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ABSTRACT 
Abstraction is one of the primary intellectual tools we have for 
managing complexity in software systems.   When we think of 
abstractions we usually think about “small” abstractions, such as 
data abstraction (parameterization), type abstraction 
(polymorphism) and procedural or functional abstraction.   These 
are the everyday kinds of things we work with – finding the right 
concepts to make the expression of our software solutions easier 
to understand and easier to reason about.   Here I propose we 
think about “large” abstractions – abstractions that provide critical 
distinctions about our field of software engineering as a whole; 
abstractions that enable us to see what we do in different and 
important ways and provide significant improvements in how we 
do software engineering.  I give a number of examples and 
delineate why I think they have been, and still are, important. 
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Foundations 
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1. INTRODUCTION 
Modularity, encapsulation and abstraction are the primary 
intellectual tools for managing complexity in software systems, 
but the greatest of these is abstraction. Finding the right, or most 
appropriate, abstractions is the most important part of engineering 
software systems: they provide understanding; they provide the 
right veneer over complex underlying implementations; they 
provide the basic vocabulary (data and operations; nouns and 
verbs) for each layer of our virtual machines to express the 
solutions to the problems to solve. They are the fundamental job 
of software engineering.  

Indeed, abstraction is the fundamental job of software engineering 
research as well: finding the right abstractions for software 
engineers to use in their quest for the right abstractions to solve 

their problems; finding the right abstractions that remove more of 
the “accidental underbrush” of complexity [1] 

I call them “large” abstractions because they address large issues 
in software engineering and provide large insights into the way 
we think about the software engineering of software systems. 
“Large” abstractions address foundational issues of how we do 
software engineering.  “Small” abstractions are the grist of our 
daily lives building software systems.  I will explore how these 
various “large” abstractions have affected the way we engineer 
software systems. 

2. Structured Programming 
Structured Programming [2] is one of the earliest such "large" 
abstractions and one that focuses on programming: it provides 
precisely the right focus on what is critical in writing the simplest, 
understandable programs whose static structure provides us with 
useful clues and understanding about their dynamic structure. 

As we spend a significant amount of time rediscovering the 
design of a system by looking at code, the issues here are critical 
in the life of a software system and its successful evolution.   The 
code as presented represents a static view of the program and its 
presentation is a fundamental aspect contributing to its 
comprehensibility.  The fact that this static view represents a 
dynamic structure compounds the need for mechanisms to ease, 
enhance, and promote the necessary ease of comprehensibility. 

Thus, the limited use of program structures to the basic sequence, 
selection and iteration, while constraining, go to significant 
lengths towards providing a static program view that supports the 
needed comprehensibility of the dynamics of that program. 

3. Virtual Machines 
While structure programming provided a focus on the structure of 
code statements, virtual machines [3] provide a focus on the 
structure, the organization, of abstractions themselves.  As 
commonly noted, component interfaces provide a language for the 
concepts provided by that component.  Done well, the interface of 
a component provides a coherent and related set of abstractions. 
The important question is how to organize a set of abstractions 
that we use in building a system?  The “large” abstraction of a 
virtual machine provides the mechanism for such an organization.  
The basic strategy in creating a virtual machine is to build, layer 
by layer, an increasingly rich set of abstractions.  You start by 
building a layer on top of the operating system or the 
programming language run-time system, building increasingly 
abstract interfaces until you have a layer with just the right 
concepts and abstractions to easily build you application so that it 
is simple to understand and simple to determine whether it is 
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doing what it is supposed to do.  You build increasingly higher-
level languages for each next layer to implement their abstractions 
in. 
The primary utility of virtual machines is that a layer or any part 
of a layer can be swapped out for a different implementation.  For 
example, the underlying operating system and the underlying 
machine may be swapped out by building a new but identical 
virtual machine on top of another operating system and machine. 

4. Program and Product Families 
Parnas [3] also introduced the notion of a family of programs 
where parts of those families are common and parts are variable.  
The original idea was addressed to the problem of evolution: a 
module evolves over time and parts of those evolved components 
are common with the previous ones, and parts are new – i.e., parts 
have been changed to accommodate new features, new 
improvements, or to fix faults.  The family orientation is primarily 
a vertical one: the sequence of changes to a module and the issues 
of encapsulating those sets of changes. 
None-the-less, this “large” abstraction set the stage for what has 
become product-line architecture, where the commonality is 
across products, not across version, and the variability is what 
differentiates the various products from one another.  As apposed 
to program families where the relationship is a vertical one, the 
relationship here is a horizontal one. 
This notion of product families has been one of the more 
successful drivers of modern-day reuse by means of capitalizing 
on the assets common across related products.  In addition to the 
benefits of reuse, there are the benefits of reduced maintenance 
across products via the inherent commonality. 

5. Essential versus Accidental Characteristics 
In his seminal paper, “No Silver Bullet” [1], Brooks distinguishes 
between essential and accidental characteristics of building 
software systems.  Essential characteristics are basic facts of life 
and need to be managed with the best intellectual and automated 
tools we have at our disposal.  Accidental characteristics are those 
that we may, and indeed should, remedy if we can find 
appropriate solutions.  

These accidental characteristics typically represent inadequacies 
or limitations that we encounter in various aspects of engineering 
software systems.  I characterize the accidental characteristics that 
Brooks discusses as follows: 

• Inadequate abstractions, expressions; 

• Inadequate modes of expression; 

• Inadequate support and resources; and 

• Inadequate knowledge. 

Because of these inadequacies, the complexity (our most critical 
essential characteristic) of our systems and the processes of 
building those systems is greater than it needs to be.  They form 
the “accidental underbrush” of complexity that needs to be 
cleared away.   

The importance of this “large” abstraction is that it focuses on a 
critical distinction that is useful in driving critical research in 
software engineering, first to find ways of removing this 

accidental underbrush, and second to find ways to manage the 
problems of the essential characteristics. 

6. Problem versus Solution Space 
In an invited keynote talk at ICSE ’95 in Seattle [4], Jackson 
delineated a useful distinction between the problem space and the 
solution space, and proceeded to expand on the differences 
between them and the interesting and useful relationships between 
them that are incorporated into our software systems.   
The problem space is in the world and the solution space is in the 
machine.  It is all too common for software engineers to think 
entirely in the solution space, even when talking with customers 
for the software systems they are building.  It is incumbent on the 
software engineers to fully understand the problem space, the 
domain of the problem and its domain abstractions and concepts.  
Indeed my work studying software faults shows that the easiest 
way to improve the quality of a system is to hire people who 
understand the problem domain [5]. 
Jackson especially draws attention to two important aspects of the 
problem space relative to the solution space.  First, there is a 
distinct shape to the problem.  Further the shape of the solution 
should reflect that shape of the problem.  Second, while we often 
hear the design advice for a module to do one thing well, the 
world – that is, the problem space – is design with the fullest 
application of the Shanley Principle of multifaceted design. 

7. Components and Connectors 
Software architecture [6] is commonly considered to be composed 
of components (originally processing and data elements, which 
have been conflated) and connectors.  While there are “connector 
atheists” who maintain there is structurally no difference between 
connectors and components (which we admit is true), there is an 
important logical difference.  It is a logical rather than a physical 
distinction that is important. 

Components represent computations and behaviors that are to be 
composed to create larger architectural components as well as a 
system itself.  Connectors represent interactions between and 
among components which may provide the following  in 
supporting those interactions: 

• Communication (the most commonly considered 
purpose); 

• Coordination (there is an entire community dedicated to 
this purpose – separating computation from 
coordination); and 

• Mediation. 

The advantage of this “large” abstraction is that of separation of 
concerns.  There is some hope that further exploitation of this 
separation may enable some of the currently integral non-
functional properties to be come composable – that is, that some 
of the nonfunctional properties may be isolated into connectors 
and thus be separated from the computations and behavior they 
mitigate. 

8. Computations versus Behaviors 
One of the most important insights recently is one due to Turski, 
made in a keynote address at FASE 2000 [7] in which he 



distinguished between programs as computations and programs as 
behaviors. These two abstractions provide a keen and 
fundamental distinction and a deep understanding of different 
views  about programs and systems, and clarify much of the 
confusion about differing and often conflicting views of software 
engineering. 

Computer scientists often view programs and systems as 
computations and typically these computations viewed as 

• Bounded, neat problems, with 

• Underlying theory available, that 

• Admit of clean, theoretically nice solutions. 

Software Engineers on the other hand tend to view programs and 
systems as behaviors, which often contain computations as 
components of some of that behavior.  These behaviors represent 

• Unbounded, messy problems, where there is 

• Little theory is available (and often have to make it up 
as we go along), and which are 

• Harder to formally describe and reason about. 

This large abstraction is important because it makes a critical 
distinction that is needed to understand the tension between 
computer science and software engineering and the different 
aspects that are critical in building and evolving software systems. 

9. Theories and Models Self-Applied 
It is this fact mentioned above that we have many situations 
where little theory available that has focused some of my recent 
research [9] on the problem of theories and models [8].  My 
concern in this research is a “large” abstraction for software 
engineering:  defining a notion of theories and models that 
provides a unifying approach to software engineering as a both 
scientific and engineering discipline.  It is the empirical aspect of 
science that is of most concern in my research and its relationship 
to software engineering. 
Clearly, there are cases where our underlying theories are well 
developed: relational databases, the generation of lexical 
analyzers and parsers, etc.  But what about those cases where we 
have little theory at all and have to make it up.  How do we 
approach the engineering of a software system in this case.  I 
believe that with an appropriate understand of theories and their 
models, we can provide a “large” abstraction that provides a 
unified view of our endeavor and clarifies both practice and 
research in software engineering. 
The theories we use in the engineering of software systems are, in 
a variety of ways, richer that we normally think of.  They may 
include the hard aspects of theory we associate with the physical 
sciences.  They may include, and often do, the soft (probabilistic) 
aspects we associate with the behavioral sciences.  Interestingly, 
both of these approaches are based on observations of the world.  
These aspects of theory change on the basis of new observations 
or new interpretations of observations. 
But our theories also include arbitrary aspects that come about by 
design decisions (which is what makes us a science of the 

artificial).  In this, our theories are like legal theories; they are 
based on decisions about the world.  These theories change on the 
basis of new decisions or new interpretations of those decisions. 
Thus, I believe it is a useful abstraction to equate theory and 
requirements, models and implemented systems (with out 
stretching Maibaum and Turski too much).  This then forms an 
interesting and fruitful basis for unifying a number of seemingly 
unrelated aspects of software engineering research and practice.  
My work on this idea is still on-going. 

10. Conclusions 
There is a tendency when considering abstraction to think of 
abstraction in the small: types, objects, functions, procedures etc 
– i.e., getting just the right concepts for the problem and its 
solution.  Obviously these are important.  They enable us to 
manage complexity and evolution. 
But, there are also abstractions in the large that help us to 
understand better how to think about software engineering itself 
as well as how to think about software systems as a whole (rather 
than just about their bits and pieces). 
It is with abstraction in the large in mind, that I have presented a 
number of what I consider to be useful examples of them, why 
they are important, and how they help us at the engineering in the 
large level. 
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