

Dynamic User Interface Generation:
Extended Abstract

 Abstract Svetoslav Ganov
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, TX 78712 USA
svetoslavganov@mail.utexas.edu

Enos Jones
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, TX 78712 USA
enos.jones@mail.utexas.edu

Angela Dalton
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, TX 78712 USA
adalton@mail.utexas.edu

Dewayne E Perry
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, TX 78712 USA
perry@ece.utexas.edu

Advances in hardware technologies facilitated the
advent of a wide variety of portable devices—laptops,
pocket PCs, PDAs, smart phones—each of which has a
different user interface and computational capability.
This diversity of devices makes production of cross
platform applications challenging. While the Java
programming language enables platform independent
application development, differences in user interfaces
of heterogeneous devices may require specialized
approaches. This is often expensive, time consuming,
and error prone. In this paper, we develop a generic
approach for Java applications with rich user interfaces
designated for multiple platforms. We introduce an
abstract user interface (AUI) library used in the
software development process. We also define a
mapping, using XML files, between this abstraction and
a concrete user interface library used on the target
device. When an application is started on a particular
platform we build the concrete user interface by
instrumenting the Java bytecode on-the-fly using
metadata from the XML files. Our approach eliminates
the need for source code modifications and
recompilation, thus increasing the speed and reducing
the cost of the software development. The overhead for
defining a user interface library mapping is amortized
over multiple applications.

Copyright is held by the author/owner(s).

CHI 2008, April 5 – April 10, 2008, Florence, Italy

ACM 1-xxxxxxxxxxxxxxxxxx.

 2

Keywords
User interface, xml schema, bytecode instrumentation,
abstract interface, java virtual machine, ubiquitous
computing interface

ACM Classification Keywords
H.5.2 User Interfaces - Theory and methods, Graphical
user interfaces (GUI), Natural language, Prototyping,
Voice I/O

Introduction
Advances in hardware technologies facilitated the
advent of a wide variety of portable devices—laptops,
pocket PCs, PDAs, smart phones—each of which has a
different user interface (UI) and computational
capability. The number and diversity of these devices is
constantly increasing which results in the development
of cross platform applications becoming increasingly
challenging.

Software companies aim to achieve fast prototyping
and development while minimizing their expenses.
Offering a separate product for each target device has a
high cost, is time consuming, and is error prone. The
software industry faces the problem of developing
applications for heterogeneous devices with different
UIs, often conceptually disparate. For example, the
same application may be run on a laptop using a
graphical user interface (GUI) and on a pocket PC using
a natural speech user interface (NSUI).

The automatic generation of device specific user
interfaces does not have a widely accepted solution,
even though it is a subject of intensive research[1].
Simply by looking at the variety of available interfaces
the complexity of the problem is apparent. Device
interfaces can include displays, keyboards, touch
screens, natural speech, and others. Displays range

from 96 to 192 dots per inch with areas of a few square
inches to multiple square feet. The problem is
compounded by the fact that these devices can employ
a variety of interface libraries for implementing the
same type of user interface.

We present a generic approach for the development of
Java applications with rich user interfaces designated
for heterogeneous devices. We introduce an abstract
user interface (AUI) library used in the software
development process. We also define, in XML files, a
mapping between this abstraction and a concrete user
interface library used on the target device. When an
application is started on a particular platform we build
the concrete user interface by instrumenting its Java
bytecode on-the-fly using metadata from the XML files.
The XML files can reside on the device or be available
remotely through a look-up service. Our approach
eliminates the need for source code modifications,
increasing the speed, reducing the cost, and increasing
the reliability of the software development. In our
approach the work required for defining the UI library
mappings is amortized over multiple applications and
should be provided by the vendor that supplies the AUI
library. Hence, from software developer’s point of view,
adopting our approach does not add more complexity
or consequential manipulations.

The rich ensemble of computational devices in our
personal environment employ different user interfaces,
while providing enough computational power to run the
Java runtime environment. Our approach takes
advantage of the common runtime allowing a program
to be executed on multiple devices with diverse user
interfaces. Application development is not hampered by
issues arising from the diverse Human-Computer

 3

Interaction (HCI) models engendered by multiple user
interfaces required for the application.

Our Approach
The main goal of this project is to create a general
mechanism for building the user interface of Java
applications targeted for heterogeneous devices. We
provide software developers with appropriate
abstractions—universal enough to be mapped to
diverse types of UIs and intuitive enough to allow
almost effortless adoption. The variety of potential host
devices is limited only by the device’s ability to run a
Java Virtual Machine (JVM). This widens the scope of
potential platforms to laptops, pocket PCs, PDAs, and
smart phones, each of which runs either a J2ME [2] or
a J2SE [3] environment.

The key idea behind our work is the development of an
abstract user interface (AUI) layer, implemented as a
Java library, which can be mapped to a variety of
concrete UI libraries. Our AUI library defines widgets
used in the software development process. The AUI
widgets are mapped later to concrete widgets of the UI
library for the target device.

The process of dynamic UI construction in a platform
dependent way is accomplished on-the-fly through Java
bytecode instrumentation. We use XML files to define
the semantics for mapping at the bytecode level from
the AUI library to a concrete UI library. The UI
generation is performed just before a class of the target
application developed with our AUI library is loaded into
the JVM. From the execution point of view, the
application loaded in the JVM is the same as if it was
written and compiled with the corresponding concrete
UI library. The bytecode of an application written with
the AUI library is instrumented on-the-fly to match the

bytecode of the same application written with a
concrete UI library. This is accomplished by providing
our system with the rules for mapping from the AUI to
a concrete UI library.

The AUI Library consists of widgets that are at a higher
level of abstraction and offer a wider range of
properties than those of a standard UI library to
facilitate mapping to conceptually different UI libraries.
We have developed a set of abstract widgets and used
these widgets to manually rewrite an example
application as if it had been initially developed with the
AUI library. We have developed only the widgets
required for implementing the example application,
with the goal of exploring the applicability of our
approach. Currently the AUI library consists of the
following widgets: Action, Conversation, Group, Label,
MultipleChoice, Text, and Widget, the super class for all
widgets.

System Architecture
Our approach to user interface generation on-the-fly
via Java bytecode instrumentation imposes the need for
a runtime environment that performs the bytecode
manipulations. We provide a runtime environment
called BUILD (Builder of User Interfaces for Local
Devices) that is responsible for running and
instrumenting the bytecode of a launched application.
BUILD provides a layer between the Java Virtual
Machine and the application developed with the AUI
library, allowing us to make bytecode manipulations
while loading the application classes.

The architecture of BUILD consists of several
interconnected modules organized in a loosely coupled
fashion. Figure 1 presents a schematic representation

 4

of the system architecture including the resources
consumed or modified by the system.

Figure 1. Software architecture

The main modules of BUILD are the Application
Launcher, the Instrumenter, and the Interface Mapper.

The Application Launcher is responsible for replacing
the application class loader with a custom one,
initializing the system, and starting the target
application. We replace the application class loader with
a custom loader to satisfy two requirements:

- Accessing the class definition before it is loaded
into the JVM.

- Instrumenting the appropriate classes of the
target application.

Satisfying the first requirement allows us to modify the
class definition before loading the class into the JVM.
Satisfying the second requirement guarantees that all
classes of the launched application are consistent when
passed through the bytecode manipulation routine.
Once the custom class loader succeeds to load a class
definition it passes the class definition to the bytecode
manipulation routine, and then loads the potentially
modified class into the JVM. After the application class
loader has been replaced, the Application Launcher
instantiates and initializes the Instrumenter. Finally, the
Application Launcher invokes the main class of the
launched application via reflection.

The Instrumenter is responsible for the actual
manipulation of the Java bytecode. It implements a
simple interface with a single method that takes as a
parameter a class definition and returns a modified
version of the class if manipulation was necessary. The
interface between the Application Launcher and the
Instrumenter allows the user to provide a custom
implementation of the Instrumenter. The Instrumenter
instantiates and initializes the Interface Mapper.

The Interface Mapper is responsible for guiding the
Instrumenter during the class manipulation phase. It
implements a simple interface defining the contract
with the Instrumenter. This implementation allows a
user provided Interface Mapper to be used. The
Interface Mapper reads the interface mapping
definitions from XML files and builds appropriate data
structures allowing efficient lookup. During the
initialization phase of the Interface Mapper, a
properties file determines which XML files should be

 5

parsed, containing the proper interface mapping
definitions.

The resources required or modified by BUILD are the
launched application, the interface mapper properties
file, the XML files defining the interface mappings, and
the concrete user interface library to which a launched
application is to be adapted.

The Launched Application is the compiled bytecode of
an application developed with the AUI library provided
by our framework. Note that we do not require the
source code of the launched application since all
manipulations are performed at the bytecode level.

As explained in the previous paragraphs the Interface
Mapper parses a properties file that defines which of
the XML files have the mapping definitions that
correspond to a particular concrete UI library.

There are three types of XML files that define the user
interface mapping and store metadata used by the
Instrumenter during the class manipulation phase. The
mapping files types are:

- Mapping from class to class

- Mapping from method signatures to method
signatures

- Mapping from method calls to method calls

The concrete UI library is the library to which a
launched application is to be adapted. Even though this
resource is not directly required by BUILD, it is
presented in the schema to illustrate the need for
providing the concrete user interface library because
after the instrumentation phase the launched
application depends on the concrete library.

Example
In this section we demonstrate how a real life
application written with our AUI library and executed
with BUILD could be presented with different user
interfaces. Since there is no real life application
developed with the AUI library, we identified an
application written with a concrete UI library and
rewrote its source code as if it had been developed with
the AUI library.

Our example is the Workout Generator application. It is
written in Java and interacts with the user through a
GUI implemented with the SWT library[18]. The
program takes as input a user’s biometric
characteristics consisting of gender, height, weight,
age, metabolism, and experience level. On the basis of
this input data the application generates a suitable
weekly workout program. Figure 2 shows a screenshot
of the original version of the Workout Generator.

. Figure 2. Screenshot of the workout generator

 6

Rewriting the source code of the example application
with the AUI library was straightforward. After
successfully rewriting the Workout Generator we
examined the obtained source code to confirm that the
use of our AUI library did not add complexity.

The modified application written with the AUI library
was successfully executed using two different
mappings—one to SWT and one to a natural speech
library called BaradVoice. As a result, the same
application is presented users with two conceptually
different interfaces—a graphical user interface and a
natural speech user interface. The GUI version has
exactly the same appearance as the original version
presented on Figure 8 and the NSUI version performs
consecutive interaction with the user traversing all
input widgets first and then providing a choice of the
possible actions.

Conclusion
In this paper we presented our approach to automatic
user interface generation for heterogeneous devices via
Java bytecode instrumentation. We have developed an
abstract library that is used during the software
development process. We have also defined the
mapping from the abstract library to two concrete user
interface libraries—SWT and BaradVoice. Our
technique uses metadata for the interface mapping
during the application loading phase to instrument its
bytecode for generating the appropriate user interface.
We demonstrated the feasibility of our approach with
an example application.

Providing the ability to write applications that will
execute effectively on a variety of devices with
heterogeneous user interfaces is important as users
increasingly adopt new technologies. The method we

presented reduces the burden on software developers
to rapidly release versions of applications for multiple
target devices and benefits users by allowing them to
run their applications on any device.

References
 [1] Anwar, Z., Al-Muhtadi, J., Yurcik, W., and

Campbell, R. Plethora: A Framework for Converting
Graphic Applications to Run in a Ubiquitous
Environment , Mobile and Ubiquitous Systems:
Networking and Services, 2005

[2] Java ME at a Glance, 2007. Retrieved October 15,
2007 from Sun Developer Network(SDN):
http://java.sun.com/javame/index.jsp

[3] Java SE at a Glance, 2007. Retrieved October 15,
2007 from Sun Developer Network(SDN): http://
java.sun.com/javame/index.jsp

http://java.sun.com/javame/index.jsp

	
	Copyright is held by the author/owner(s).
	CHI 2008, April 5 – April 10, 2008, Florence, Italy
	 Abstract
	Keywords
	ACM Classification Keywords
	Introduction
	Our Approach
	System Architecture
	Example
	Conclusion
	References

