activities
	5. Design Intent Research Questions
	6. Impact on Global Development
	7. Acknowledgements
	8. References

