
“Large” Abstractions for Software Engineering
Dewayne E Perry

The Department of Electrical and Computer Engineering
The University of Texas at Austin

perry@ece.utexas.edu

ABSTRACT
Abstraction is one of the primary intellectual tools we have for
managing complexity in software systems. When we think of
abstractions we usually think about “small” abstractions, such as
data abstraction (parameterization), type abstraction
(polymorphism) and procedural or functional abstraction. These
are the everyday kinds of things we work with – finding the right
concepts to make the expression of our software solutions easier
to understand and easier to reason about. Here I propose we
think about “large” abstractions – abstractions that provide critical
distinctions about our field of software engineering as a whole;
abstractions that enable us to see what we do in different and
important ways and provide significant improvements in how we
do software engineering. I give a number of examples and
delineate why I think they have been, and still are, important.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: Software Engineering
Foundations

General Terms
Design, Theory

Keywords
Abstraction-in-the-large, Foundations of Software Engineering

1. INTRODUCTION
Modularity, encapsulation and abstraction are the primary
intellectual tools for managing complexity in software systems,
but the greatest of these is abstraction. Finding the right, or most
appropriate, abstractions is the most important part of engineering
software systems: they provide understanding; they provide the
right veneer over complex underlying implementations; they
provide the basic vocabulary (data and operations; nouns and
verbs) for each layer of our virtual machines to express the
solutions to the problems to solve. They are the fundamental job
of software engineering.

Indeed, abstraction is the fundamental job of software engineering
research as well: finding the right abstractions for software
engineers to use in their quest for the right abstractions to solve

their problems; finding the right abstractions that remove more of
the “accidental underbrush” of complexity [1]

I call them “large” abstractions because they address large issues
in software engineering and provide large insights into the way
we think about the software engineering of software systems.
“Large” abstractions address foundational issues of how we do
software engineering. “Small” abstractions are the grist of our
daily lives building software systems. I will explore how these
various “large” abstractions have affected the way we engineer
software systems.

2. Structured Programming
Structured Programming [2] is one of the earliest such "large"
abstractions and one that focuses on programming: it provides
precisely the right focus on what is critical in writing the simplest,
understandable programs whose static structure provides us with
useful clues and understanding about their dynamic structure.

As we spend a significant amount of time rediscovering the
design of a system by looking at code, the issues here are critical
in the life of a software system and its successful evolution. The
code as presented represents a static view of the program and its
presentation is a fundamental aspect contributing to its
comprehensibility. The fact that this static view represents a
dynamic structure compounds the need for mechanisms to ease,
enhance, and promote the necessary ease of comprehensibility.

Thus, the limited use of program structures to the basic sequence,
selection and iteration, while constraining, go to significant
lengths towards providing a static program view that supports the
needed comprehensibility of the dynamics of that program.

3. Virtual Machines
While structure programming provided a focus on the structure of
code statements, virtual machines [3] provide a focus on the
structure, the organization, of abstractions themselves. As
commonly noted, component interfaces provide a language for the
concepts provided by that component. Done well, the interface of
a component provides a coherent and related set of abstractions.
The important question is how to organize a set of abstractions
that we use in building a system? The “large” abstraction of a
virtual machine provides the mechanism for such an organization.
The basic strategy in creating a virtual machine is to build, layer
by layer, an increasingly rich set of abstractions. You start by
building a layer on top of the operating system or the
programming language run-time system, building increasingly
abstract interfaces until you have a layer with just the right
concepts and abstractions to easily build you application so that it
is simple to understand and simple to determine whether it is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ROA’08, May 11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-028-7/08/05...$5.00.

doing what it is supposed to do. You build increasingly higher-
level languages for each next layer to implement their abstractions
in.
The primary utility of virtual machines is that a layer or any part
of a layer can be swapped out for a different implementation. For
example, the underlying operating system and the underlying
machine may be swapped out by building a new but identical
virtual machine on top of another operating system and machine.

4. Program and Product Families
Parnas [3] also introduced the notion of a family of programs
where parts of those families are common and parts are variable.
The original idea was addressed to the problem of evolution: a
module evolves over time and parts of those evolved components
are common with the previous ones, and parts are new – i.e., parts
have been changed to accommodate new features, new
improvements, or to fix faults. The family orientation is primarily
a vertical one: the sequence of changes to a module and the issues
of encapsulating those sets of changes.
None-the-less, this “large” abstraction set the stage for what has
become product-line architecture, where the commonality is
across products, not across version, and the variability is what
differentiates the various products from one another. As apposed
to program families where the relationship is a vertical one, the
relationship here is a horizontal one.
This notion of product families has been one of the more
successful drivers of modern-day reuse by means of capitalizing
on the assets common across related products. In addition to the
benefits of reuse, there are the benefits of reduced maintenance
across products via the inherent commonality.

5. Essential versus Accidental Characteristics
In his seminal paper, “No Silver Bullet” [1], Brooks distinguishes
between essential and accidental characteristics of building
software systems. Essential characteristics are basic facts of life
and need to be managed with the best intellectual and automated
tools we have at our disposal. Accidental characteristics are those
that we may, and indeed should, remedy if we can find
appropriate solutions.

These accidental characteristics typically represent inadequacies
or limitations that we encounter in various aspects of engineering
software systems. I characterize the accidental characteristics that
Brooks discusses as follows:

• Inadequate abstractions, expressions;

• Inadequate modes of expression;

• Inadequate support and resources; and

• Inadequate knowledge.

Because of these inadequacies, the complexity (our most critical
essential characteristic) of our systems and the processes of
building those systems is greater than it needs to be. They form
the “accidental underbrush” of complexity that needs to be
cleared away.

The importance of this “large” abstraction is that it focuses on a
critical distinction that is useful in driving critical research in
software engineering, first to find ways of removing this

accidental underbrush, and second to find ways to manage the
problems of the essential characteristics.

6. Problem versus Solution Space
In an invited keynote talk at ICSE ’95 in Seattle [4], Jackson
delineated a useful distinction between the problem space and the
solution space, and proceeded to expand on the differences
between them and the interesting and useful relationships between
them that are incorporated into our software systems.
The problem space is in the world and the solution space is in the
machine. It is all too common for software engineers to think
entirely in the solution space, even when talking with customers
for the software systems they are building. It is incumbent on the
software engineers to fully understand the problem space, the
domain of the problem and its domain abstractions and concepts.
Indeed my work studying software faults shows that the easiest
way to improve the quality of a system is to hire people who
understand the problem domain [5].
Jackson especially draws attention to two important aspects of the
problem space relative to the solution space. First, there is a
distinct shape to the problem. Further the shape of the solution
should reflect that shape of the problem. Second, while we often
hear the design advice for a module to do one thing well, the
world – that is, the problem space – is design with the fullest
application of the Shanley Principle of multifaceted design.

7. Components and Connectors
Software architecture [6] is commonly considered to be composed
of components (originally processing and data elements, which
have been conflated) and connectors. While there are “connector
atheists” who maintain there is structurally no difference between
connectors and components (which we admit is true), there is an
important logical difference. It is a logical rather than a physical
distinction that is important.

Components represent computations and behaviors that are to be
composed to create larger architectural components as well as a
system itself. Connectors represent interactions between and
among components which may provide the following in
supporting those interactions:

• Communication (the most commonly considered
purpose);

• Coordination (there is an entire community dedicated to
this purpose – separating computation from
coordination); and

• Mediation.

The advantage of this “large” abstraction is that of separation of
concerns. There is some hope that further exploitation of this
separation may enable some of the currently integral non-
functional properties to be come composable – that is, that some
of the nonfunctional properties may be isolated into connectors
and thus be separated from the computations and behavior they
mitigate.

8. Computations versus Behaviors
One of the most important insights recently is one due to Turski,
made in a keynote address at FASE 2000 [7] in which he

distinguished between programs as computations and programs as
behaviors. These two abstractions provide a keen and
fundamental distinction and a deep understanding of different
views about programs and systems, and clarify much of the
confusion about differing and often conflicting views of software
engineering.

Computer scientists often view programs and systems as
computations and typically these computations viewed as

• Bounded, neat problems, with

• Underlying theory available, that

• Admit of clean, theoretically nice solutions.

Software Engineers on the other hand tend to view programs and
systems as behaviors, which often contain computations as
components of some of that behavior. These behaviors represent

• Unbounded, messy problems, where there is

• Little theory is available (and often have to make it up
as we go along), and which are

• Harder to formally describe and reason about.

This large abstraction is important because it makes a critical
distinction that is needed to understand the tension between
computer science and software engineering and the different
aspects that are critical in building and evolving software systems.

9. Theories and Models Self-Applied
It is this fact mentioned above that we have many situations
where little theory available that has focused some of my recent
research [9] on the problem of theories and models [8]. My
concern in this research is a “large” abstraction for software
engineering: defining a notion of theories and models that
provides a unifying approach to software engineering as a both
scientific and engineering discipline. It is the empirical aspect of
science that is of most concern in my research and its relationship
to software engineering.
Clearly, there are cases where our underlying theories are well
developed: relational databases, the generation of lexical
analyzers and parsers, etc. But what about those cases where we
have little theory at all and have to make it up. How do we
approach the engineering of a software system in this case. I
believe that with an appropriate understand of theories and their
models, we can provide a “large” abstraction that provides a
unified view of our endeavor and clarifies both practice and
research in software engineering.
The theories we use in the engineering of software systems are, in
a variety of ways, richer that we normally think of. They may
include the hard aspects of theory we associate with the physical
sciences. They may include, and often do, the soft (probabilistic)
aspects we associate with the behavioral sciences. Interestingly,
both of these approaches are based on observations of the world.
These aspects of theory change on the basis of new observations
or new interpretations of observations.
But our theories also include arbitrary aspects that come about by
design decisions (which is what makes us a science of the

artificial). In this, our theories are like legal theories; they are
based on decisions about the world. These theories change on the
basis of new decisions or new interpretations of those decisions.
Thus, I believe it is a useful abstraction to equate theory and
requirements, models and implemented systems (with out
stretching Maibaum and Turski too much). This then forms an
interesting and fruitful basis for unifying a number of seemingly
unrelated aspects of software engineering research and practice.
My work on this idea is still on-going.

10. Conclusions
There is a tendency when considering abstraction to think of
abstraction in the small: types, objects, functions, procedures etc
– i.e., getting just the right concepts for the problem and its
solution. Obviously these are important. They enable us to
manage complexity and evolution.
But, there are also abstractions in the large that help us to
understand better how to think about software engineering itself
as well as how to think about software systems as a whole (rather
than just about their bits and pieces).
It is with abstraction in the large in mind, that I have presented a
number of what I consider to be useful examples of them, why
they are important, and how they help us at the engineering in the
large level.

11. References
[1] F P Brooks. “No Silver Bullet” in The Mythical Man Month,

Anniversary Edition, Reading Mass: Addison Wesley, 1995.
[2] O-J Dahl, E W Dijkstra and C A R Hoare. Structured

Programming, London and New York: Academic Press,
1972.

[3] D L Parnas. "On the Design and Development of Program
Families," IEEE TSE. SE-2(1):1-9, 1976

[4] M Jackson. “The World and the Machine”. In Proceedings
of the International Conference on Software Engineering,
Seattle WA, 1995.

[5] D E Perry and C S Stieg. “Software Faults in Evolving a
Large, Real-Time System: a Case Study”. In Proceedings of
the 4th European Software Engineering Conference,
Garmisch Germany, 1993.

[6] D E and A L Wolf. “Foundations for the Study of Software
Architure. ACM SIFSOFT Software Engineering Notes, 17:4
(October 1992).

[7] W M Turski. “Essay on Software Engineering at the Turn of
Century”. Fundamental Approaches to Software
Engineering, Berlin Germany, 2000.

[8] W M Turski and T S E Maibaum. The Specification of
Computer Programs. Reading Mass: Addison Wesley, 1987.

[9] D E Perry. “A Foundation for Empirical Software Engineer-
ing”, March 2007. http://users.ece.utexas.edu/~perry/work/

 papers/070319-DP-fese.pdf

http://users.ece.utexas.edu/%7Eperry/work/

	Abstraction-in-the-large, Foundations of Software Engineering
	1. INTRODUCTION
	2. Structured Programming
	3. Virtual Machines
	4. Program and Product Families
	5. Essential versus Accidental Characteristics
	6. Problem versus Solution Space
	7. Components and Connectors
	8. Computations versus Behaviors
	9. Theories and Models Self-Applied
	10. Conclusions
	11. References

