
A Software Architecture for Cross-Layer Wireless Network Adaptations

Soon-Hyeok Choi, Dewayne E. Perry and Scott M. Nettles
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712

{schoi, perry, nettles}@ece.utexas.edu

Abstract

Conventional data networks are based on a layered archi-
tecture. The introduction of wireless networks has created
a need to violate this layering discipline to create cross-
layer designs oradaptations. Ad-hoc implementations of
such cross-layer adaptations reduce the level of modular-
ity and abstraction in the network’s implementation, giving
rise to a significant increase in complexity. We present a
taxonomy of possible cross-layer adaptations that is then
used to derive an architecture for their implementation that
significantly preserves the networks structure. We present
implementation results that validate this architecture in the
context of a real wireless network implementation.

1 Introduction

The IP-based Internetwork has had an impact that its inven-
tors could hardly have imagined. An important underlying
key to the Internet’s success is that its design and imple-
mentation is based firmly on a well established architecture,
commonly referred to as the “hourglass model” [8]. The
hourglass model defines a set of layers, each of which im-
plements some aspect of the network, while leaving other
aspects to higher levels. This architecture is a fundamen-
tal software engineering strategy to manage complexity in
the design and implementation of a very large distributed
hardware and software artifact.

Although, strictly speaking, the Internet is based on the
hourglass model, for our purposes it is more useful to con-
sider another layering model for networks, the OSI seven
layer model [12], which for the four layers on which we
will focus somewhat refines the hourglass model. Fig. 1
shows the layers and how they communicate in a conven-
tional network implementation. The lowest layer is the
physical layer, or thePHY. The PHY is responsible for ac-
tually sending data across a physical link, such as a wire
or fiber, and must deal with both the analog physical world

Transport

MAC

PHY

Network

Other layers

Transport

MAC

PHY

Network

Other layers

Wired link

Figure 1. Conventional layered architecture

and the digital world of data communications. The next
layer is the link/media access control layer, or theMAC. The
MAC is responsible for managing communication a single
hop in the network, including coordinating which sender is
allowed to use a shared medium like the radio frequency
(RF) spectrum. The next layer is the Network layer, which
is responsible for connecting individual links into a multi-
hop network that can deliver data from a sender to a receiver
that are not directly connected. For our purposes the final
layer is the Transport layer. The Transport layer is respon-
sible for coordinating end-to-end communication along the
connections created by the Network layer. In particular, re-
liable transport protocols like the Transport Control Proto-
col (TCP) create reliable communication paths using the in-
herently unreliable connections provided by Network layer
protocols such as the Internet Protocol (IP). The key point
is that each layer implements some key functionality with a
well defined interface and leaves other functionality for the
higher layers to implement. Taken together, we refer to the
layers that make up the network as thestack. Fig. 1 shows
that in the conventional architecture each layer of the stack
only communicates with the layer above and below it.

For networks made up of wired links, the networks lay-
ered architecture is remarkably successful and the key as-
sumptions and abstraction boundaries work well. However,
the introduction of wireless links based on RF communi-
cation has revealed that the abstractions are not as cleanly
defined as one might expect or hope and that higher lay-

Wireless link

Transport

MAC

PHY

Network

Other layers

Transport

MAC

PHY

Network

Other layers

Figure 2. Cross-layer communication paths

ers may make unwarranted assumptions about lower ones.
The classic example is when TCP is run over a wireless
link [34, 1, 25]. Because wireless links are subject to trans-
mission errors, sometimes they drop a packet. Although
TCP has no problem retransmitting the lost packet, it also
interprets the drop as a sign that some node in the network is
overloaded and dropped the packet to reduce its load. TCP
reacts by slowing the rate at which it sends data. This is an
incorrect choice when the drop is due to a transmission er-
ror and results from an invalid assumption that TCP makes
about the reliability of the PHY, a layer that resides several
levels down the stack. This is just one example where there
needs to be enhanced communication across the layers and
of late the area of “cross-layer design” has become a very
active one [13].

In general wireless “links” differ from wired ones in
many ways. For example, they are lossy and their band-
width and latency may vary with time. In fact, if the power
level or transmission rate is changed, the set of nodes that
are directly connected “neighbors” may even change. This
leads to possible interactions between nonadjacent layers.
For example, by changing power, a PHY property, the net-
work layer might cause different routes to be discovered and
used. Even adjacent layers may need to communicate in
ways not possible in the current architecture. Later we will
present an example where the MAC must obtain informa-
tion from the PHY that is not part of normal packet process-
ing. Fig. 2 shows just some of the ways that information
may need to cross between layers. In fact decision mak-
ing processes at any layer may need information from any
other layer or even a set of other layers. As further shown
in Fig. 2, information might also be needed from other lay-
ers on other nodes, while the current architecture only al-
lows communication between peer layers. Thus, in general,
cross-layer designs and implementations (or as we will refer
to themadaptations) may need almost arbitrary violation of
the basic layering structure. Our goal is to develop an archi-
tecture that can accommodate this without destroying the
current layered architecture with its advantages of modular-
ity and robustness. Note that although our examples and
research prototype focus on interaction between the MAC

and PHY, our architecture accommodates other interactions,
such as the Transport layer/MAC layer interactions needed
to address the TCP over wireless problem.

Unfortunately, most of the work on cross-layer design
has proceeded in an undisciplined way and has disregarded
the design and implementation advantages of the layered
network architecture [30, 19]. The result are systems that
are basically spaghetti code with limited structure. Thus far
there has been no general consideration of how to construct
cross-layer adaptations in a systematic and modular man-
ner. Our goal is to remedy this by providing a framework for
building cross-layer protocols that maintains to a significant
degree the advantages of modularity and abstraction found
in the layered design. As such our focus in this paper is not
on any particular cross-layer adaptation (except as an exam-
ple), but rather on the software engineering issues that arise
from the need to violate layering in general. Our strategy
for achieving this is to first create a taxonomy that allows us
to describe the design space of possible cross-layer adapta-
tions. We then use this taxonomy as a framework to define
a conceptual software architecture that allows us to imple-
ment adaptations within this space in a systematic way that
preserves modularity. This architecture further motivates a
concrete architecture that allows us to validate our concepts
in a working wireless network prototype.

We begin in Section 2 with several example adaptations,
which will be used throughout the rest of the paper. Sec-
tion 3 presents our taxonomy. Section 4 illustrates our ar-
chitecture and Section 5 contains our validation results. We
present some insight into the validity of our framework in
Section 6 and discuss related work in Section 7. We con-
clude in Section 8.

2 Motivating Examples

We developed and validated our taxonomy and architecture
by considering a wide variety of example cross-layer adap-
tations [6]. Here we motivate our discussion using two of
these, cross-layer rate control [28] and cross-layer protocol
reconfiguration.

For rate control the idea is simple. The rate at which
data can be sent depends on how good the RF connection
(or channel) is between the sender and receiver. Ideally
one sends at the highest rate possible, but the quality of the
channel may change from packet to packet. One feasible
solution arises because it is possible to measure the quality
of the channel just before the data is sent. This is because in
MACs such as the distributed coordination function (DCF)
mode of IEEE 802.11 [16], prior to data transmission there
is an exchange of control messages between the sender and
receiver to coordinate channel access. The sender first sends
a request-to-send (RTS) to the receiver, which, if it is ac-
ceptable to send, replies with a clear-to-send (CTS). The

2

MAC

PHY

C
T

SD
A

T
A

+
da

ta
 r

at
eInform of

data-rate by
piggybacking

(Calculates data rate)

Obtain channel
status by
direct call

Si
gn

al
(D

A
T

A
) Signal

(C
T

S) 0

1

2

3

4

Figure 3. Cross-layer rate control

sender’s PHY receives the CTS and as a side effect can de-
termine the quality of the channel from the receiver to the
sender. The senders MAC can access this information and
use it to set the transmission rate of the immediately follow-
ing data transmission. The need for cross layering arises
because only the PHY can determine the channel state, but
only the MAC knows which transmissions are control pack-
ets (and thus sent at a fixed low rate) and which are data (and
thus candidates for sending at a higher rate).

Fig. 3 shows the process in detail. In step 0, the PHY
receives some data and decodes it estimating the channel
quality as a side effect. In step 1, if the data was a CTS, the
MAC makes a call into the PHY to get the channel informa-
tion. In step 2, the MAC calculates the correct rate. In step
3, the MAC communicates the correct rate to the PHY by
actually attaching the rate to the data packet, a process we
refer to aspiggybacking. Finally, in step 4, the PHY uses
the rate to send the packet in the proper manner.

We also consider an additional example [11] that is a
slight refinement of the one above. In the case that the chan-
nel quality from the sender to the receiver is not the same as
in the opposite direction, we can use the RTS to measure the
channel quality. In this case, the MAC on the receiver must
read the channel quality from the PHY and then piggyback
that information on the CTS, which eventually results in the
MAC on the sender obtaining the information. Thus this
case require internode communication.

The second main example we consider is cross-layer pro-
tocol reconfiguration, which allows a node to switch from
using one wireless protocol to another. This cross-layer
adaptation has a different processing style from rate con-
trol. Suppose that we want to allow a mobile device to move
from an IEEE 802.11 wireless network to a Bluetooth net-
work. One approach is autonomous reconfiguration of the
protocol layers by monitoring the wireless communication
environment. Essentially the node listens for other nodes
using different protocols and reconfigures itself to use the
new protocols as needed. Such reconfigurations are not trig-
gered by or coordinated with packet reception or transmis-
sion, but rather occur when a node detects that other nodes
in its vicinity are using the different protocol.

Configuration
Manager

PHY
Inform of a new
communication standard

Set
configurations

(Find proper
configuration)

1

2 3

Signal

0

MAC

Transport

Network

Figure 4. Cross-layer protocol reconfigura-
tion

Fig. 4 shows the process in detail. The PHY is able to
hear all the signals in the wireless environment and thus de-
tects that the alternative communication standard is in use.
In this multi-standard environment, the base requirement
for the PHY itself is the ability to decode the various wave-
forms defined by each standard. In step 1, When the PHY
detects a new standard, it informs the reconfiguration pro-
cess about the change. This notification serves as the trigger
for reconfigurations. In step 2, the adaptation process finds
the proper configurations of protocol layers that meet the
new standard and, in step 3, it changes the configuration
of the stack. Notice that the actual reconfiguration is coor-
dinated outside of the protocol processing modules. Since
the adaptation process requires global information about the
protocol layers, using a global manager makes it easy to
manage all the configuration parameters for all layers. Fur-
ther, since the manager is not part of the protocol stack, it
can change any layer and is not affected by such changes.

Another example, which is worth mentioning briefly, is
the cross-layer extensions for the local agile routing pro-
tocol [29]. In this case, nodes monitor the channel condi-
tion and exchange information between themselves to as-
sist in creating advantageous routes. For our purpose, the
key aspect of this protocol is that it exchanges information
between nodes without regard to whether the nodes are car-
rying data traffic or not.

3 Taxonomy

We use cross-layer rate control and protocol reconfigura-
tion to motivate the development of our taxonomy. Broadly
speaking, the goal of developing this taxonomy is to charac-
terize the design space of all reasonable cross-layer adapta-
tions. As importantly, the taxonomy also defines a vocabu-
lary that we can use to describe cross-layer adaptations and
their implementation in our architecture. Finally, the taxon-
omy serves to guide the creation of our architecture itself.

Considering rate control, we see that there are three pri-
mary constituents involved [27]. First, at its heart there is
some process that actually effects the cross-layer adapta-
tion, in this case, the process that decides the rate given a

3

Cross-Layer Adaptation

Information Delivery Method Adaptation Process

Status

Control

Out-of-band Synchronous

Role Path Time

Intra node

Range

Inside of
protocol processor

Location

In band Inter node Asynchronous
Outside of

protocol processor

Figure 5. Our taxonomy of cross-layer adap-
tation

channel condition. Second, some information is communi-
cated across layers, in this case, the channel condition and
the rate. Third, there are the delivery mechanisms that are
used to communicate the information to and from the pro-
cess, in this case, a direct call to gather the channel state and
piggybacking the rate on the data packet. Fig. 5 shows our
complete taxonomy, with these three basic categories, Infor-
mation, Delivery Method, and Adaptation Process, making
up the top-level.

Using our rate control example, we can partially refine
each category. For information, there is one refinement
based on therole of the information. The two subcategories
areStatusandControl, the roles of which are obvious. For
Delivery Mechanism, this example illustrates a distinction
based on thepaththe information takes.Out-of-bandinfor-
mation, such as the channel status, takes a path that is differ-
ent from the actual packet data, in this case a procedure call
from the MAC to the PHY.In-banddata, such as the rate,
takes the same path as the packet data and can in general
be piggybacked on the packet, as it is in this case. Finally,
we see two attributes of the Adaptation Process. The first
is based on thetime that the adaptation is performed. This
example illustrates just one possibility in which the adapta-
tion is Synchronous. This means that the adaptation is syn-
chronized with the reception or transmission of a packet.
In our example, the rate calculation is triggered by receiv-
ing the CTS and must take place before transmitting the ac-
tual data. The second attribute is based on thelocation of
the adaptation process. Again, this example only illustrates
one possibility in which the adaptation is actually part of
the MAC implementation itself. In general, we classify this
adaptation as beingInside the protocol processor.

The internode version of rate control gives rise to an ad-
ditional distinction for the Delivery Method based onrange.
For the basic rate control protocol, the range isIntranode
and for the internode version it isInternode. These distinc-
tions are important because any mechanism that communi-
cates information between nodes over the RF link is inher-
ently more expensive and failure prone than one that does
not. For Intranode delivery, the distinction of In-band and

Out-of-band is obvious as discussed above. But this clas-
sification is also applicable for Internode delivery. When
the Internode version piggybacks the channel condition on
the CTS, this is In-band information that is piggybacked on
an ‘existing’ packet that is already being delivered to an-
other node. In contrast, in some cases, we might create a
new packet to deliver Out-of-band information using an ad-
ditional delivery path dedicated to cross-layer information.

The protocol reconfiguration example allows us to com-
plete our taxonomy by further refining the Adaptation
Process. As a complement toSynchronousadaptations,
the reconfiguration process is anAsynchronousadaptation.
This reconfiguration process is not coordinated with packet
transmission or reception, but rather is triggered asyn-
chronously when the PHY detects a new standard being
used in its vicinity. Further, while rate control needs to fin-
ish its adaptation before the data transmission, the reconfig-
uration process can achieve its goal even if the actual time
of adaptation is somewhat delayed after detection. Another
significant refinement is that the reconfiguration process oc-
cursOutside the protocol processor. Such adaptations are
not part of the packet processing flow and thus might occur
when the process needs to coordinate between a number of
protocol layers, as might be needed in the control of quality
of service or energy consumption.

4 An Architecture for Implementing Cross-
layer Adaptations

Developing the taxonomy allowed us to describe the pos-
sible cross-layer adaptations succinctly. Our goal in devel-
oping an architecture is fundamentally to provide a set of
mechanisms that can be used to implement a wide variety
of cross-layer adaptations. In the sense of [18], our main ar-
chitecture is a conceptual one, which shows in general a set
of components and their relationships in a system at a high-
level abstraction. Thus our conceptual architecture helps us
to understand how we can implement the desired adaptation
processes using our framework and in practice serves as a
reference model from which a variety of concrete architec-
tures can be derived. This concrete architecture shows more
detailed implementation issues that arise when we imple-
ment our framework on a specific wireless system. Thus, in
the sense of [26], our architecture is a generic architecture,
which can describe a range of cross-layer architectures.

We begin by presenting a series of high level goals and
requirements for the architecture [7]. We then present some
key architectural decisions. We then use the rate control and
protocol reconfiguration examples to flesh out the details of
the architecture. Finally we motivate a few aspects of the
architecture that were not covered by the examples.

The most important goal of our architecture is to pro-
vide a set of mechanisms that support the implementation

4

of all reasonable cross-layer adaptations described by our
taxonomy. There are a number of secondary goals, which
are fundamentally motivated by a desire to maintain the ad-
vantages of the existing layered architecture to the extent
possible. The first goal is to preserve the modularity of ex-
isting protocol modules to the greatest extent possible. This
is key, because otherwise we would be free to simply imple-
ment any cross-layer adaptation in an ad-hoc manner. The
next goal is to allow cross-layer adaptations to be imple-
mented in as flexible and extensible a manner as possible
as well as to facilitate implementing multiple adaptations in
a single system. Finally, we want to allow our implemen-
tations to be portable to a variety of protocol implementa-
tions. For example, ideally if we implement rate adaptation
for one particular MAC, it would be easy to move this im-
plementation to some other MAC implementation as long
as it have the same underlaying structure.

4.1 Key Architectural Decisions

Fig. 6 shows our taxonomy after we have applied two key
architectural decisions. The first decision is simple. Al-
though functionally different, the implementation of cross-
layer information does not vary based on whether the data
is used as status or control. Thus we can merge these two
categories for the purpose of the architecture.

The other change, the elimination of the “Inside the pro-
tocol processor” location for the Adaptation Process re-
quires more discussion. The motivation is simple, if we
implement an adaptation as part of a protocol module, we
will by necessity make changes that compromise the mod-
ularity of our system. Furthermore because these changes
will be intertwined with the implementation of the base pro-
tocol, flexibility, extensibility, and portability will also be
compromised. Thus the key challenge in creating our ar-
chitecture becomes a question of whether we can achieve
our goal of comprehensive cross-layer adaptation support,
without allowing substantive changes to the protocol mod-
ules themselves.

4.2 Example Driven Architecture Devel-
opment

Fig. 7 shows the progression of high level stages that are
required to map our rate control example to our proposed
architecture. We consider each stage in turn, explaining the
architectural features required.

The first stage (Fig. 7(a)) shows the mechanisms needed
to support a Synchronous adaptation process outside of the
protocol module. Note that the rate control adaptation has
been placed in a separate cross-layer module. A key re-
quirement is that when the packet moves from the PHY to
the MAC, the adaptation process must be notified if that

Cross-Layer Adaptation

Information Delivery Method Adaptation Process

Status
and

Control

Out-of-band Synchronous

Role Path Time

Intra node

Range Location

In band Inter node Asynchronous

Outside of
protocol processor

Figure 6. Refinement of our taxonomy based
on architectural decisions

packet is a CTS. Thus we see that in step 0, we have added
a MAC-PHY interceptor module. This module is inserted
between the two existing layers and provides each with the
same interface and thus does not compromise our modular-
ity goal. In general, this interceptor is a kind of connector,
but it will be implemented as a “shim” layer in the stack
and so we do not group it with the other connectors dis-
cussed below. In step 1, the interceptor has detected a CTS
and notifies the Synchronous event handler that connects the
protocol module to the cross-layer module. Finally, in step
2 the event handler notifies the rate control process itself.

The second stage (Fig. 7(b)) shows the support needed
for Out-of-band delivery. In step 1, the rate control pro-
cess communicates to the Out-of-band connector that it
needs the length of the packet and the channel status. No-
tice that unlike the case where the process is part of the
MAC, it needs to access MAC as well as PHY information.
In step 2, the connector communicates with the getLength
and GetChannel adaptors attached to the MAC and PHY.
The adaptation requires that we be able to query the proto-
col modules, by structuring these queries in terms of spe-
cial adaptors we are able to minimize (but not eliminate)
changes to the protocol modules. Finally, in step 3, the rate
control process calculates the new rate.

The final stage (Fig. 7(c)) shows how we use the existing
mechanisms to complete the rate control process. In step 1
and 2, the interceptor notifies the rate control process that
the data packet is being sent. In step 3 and 4, the rate con-
trol process sets the rate in the PHY using the setDataRate
Adaptor.

To implement the protocol reconfiguration process, we
can use most of the mechanisms introduced for rate control.
In our example, a global configuration manager already
performed the reconfiguration process outside of protocol
module. Further, the existing Out-of-band connector allows
the manager to read and update information inside protocol
modules such as the communication standard stored in the
PHY and the configurations of the protocol layers.

The only new requirement is triggering the reconfigu-
ration process when the PHY detects a new communica-

5

����
�������

	
� �
��� �������

Protocol ModuleCross-Layer Module

	
�

���

�������
� !"#$"%!&#

'(
)*
+,
-)
-.
/

01
2)
3
45
)6
72
,

Notify the CTS
is passing

Notify
synchronous
event

0

12

(a) Components for Synchronous process

����
�������

	
� �
��� �������

Protocol ModuleCross-Layer Module

	
�

���

�������
����� �!���

"#
$%
&'
($
()
*

+,
-$
.
/0
$1
2-
'

34
56
78
69
:;
<

=7
;;
>?
57
@

Length of
Data packet

Get Length and
Channel Status

A��B��C�D
EFGHIJK

A���D�����
EFGHIJK

Channel Status

1

2
Calculate
Data rate

3

(b) Components for Out-of-band delivery

����
�������

	
� �
��� �������

Protocol ModuleCross-Layer Module

	
�

���

�������
����� �!���

Set Data rate

"��#���$��%�&
�'�!���

(��#�������
�'�!���

Data rate

12

3

Notify
synchronous
event Notify

data packet
passing event

4

)*
+,
-.
/+
/0
1

23
4+
5
67
+8
94
.

:0
5;
/<
;=
7+
8

>/
++
4,
5/
.

(c) Reusing the components for the rest of process

Figure 7. Architectural solutions for cross-
layer rate control

tion standard, which is an Asynchronous adaptation pro-
cess. One solution is to allow the PHY to notify the man-
ager of the detected standard information, as described in
our example. The problem with this active notification is
however that the PHY implementation needs to be changed
to be aware of the manager. This makes the PHY depen-
dent on the manager. To address this problem, we introduce
an Asynchronous event handler that periodically polls the
standards information stored in the PHY and triggers the
manager when it detects a change. Such a polling mech-
anism only requires an additional Adaptor attached to the
PHY and thus maintains the modularity of the PHY. Al-
though the periodic polling may cause some bounded delay
before detecting changes, the Asynchronous adaptation pro-
cess is a process that can tolerate such delays according to
the definition in our taxonomy and so this is not an issue.

4.3 Completing the Architecture

Fig. 8 shows all the details of our architecture. Most as-
pects of this diagram have already been presented, the main
refinement is in the connectors presented and their rela-
tion to whether the cross-layer processer is synchronous
or asynchronous. These all are typical software connec-
tors [23]. Disregarding the event handler aspect for now, we
see four kinds of connectors, corresponding to the four de-
livery mechanisms in the taxonomy. The Intranode connec-
tors are used inside a single node to integrate existing pro-
tocol modules with our architecture [10]. The In-band con-
nector accesses the data stored in a packet’s internal struc-
ture when the packet passes though an interceptor, while the
Out-of-band connector uses adaptors to access data in the
protocol modules themselves. The Internode connectors re-
quire that any information must be placed in a packet and
sent from one node to another. In the In-band case the in-
formation can be piggybacked on the protocol packet. Thus
this case is shown intercepting the data in the packet de-
livery path. In the Out-of-band case, the information must
be formatted into its own packet and sent independently.
Thus this is shown as a separate communication path. Re-
turning to the event handlers, we see that the asynchronous
versus synchronous nature of the processes is fundamen-
tally captured by the type of the event handler. Synchronous
event handlers are driven by the passage of packets through
the interceptors. However, Asynchronous events (and thus
processes) are triggered, when the event handler inside In-
tranode version of Out-of-band connector detects a change
of information within a protocol processor or when the In-
ternode version of event handler receives a new information
from counterpart in another node.

6

�����������
	��
�����

	����
�� ��
�����

Inter node/In band

Protocol Module

������������

�����������

������

�����
����

Inter node/Out-of band

Intra node/In band

Asynchronous
event handler

Synchronous
event handler

	����
�� ��
�����������

�����
����

Cross-Layer Module

Intra node/Out-of band

Asynchronous
event handler

Synchronous
event handler

Figure 8. A conceptual architecture for cross-
layer adaptations in wireless networks

4.4 Further Refinements

Thus far our architecture is a conceptual one, which de-
scribes at a high-level abstractions the key mechanisms that
are required to support a wide variety of cross-layer adap-
tations. If we wish to actually implement an adaptation in a
loosely coupled way, our conceptual architecture can serve
as a concrete one as well, by simple refinement of the frame-
work to conform to the implementation environment of a
target wireless system. One exemplary refinement will be
shown in the next section.

However, in the interest of performance, we may wish to
use a concrete architecture that has less overhead. We might
merge the Interceptors into the layer above or below them.
For example, the MAC in our rate control example can be
changed so that, when the MAC receives a CTS, it actively
notifies of the Synchronous event, thus reducing the amount
of packet handling caused by the Interceptor. Similarly, the
Asynchronous event handling may be merged into the pro-
tocol processing. The PHY in our protocol reconfiguration
example can notify the event handler as soon as it detects
a change without periodic polling process. We might even
merge the cross-layer processing into a particular protocol
processor, thus eliminating a substantial amount of commu-
nication. Such implementation techniques might introduce
further changes in the protocol processing. Never-the-less,
we believe the existence of the conceptual model should al-
low us to make such optimizations in a systematic and dis-
ciplined manner.

5 Validation

Initial validation of our taxonomy and architecture was done
by careful consideration and paper design of the examples
found in Section 2, as well as others. We are conducting a
more substantial validation using the basic strategy of im-

plementing our architectural framework and a number of
our examples in a realistic wireless network testbed. We
expect this experience to allow us to refine our approach,
in particular with respect to what concrete architectures are
desirable.

5.1 Hydra

Our implementation has been done in the context of our Hy-
dra testbed [21]. Hydra is a prototype multihop wireless
network, which is designed to allow experimentation with
implementations of PHYs, MACs, and cross-layer adapta-
tions, using functional hardware and software, rather than
simulation.

Hydra uses an RF frontend, the universal software radio
peripheral (USRP) [4] from Ettus Research, which allows
experimentation with various frequency bands and which
allows a limited amount of signal processing to be done us-
ing a field programmable gate array. The USRP connects
to the Hydra PHY over USB 2.0. The PHY is implemented
using the GNU Radio framework [3] and all signal process-
ing is done using the general purpose processor. Hydra’s
MAC interfaces to the PHY using interprocess communica-
tion and is implemented using the Click modular router in-
frastructure [24]. Click also provides network support and
interfaces to the Linux TCP/IP stack allowing full end-to-
end application to application experiments. Both GNU Ra-
dio and Click allow us to implement flexible network pro-
tocols. Using the GNU Radio framework, we create a set
of “signal processing blocks”, each of which implements a
signal processing algorithm. Then we can compose a PHY
protocol by connecting these small blocks into a signal pro-
cessing flow graph. Similarly, the Click modular router al-
lows us to create a set of “packet processing elements”, each
of which implements some task required for packet process-
ing and to compose a new protocol by connecting the ele-
ments. Thus Hydra allows us to flexibly configure a proto-
col by changing the connection graph that is composed of a
set of small components.

The current Hydra implementation is similar to
802.11a [17]. It supports orthogonal frequency division
multiplexing (OFDM) at the physical layer, with support
for multiple transmission rates. The MAC is essentially the
802.11 DCF MAC briefly discussed in Section 2. Because
both the MAC and PHY are primarily implemented in C++,
modification of each is straight forward. Hydra is currently
operational. In addition to experiments on cross-layer adap-
tations, the major next implementation step is to add support
for multiple antenna algorithms, principally multiple input
multiple output (MIMO).

7

5.2 A Concrete Architecture for Hydra

We refined our conceptual architecture to implement it
inside Hydra. The key challenge was that protocols in Hy-
dra are implemented using three different protocol mod-
ules. The MAC and Network layers are implemented us-
ing Click while the PHY uses GNU Radio. Further the
TCP/IP protocol stack implements the Transport layer. This
meant that the Interceptors and Adaptors needed to be im-
plemented differently to conform to each implementation
environment. To address this problem, we divided all of the
connectors into two levels, except the Internode version of
the Out-of-band connector that is not connected to the pro-
tocol modules. Each local connector is implemented con-
forming to implementation environment provided by each
protocol module and thus easily manages the Interceptors
and Adaptors that are implemented using the same environ-
ment. Then the local connectors communicate with global
connectors that provide cross-layer processors with event
notification and data delivery. Thus this concrete architec-
ture still allows the cross-layer adaptations to be indepen-
dent of the existing protocol implementations.

5.3 Rate Adaptation

We have implemented both the Intranode and Internode ver-
sions of rate control, discussed in Section 2, using our fully
decoupled architecture. We have also implemented both
versions of rate control in the ad-hoc manner that might be
considered “conventional” to compare both the implemen-
tation techniques.

Fig. 9 shows an experiment result using the Internode
version of rate control. (Note, this result was first presented
in our paper describing Hydra [21].) The X-axis is the
packet sequence number and the Y-axis on the left is for
the received signal to noise ratio (SNR), which was used
to estimate the channel condition. A higher SNR funda-
mentally represents a better channel status and thus allows
the rate control process to select a higher data rate. Each
packet is plotted at the SNR threshold for the rate at which
it was transmitted. In this experiment, the transmit power
(the Y-axis on the right) was decreased and then increased
in steps to control the received SNR. We see that in general
when changes in power cause the received SNR to cross a
threshold, rate control process adapts the data rate of the
transmission as expected. We also see instances of packets
that are transmitted at higher or lower data rates than most
packets at the same power level. These show the rate control
process can adapt to short term fluctuations in the channel.

The conventional implementation required a set of
changes to the existing MAC and PHY implementations.
To implement both the Intranode and Internode version of
rate control processes:

1. A set of Click elements were created and modified:
- to allow the MAC to obtain the channel status infor-
mation,
- to allow the MAC to perform rate adaptation, and
- to conform to the new CTS packet format that de-
livers the channel information from the receiver to the
transmitter.

2. A GNU Radio block was changed:
- to allow the MAC to access the channel status infor-
mation.

3. The interfaces between the MAC and PHY were
changed:
- to allow cross-layer information piggybacked on
packets to be marshalled and unmarshalled when they
move between the MAC and PHY.

The key problem was that such changes cause individual
protocol processors to become dependent on others. At one
point we changed the rate control in the MAC to use a dif-
ferent type of channel information, from an integer valued
received signal strength indication (RSSI) to a floating point
valued SNR. This required that the interfaces between the
MAC and PHY and the signal processing block in the PHY
all needed to change to deal with the new type of channel
information.

We then implemented the rate control processes based
on our loosely coupled architecture. These implementations
were encouraging in that they did not introduce any signif-
icant changes into the existing protocol processors. After
implementation of the global and local connectors, to im-
plement both the Intranode and Internode version of rate
control processes:

1. A set of Click elements were created:
- to add the Interceptors into the MAC, and
- to attach an Adaptor that accesses data length infor-
mation.

2. A GNU Radio block was created:
- to attach an Adaptor that accesses channel status in-
formation.

3. Rate control processor was created:
- to execute rate control.

Although a set of protocol processors were created and in-
serted into Click and GNU Radio to implement our ar-
chitectural components, these components did not intro-
duce any significant changes in the existing protocol imple-
mentations. An Interceptor notifies the Synchronous event
handler of the passage of a CTS packet and transparently
changes the format of the CTS packet. Further the Adaptors
augmented the interfaces of the MAC and the PHY without

8

0 50 100 150 200 250

15

20

25

30

35 Transmission power
Received SNR
Data rate of packet
Dropped packet

Sequence number of packet

R
ec

ei
ve

d
SN

R
 [d

B]
Transm

ission Pow
er [dBm

]

12

7

2

-3

-8

Figure 9. Trace for experiment with cross-layer rate control.

affecting core functionality of the existing protocol proces-
sors. The only change caused by the Adaptor was to expose
some variables inside the protocol processors to allow the
Adaptor to access the information.

We implemented the Internode version of rate control
by extending the Intranode version. To extend the adap-
tation process in a conventional implementation, we needed
to modify a few more packet processing elements in Click.
The problem was that the dependency between the Click
elements changed. However, the implementation based on
our architecture only required extension of the existing rate
control processor after inserting a few more Interceptors
into Click. This shows that our architecture allows rate
control to be independent of the infrastructure and to freely
change its operation without significant impact on existing
protocol implementations.

5.4 Frequency Selection

To explore the issues in Asynchronous event handling and
Out-of-band delivery, we have implemented a cross-layer
frequency selection process, which is similar in operation
to our protocol reconfiguration example. Our preliminary
conclusion based on this implementation is that our archi-
tecture substantially meets its goals.

In most of wireless communication standards, a large
frequency band is divided into a set of smaller frequency
bands, each of which can be used independently of the
other bands. A possible problem with such multiple bands
is that a set of nodes may use the same band and suffer
from high load while another band is not used by any node.
This causes an inefficiency in utilizing the scarce wireless
bandwidth resource. To address the problem, our frequency
selection process monitors the traffic load on a frequency
band, which can be accurately measured by the MAC. Then,
when the load becomes high, it changes the frequency used
by the PHY to another one to balance the load among mul-
tiple bands. Thus this adaptation is another example that
performs Asynchronous processing using the Out-of-band
communication path.

We have implemented frequency selection both using
our loosely coupled architecture and in the ad-hoc man-

ner. First, to implement the adaptation process in the ad-hoc
manner:

1. A Click element was created:
- to allow the MAC to monitor the load on a frequency,
and
- to allow the MAC to select and change the frequency.

2. The interfaces between the MAC and PHY were
changed:
- to create an additional communication path dedicated
for the frequency information,
- to allow the frequency information to be marshalled
and unmarshalled, and
- to allow the MAC to access the frequency informa-
tion in the PHY.

In contrast to rate control, the frequency selection process
does not need to be coordinated with existing packet pro-
cessing. Thus the implementation required insignificant
changes to the existing protocol processors. However, the
new communication path introduces interdependency be-
tween the MAC and the PHY. Additional communication
paths and message formats need to be defined to allow the
frequency information to move between the MAC and PHY.
Thus, a change of information and communication requires
the modification both the MAC and the PHY.

We then implemented the adaptation process based on
our architecture. After implementing the Asynchronous
event handler that periodically polled for the relevant in-
formation, to implement the adaptation process:

1. Two Click elements were created:
- to allow the MAC to monitor the load of a frequency,
and
- to attach an Adaptor that accesses the load informa-
tion.

2. Two GNU Radio blocks were created:
- to attach the Adaptors that access the frequency in-
formation.

3. A frequency selection processor was created:
- to select and change the frequency.

9

As in the rate control example, our architecture did not in-
troduce any significant changes in the existing protocol im-
plementations. It only added a set of Adaptors to access the
load information stored in the MAC and frequency informa-
tion in the PHY. Thus the implementation did not introduce
interdependencies between the MAC and the PHY. Another
benefit of using our architecture was that we were able to
implement the adaptation by reusing the Out-of-band con-
nector implemented for rate control. We expect many of the
mechanisms implemented for these examples to be reusable
across other adaptations including protocol reconfiguration.

5.5 A Final Example

The remaining aspect of our architecture that needs valida-
tion is the Internode version of the Out-of-band connector.
We plan to implement cross-layer extensions for the local
agile routing protocol [29] to explore these aspects. This
adaptation acquires channel conditions for thelocal area to
build robust routes that reach multihop neighbor nodes and
thus requires periodic exchanges of channel information be-
tween nodes regardless of whether packets are being deliv-
ered. Thus implementing cross-layer extensions for the lo-
cal agile routing protocol will allow us to validate Internode
version of Out-of-band communications.

6 Discussion

This paper presents some of the examples we used to de-
velop and validate our taxonomy and architecture. They
capture the key issues in implementation of cross-layer
adaptations and classify them into a compact framework
by considering a wide variety of cross-layer adaptations.
For example, the rate control techniques discussed in Sec-
tion 2 are only two examples among a set of rate control
processes [28, 11, 14, 2, 20, 15] we investigated. We also
took into account a wide variety of adaptation processes that
occur between other than between the MAC and PHY, in-
cluding the aforementioned local agile routing protocol, and
TCP and applications that optimize the their performance
over wireless links.

We believe that our taxonomy and architecture is generic
enough to cover a wide variety of cross-layer adaptations.
The three top-level categories in our taxonomy (Informa-
tion, Delivery Method, and Adaptation Process) capture the
three basic elements that comprise software systems [27]
and thus should hold in general. Further, the subcategories
capture the key issues in implementation of adaptation pro-
cess using high-level abstractions. But, as our understand-
ing of cross-layer adaptation improves, our current frame-
work might need to be extended. Our taxonomy allows such
extensions by allowing new subcategories to be added to

each top-level category. This will lead us to add a new com-
ponent to our architecture in a systematic way. Our tax-
onomy also allows further refinement of each subcategory
based on detailed implementation issues. For example, the
MAC protocol is generally runs on a network interface card
while the routing protocols run on the general purpose pro-
cessor. To allow data exchange between those layers, Intra-
node delivery requires interprocess communication mecha-
nisms. Thus we can further divide Intranode delivery into
one that occurs within the same address space and one that
crosses different address spaces. This detailed refinement
allows us to consider what concrete architecture is desir-
able.

Another use of our taxonomy and architecture is to allow
us to synthesize new cross-layer adaptation processes in a
systematic way. For example, we were able to design a new
cross-layer routing protocol using the proposed framework.
The main goal of this network algorithm is to improve
throughput of multihop wireless network by mitigating in-
terference between nodes. Mitigating interference requires
a node to cooperate with a set of local neighbor nodes, each
of which can be reached directly or reached by a few in-
termediate hops. Further this adaptation requires complex
interactions across the multiple layers including the MAC,
PHY, and Network layers. Our framework allowed us to
decompose the issues in design and implementation of such
a complex adaptation process into manageable pieces. We
designed an adaptation process to exchange a set of cross-
layer information with the local neighbor nodes using the
Internode version of the Out-of-band and the In-band deliv-
ery mechanism. We then refined the adaptation to commu-
nicate across the multiple layers using the Intranode version
of delivery and event handling mechanisms.

7 Related Work

A set of software architectures [30, 32, 9, 5, 31, 33, 22, 35]
have been proposed to coordinate the implementation of
both the protocol layers and cross-layer adaptation pro-
cesses. The unique aspect of our architecture that distin-
guishes it from the preexisting architectures is its general
consideration of how to implement cross-layer adaptations
in a systematic way starting from an understanding of the
complex and wide design space of cross-layer adaptations.

The cross-layer architecture that is most similar to ours
is Efficient cross-layer architecture for wireless protocol
stacks (ECLAIR) [32]. In ECLAIR, a tuning layer (TL) at-
tached to a protocol layer provides interfaces, which allows
a protocol optimizer (PO) to read and update data inside
the protocol layer and also to be notified of certain events
generated by the protocol layer. Then a PO implements a
cross-layer adaptation outside of the protocol stack by us-
ing TLs. Thus the TLs serve as the Intranode version of the

10

Out-of-band connector and the Asynchronous event han-
dler, while the PO can be mapped to our cross-layer proces-
sor. However, ECLAIR does not consider the In-band and
Internode delivery cases. Further ECLAIR does not support
the Synchronous event handler, since it views that the Syn-
chronous adaptation process can block the operations of a
protocol processor and can introduce performance degrada-
tion in existing protocol process. However, our taxonomy
shows there are cases where the adaptation process needs to
be synchronized with packet processing and we believe that
optimizations of the connectors can to a significant degree
reduce the possible performance degradation.

The mobile metropolitan ad-hoc networks (Mobile-
MAN) system [9] preserves the modularity of the existing
protocol implementation by providing standardized inter-
faces, which allows a protocol layer to indirectly communi-
cate with the other layers. Thus MobileMAN allows a pro-
tocol layer to be maintained or replaced with a new release
without affecting other protocols. However, MobileMAN
disregards the advantages of modular design and implemen-
tation of cross-layer adaptations and thus merges the adap-
tation processes into the protocol processors. The changes
to the cross-layer adaptation process can cause modifica-
tion or replacement of existing protocol implementations.
In MobileMAN, a protocol layer delivers data and notifies
an event to another protocol by using the Out-of-band deliv-
ery path using standardized interfaces. However, Mobile-
MAN does not pay much attention to the In-band and the
Internode delivery cases, since its main concern is the indi-
rect communications between layers within a node over a
global connector.

To our best knowledge, ECLAIR is the most sophisti-
cated architecture among ones that coordinate the adapta-
tion processes with the existing protocols outside of the pro-
tocol module. Further, MobileMAN shows a typical model
of a set of another existing architectures, which maintain the
modularity of existing protocol implementations by indirect
communication between layers. Thus describing the archi-
tectures using our framework shows that our architecture
can cover a variety of preexisting cross-layer architectures
and thus validates our architecture as a generic model that
allows us to derive a wide set of concrete architectures.

8 Conclusion

In a wireless network, it is useful for a wide variety of adap-
tations to violate the networks traditional layered architec-
ture. Unfortunately doing so in an undisciplined way is
likely to result in a poorly structured system and to greatly
increase the complexity of an already complex system. We
presented a taxonomy that describes the design space of
such cross-layer adaptations. Based on this taxonomy, we
derived an architecture that supports the implementation of

cross-layer adaptations in a controlled disciplined manner.
Perhaps the most important design decision in this architec-
ture is for the cross-layer adaptations to be decoupled from
the implementation of the basic protocols, thus minimiz-
ing changes to the basic layered structure of the network.
Finally, we presented a validation of our approach using
a wireless networking prototype. This validation suggests
that our architecture can indeed achieve its goals.

References

[1] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz. Im-
proving TCP/IP Performance over Wireless Networks. In
Proceedings of the 1st International Conference on Mo-
bile Computing and Networking, pages 2–11, Berkeley, CA,
November 1995.

[2] J. C. Bicket. Bit-rate Selection in Wireless Networks. Mas-
ter’s thesis, MIT, February 2005.

[3] E. Blossom. GNU Radio.
http://www.gnu.org/software/gnuradio/index.html.

[4] E. Blossom. UniversalSoftwareRadioPeripheral.
http://comsec.com/wiki?UniversalSoftwareRadioPeripheral.

[5] G. Carneiro, J. Ruela, and M. Ricardo. Cross-Layer Design
in 4G Wireless Terminals.IEEE Wireless Communications,
11:7–13, Apr. 2004.

[6] S.-H. Choi. A Software Architecture for Cross-layer Wire-
less Networks. Proposal report, January 2007.

[7] L. Chung, B. A. Nixon, and E. Yu. Using Non-Functional
Requirements to Systematically Select Among Alternatives
in Architectural Design. InIn Proceedings of ICSE Work-
shop on Software Architecture, pages 31–43, Seattle, WA,
April 1995.

[8] Computer Science and Telecommunications Board, Na-
tional Research Council.Realizing the Information Future:
The Internet and Beyond. National Academy Press, Wash-
ington, D.C., 1994.

[9] M. Conti, S. Giordano, G. Maselli, and G. Turi. Mobile-
MAN: Mobile Metropolitan Ad Hoc Networks. Lecture
Notes in Computer Science, 2775:169–174, 2003.

[10] A. Egyed and R. Balzer. Unfriendly COTS Integration
- Instrumentation and Interfaces for Improved Plugability.
In Proceedings of the 16th IEEE International Conference
on Automated Software Engineering, pages 223–231, San
Diego, CA, November 2001.

[11] N. V. Gavin Holland and P. Bahl. A Rate-Adaptive MAC
Protocol for Multi-Hop Wireless Networks. InProceedings
of International Conference on Mobile Computing and Net-
working, Rome, Italy, July 2001.

[12] H. Zimmerman. The OSI Model of Architecture for Open
Systems Interconnection.IEEE Transactions on Communi-
cations, 28(4):425–432, April 1980.

[13] Z. J. Haas. Design Methodologies for Adaptive and
Multimedia Networks. IEEE Communications Magazine,
39:106–107, November 2001.

[14] I. Haratcherev, K. Langendoen, R. Lagendijk, and H. Slips.
Hybrid Rate Control for IEEE 802.11. InACM Interna-
tional Workshop on Mobility Management and Wireless Ac-
cess Protocols, Philadelphia, PA, October 2004.

11

[15] I. Haratcherev, J. Taal, K. Langendoen, R. Lagendijk, and
H. Sips. Automatic IEEE 802.11 rate control for streaming
applications. Wireless Communications and Mobile Com-
puting, 5:421–437, June 2005.

[16] IEEE 802.11 Working Group. Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifica-
tion, November 1997.

[17] IEEE 802.11 Working Group. Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) specifi-
cations: High-speed Physical Layer in the 5 GHz Band,
September 2000.

[18] R. C. H. Ivan T. Bowman and N. V. Brewster. Linux as a
Case Study: Its Extracted Software Architecture. InPro-
ceedings of the 21st International Conference on Software
Engineering, pages 555–563, Los Angeles, CA, May 1999.

[19] V. Kawadia and P. R. Kumar. A Cautionary Perspective on
Cross Layer Design.IEEE Wireless Communications, 12:3–
11, February 2005.

[20] M. Lacage, M. H. Manshaei, and T. Turletti. IEEE 802.11
Rate Adaptation: A Practical Approach. InProceedings of
the 7th ACM International Symposium on Modeling, Anal-
ysis and Simulation of Wireless and Mobile Systems, pages
126–134, Venice, Italy, Oct. 2004.

[21] K. Mandke, S.-H. Choi, G. Kim, R. Grant, R. Daniels,
W. Kim, R. Heath, and S. Nettles. Early Results on Hydra:
A Flexible MAC/PHY Multihop Testbed. InIEEE 65th Ve-
hicular Technology Conference, Dublin, Ireland, April 2007.

[22] P. J. Marŕon, A. Lachenmann, D. Minder, J. Hähner,
R. Sauter, and K. Rothermel. TinyCubus: A Flexible and
Adaptive Framework for Sensor Networks. InProceed-
ings of the 2nd European Workshop on Wireless Sensor Net-
works, pages 278–289, Istanbul, Turkey, Jan. 2005.

[23] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a Tax-
onomy of Software Connectors. InProceedings of Interna-
tional Conference on Software Engineering, pages 178–187,
Limerick, Ireland, June 2000.

[24] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The
Click Modular Router. InSymposium on Operating Systems
Principles, pages 217–231, Kiawah Island Resort, SC, De-
cember 1999.

[25] K. Pentikousis. TCP in Wired-Cum-Wireless Environments.
IEEE Communications Surveys, pages 2–14, Fourth Quarter
2000.

[26] D. E. Perry. Generic Architecture Descriptions for Prod-
uct Lines. InProceedings of the 2nd International ESPRIT
ARES Workshop on Development and Evolution of Software
Architectures for Product Families, pages 51 – 56, Las Pal-
mas de Gran Canaria, Spain, February 1998.

[27] D. E. Perry and A. L. Wolf. Foundations for the Study of
Software Architecture.ACM SIGSOFT Software Engineer-
ing Notes, 17:40–52, October 1992.

[28] D. Qiao, S. Choi, and K. G. Shin. Goodput Analysis and
Link Adaptation for IEEE 802.11a Wireless LANs.IEEE
Transactions on Mobile Computing, 1:278–292, October
2002.

[29] C. A. Santivanez, R. Ramanathan, and I. Stavrakakis. Mak-
ing Link-State Routing Scale for Ad Hoc Networks. InPro-
ceedings of International Symposium on Mobile Ad hoc Net-
working and Computing, pages 22–32, Long Beach, CA,
October 2001.

[30] V. Srivastava and M. Motani. Cross-Layer Design: A Sur-
vey and the Road Ahead.IEEE Communications Manazine,
43:112–119, December 2005.

[31] T. Stevens, B. Davies, and A. Fapojuwo. Cross Layer Sig-
naling in Wireless Ad-hoc Networks Using Embedded Com-
puters. InWireless 2005, pages 62–67, Calgary, Alberta,
Canada, July 2005.

[32] V. T.Raisinghani and S. Iyer. Cross-Layer Feedback Archi-
tecture for Mobile Device Protocol Stacks.IEEE Communi-
cations Manazine, 44:85–92, Jan. 2006.

[33] R. Winter, J. H. Schiler, N. Nikaein, and C. Bonnet.
CrossTalk: Cross-Layer Decision Support Based on Global
Knowledge. IEEE Communications Manazine, 44:93–99,
Jan. 2006.

[34] S. Xu and T. Saadawi. Does the IEEE 802.11 MAC Protocol
Work Well in Multihop Wireless Ad Hoc Networks?IEEE
Communications Manazine, 39:130–137, June 2001.

[35] W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, and R. H.
Kravets. Design and Evaluation of a Cross-Layer Adapta-
tion Framework for Mobile Multimedia Systems. InPro-
ceedings of Multimedia Computing and Networking, Santa
Clara, CA, Jan. 2003.

12

