
Test Generation for Graphical User Interfaces Based on Symbolic Execution

Svetoslav Ganov1, Chip Killmar2, Sarfraz Khurshid3, Dewayne Perry1
1 Laboratory of Experimental Software Engineering, The University of Texas at Austin

2 iTKO Inc
3 Software Testing and Verification Group, The University of Texas at Austin

{svetoslavganov, ckillmar}@mail.utexas.edu, {khurshid, perry}@ece.utexas.edu

Abstract
While Graphical User Interfaces (GUIs) have become
ubiquitous, testing them remains largely ad-hoc. Since
the state of a GUI is defined by a sequence of events on
the GUI's widgets, a test input for a GUI is such an
event sequence. Due to the combinatorial nature of the
sequences, testing a GUI thoroughly is problematic
and time-consuming. Moreover, the wide range of
possible values for certain GUI widgets, such as a
textbox, compounds the problem.
This paper presents a novel test generation approach
based on symbolic execution to obtain data inputs and
enumerate event sequences that are likely to maximize
code coverage of a GUI application. Key contributions
are introducing the technique of symbolic execution in
GUI testing (addressing a common weakness of
traditional GUI testing frameworks) and performing
symbolic execution over strings (in addition to
primitives). Doing so minimizes the number of event
sequences that form the resulting test suite. To
determine feasibility of path conditions that arise in
symbolic execution, we implement a solver for
constraints over strings (in addition to primitives). We
evaluate our test generation approach.

General Terms
Verification, Reliability

Keywords
D.2.5 Symbolic Execution, D.2.5 Testing Strategies,
D.2.5 Testing Tools

1. Introduction
A Graphical User Interface (GUI) is a convenient way
to interact with the computer. It consists of virtual
objects (widgets) that are more intuitive to use, for
example buttons, edit boxes, etc. While GUIs have
become ubiquitous, testing them remains largely ad-
hoc. In contrast with console applications where there
is only one point of interaction (the command line),
GUIs provide multiple points each of which might
have different states. This structure makes GUI testing
especially challenging because of its large input space.

A classic challenge in GUI testing is how to select a
feasible number of event sequences, given the
combinatorial explosion due to arbitrary event
interleavings. To illustrate, consider testing a GUI with
five buttons, where any sequence of button clicks is a
valid GUI input. Exhaustive testing requires trying all
120 possible combinations because in the internal logic
of the GUI, triggering of one event before another may
cause execution of different code segments.
An orthogonal challenge is how to select values for
data widgets, i.e., GUI widgets that are used for user
input, such as textboxes, edit-boxes and combo-boxes,
and can have an extremely large space of possible
values. To illustrate, consider testing a GUI with one
textbox that takes a ten character string as an input.
Exhaustive testing requires 1026 possible input strings
(assuming we limit each character to be from the
English alphabet in lower-case).
Automation of GUI testing has traditionally focused on
minimizing the event sequences. Data widgets have
either been abstracted away by not considering GUI
behaviors dependent on data values, or populated by
values generated at random, or selected from a
manually constructed set consisting of a small number
of values [7] [10] [14] [15]. As a consequence, data
dependent behaviors are inadequately tested. For
example, consider generating a string value that is
necessary for satisfying an if-condition. Random
selection is unlikely to generate the desired value.
Manual selection requires a tedious code inspection
and does not scale. A specification-based (black-box)
approach may find this “special” value, however it
would require detailed specifications, which are often
not feasible to write and often not provided.
This paper presents Barad, a novel GUI testing
framework based on symbolic execution [5] [6] [13].
Barad generates values for data widgets and enables a
systematic approach that uniformly addresses the data-
flow as well as event-flow for white-box testing of a
GUI application. We symbolically execute the code of
GUI event handlers and generate data inputs that

maximize code coverage while minimizing the number
of tests needed to systematically check the GUI.
During symbolic execution all reachable paths of the
program are systematically explored and (for decidable
constraints) infeasible paths are detected. For each
feasible path data inputs for the GUI widgets are
generated. Because of the multiple points of interaction
of GUIs these inputs may include the current state of
several GUI widgets. These widgets could be not only
data widgets but also sequence widgets—widgets used
for user input in the form of event sequences (buttons,
check-boxes, radio-buttons). Identifying a state of the
GUI that allows us to execute a program path (selected
radio-button) defines an event sequence (selecting the
radio-button) that should be applied to the GUI to
reach this state. This way our approach also addresses
the event-flow of GUI testing.
In this paper we explore the applicability of symbolic
execution for systematically testing GUI applications
by generating data inputs for the GUI widgets. We
present an algorithm that generates such values and
implements efficient solvers for strings and primitives.
Is also minimizes the number of the generated inputs
while (ideally) preserving the code coverage. We have
implemented our algorithm in a prototype Barad for
testing of Java applications. Barad performs analysis of
a GUI application fully automatically by instrumenting
its Java bytecode.

2. Example
This section provides the basics of how our technique
is applied to GUI testing. The goal is to show an
example where conventional GUI testing techniques
would most probably achieve low coverage unless a
prohibitively large test suite is used.
The GUI presented in Figure 1 is a program (300 lines
of code) we developed to demonstrate our approach. It
calculates the amount due for a train ticket. A user
must provide a passenger class, name, ID, group to
which she belongs, and begin and end points. The
passenger groups are Senior, Adult, Student, and Child.

Each passenger class has its own coefficient that is
used during the calculation. Each group has different
base price depending on the distance to be traveled,
which is the difference between the values in the text-

boxes From mile and To mile. The application has
multiple branches the execution of which depends on
user input both in the form of input data and event
sequence (i.e. selecting a radio button). Figure 2 shows
a code fragment for the Senior group. The calculation
method has twenty-two branches with conditions
nested three levels.

Using Barad a test suite is generated and run on the
GUI. Results are presented in Table 1. The full branch
and code coverage are not surprising since symbolic
execution guarantees visiting of all reachable branches.

Tests Branch Coverage Code Coverage Generation
time

22 100% 100% 4.34 sec

We next compare our approach to random test
generation. Our methodology is as follows. For the
passenger class we select randomly from—1st, and
2nd. For the group a random choice is made out of the
four possible values in the combo-box. The input for
the text-boxes From mile and To mile is a number
between zero and ninety-nine chosen randomly. For
randomization, the Java random class is used. Fifty test
suites, each with different seed, are generated and the
results averaged. Table 2 presents these results. The
results of the random test suite show that it should be
about twenty times larger to achieve nearly full
coverage.

Table 2. Results of randomly generated test suite
Tests Branch Coverage Code Coverage

400 96.3% 97.80%

During the symbolic execution it was ascertained that
one of the radio buttons for choosing company should

…
1 int distanceRange =
2 Integer.parseInt(text3.getText().trim())-
3 Integer.parseInt(text4.getText().trim());
4 String class = combo1.getText().trim();
5 if (group.equals("Senior")) {
6 if (distanceRange < 50) {
7 amountDue = 120 * coeficient;
8 } else if (distanceRange < 60) {
9 amountDue = 130 * coeficient;
19 } else if (distanceRange < 70) {
11 amountDue = 145 * coeficient;
12 } else if (distanceRange < 80) {
13 amountDue = 150 * coeficient;
14 } else if (distanceRange < 100){
15 amountDue = 160 * coeficient;
16 }
17 } else if (group.equals("Adult")) {

Figure 1. Example application

Table 1. Results of symbolically generated test suite

Figure 2. Code fragment for the Senior group

be pressed for any code to be executed. This
demonstrates the applicability of our approach for
identifying event sequences that are prerequisite for
the execution of a particular path.

3. Background
This section provides the reader with some background
knowledge about the processes of symbolic execution
and GUI testing.

3.1. Symbolic execution
Symbolic execution is execution of the original
program, but instead of concrete values to its variables
symbols are assigned. Every time a variable is
modified, its current value becomes a function of its
previous symbolic state and the current operation.
During symbolic execution of a program, symbolic
variables, a program counter, and a path condition are
maintained. The path condition contains accumulated
constraints over the input variables that must be
satisfied for visiting a particular branch. It is a
quantifier-free Boolean formula, such that if evaluated
as true, then there is at least one combination of inputs
that will execute the current branch. Intuitively, if the
path condition evaluates to false the branch is
unreachable. Every time the program encounters a
branch statement, all the possible outcomes are
explored. For example, if the execution reaches an if-
statement, there are two possible scenarios to be
considered. This exploration of all feasible paths
forms the execution tree of the program with nodes
representing the states and edges representing state
transitions. Consider the example in Figure 3.

The initial values of the variables X and Y are set as
symbols. Every time a symbolic variable is modified it
accumulates the operation as an expression. After
entering a particular branch the path condition (PC) is
updated and its satisfiability checked.

3.2. GUI event model
A GUI is an abstraction for providing the user with an
interface to interact with an application through actions
on virtual objects. User actions trigger events in the
GUI. The code executed upon such actions is placed in
event handlers that register for a specific event. While
the number of possible events accepted by a widget is
constant usually not all of these events have
corresponding handlers. Hence, focusing the analysis
on event handlers restricts the set of GUI events to be
explored during the GUI testing process.

3.3. GUI testing
Since contemporary software extensively uses GUIs to
interact with users, verifying GUI’s reliability becomes
important. There are two approaches to test GUIs.
The first is to keep the GUI light and move all the
business logic into the background, thus avoiding the
step of GUI testing. In this case the GUI could be
considered as a “skin” for the software. Since the main
portion of the application code is not in the GUI, it
may be tested using conventional techniques. This
approach places architectural limitations on system
designers. The second approach is testing to be
performed for which several different techniques exist.
First, there is the null case of omitting the testing; this
leads to production of lower quality software. Second,
the GUI is tested with tools that record and replay
event sequences [16]. This is laborious and time
consuming. Third, tools for automatic test generation,
execution, and assessment could be used [7] [10].
Our approach is focused on symbolic execution of
event handlers of GUIs. The handlers may implement
business logic or delegate to other entities. We
instrument the handlers and all methods called from
these handlers providing a technique that is applicable
regardless where the main processing occurs.
4. Barad: Symbolic execution for GUIs
This section presents Barad, our framework for GUI
testing. We provide an overview of the processing
performed by Barad.
4.1. Process overview
The process of GUI testing performed by Barad is
depicted on Figure 4. The initial phase is
instrumentation of the GUI event handlers’ bytecode
using the ASM [2] library. The next step is symbolic
execution of the instrumented code.

Figure 3. Program and its execution tree

line 4

line 1

x:X, y:Y
PC: true

 x:X, y:Y
PC: X < Y

x:X, y:Y
PC: X > Y

x:X + Y, y:Y
PC: X < Y

x:X, y:Y
PC: X >=Y

x:X, y:Y
PC: X >= Y && X < Y

false

1 int x, y
2 if (x > y) {
3 x =x + y;
4 } else {
5 if (x <y) {
6 printf(“true”);
7 } else {
8 printf(“false”);
9 }
10 }

line 2 line 6

line 8 line 10

As a result from the symbolic execution a log file and a
test suite are generated. The log file contains
constraints on the input variables and concrete values
for these variables (if the constraints are satisfiable).
The test suite is a script or XML file.

4.2. Symbolic primitives
Barad provides symbolic equivalents of all primitive
types (integer, float, Boolean) and defines the semantic
of operations on these types (character is represented
as string with length one). For symbolic integers and
floats supported operations are: and, or, addition,
difference, multiplication, division, less than, greater
than, greater than or equal and less than or equal.
Booleans are represented as integers.

4.3. Symbolic strings
Our symbolic string representation uses finite state
automata to model the set of possible values for a
string variable. Similar approach is used in [14]. We
represent a symbolic string (value of a GUI widget
field) as a finite state automaton (provided by [1]) and
beginning and end indexes. These indexes define the
initial and final position of the automaton sequence
that represents the value of the symbolic string. This
enables support of operations such as substring, starts
with, ends with, and character at (in addition to equal,
not equal, and concatenation). Path constraints on a
symbolic string are used to refine its automaton in way
that it rejects values contradicting the accumulated
path conditions. The benefit of using automata is that it

encapsulates all path conditions and possible values
serving as a constraint solver. Note that for each state
(created on visiting a new branch of the program) we
store a clone of modified variables (required for
backtracking) which requires a string constraint solver
to aggregate the path conditions on each string variable
(in different states) and perform its concretization.

4.4. Constraint solvers
For solving constraints that arise during the process of
symbolic execution Barad requires constraint solvers
for numeric data and strings. The architecture of our
tool allows the user to specify concrete
implementations of the constraint solvers. This is
configured in a properties file and a factory
dynamically provides constraint solver instances at
runtime. Our tool provides its own constraint solver
implementations for numeric and string data.
The numeric constraint solver uses the Choco [3]
library for solving linear constraints on integers and
real numbers. It takes as an input symbolic integer
entities (variables and constants), float entities, and
constrains. The solver is also responsible for
generation of concrete values for the input variables
(concretization). Note that not all variables passed to
the solver are input variables i.e. inputs for the event
handlers. Input variables are fields of the symbolic
event passed to the event handler or widget field
values. During the process of symbolic execution we
provide information to the constraint solver which
variables are program inputs and should be
concretized. Each numeric input variable could define
its own range of possible values which is propagated to
the solver, otherwise configurable default is used. For
infeasible constraints the solver returns an empty set of
concrete values.
The string constraint solver takes as input symbolic
string entities that implement the symbolic string
interface. Note that constraints on the string entities are
captured by their automatons and are not explicitly
passed to the solver. The solver is also responsible for
concretization of the input variables which are
specified during the symbolic execution. In case of
infeasible constraints an empty set of concrete values
is returned.

4.5. Symbolic execution in Barad
During the process of symbolic execution we use
chronological backtracking to visit all the branches of
the program. For each branch we perform the
algorithm in Figure 5. First, we create a new state
(line 2) which stores the constraint for visiting this
branch (line 4) and values of local variables that are to
be modified (line 6).

Execution of the test
suite on the GUI

Instrumentation

Barad libraries GUI under test

Instrumented
code

Execution of
instrumented code Constraint solving

Test suite Log file

Reporting the results

Figure 4. GUI testing process

We store only deltas to the previous state. Note that we
instrument Java bytecode and detect modification of a
local variable just before that happens via intercepting
the bytecode instructions that store values in the local
variable table. Before leaving the branch we generate a
test case (line 8) and backtrack by restoring the
program variables modified in this state (line 10)
followed by removing of the state from the state stack
(line 12). The state stack is a data structure that stores
all the states before the current one. The set of
constrains for these states must be satisfied to reach the
currently explored branch. Note that branches could
be nested and in such cases the state for the outer
branch is removed after all nested branches have been
explored (i.e. their states removed).
During the bytecode instrumentation we generate an
inline version (with branching statements removed) of
the program with primitives, strings, and conditional
instructions for these types replaced with the
corresponding symbolic classes provided by our
library. We use as a guide the bytecode labels and
jump instructions in the original program to add
appropriate bytecode statements that will perform new
state creation, backtracking, storing and restoring of
local variables, adding path constraints and input
variables, reversing path constraints (in the else part of
if statements), and logging operations (optional). As a
result of this manipulation we obtain an inline,
symbolic version of the program which when executed
performs symbolic execution of the original code with
chronological backtracking. This implementation
reaches full branch coverage. Our technique for
handling loops is bounded unwinding (configurable).
We perform symbolic execution with inline method
code, implement chronological backtracking, and store
state deltas because we plan to extend our technique to
handle the entire GUI application. In such a case
restarting the application (if no backtracking is
performed) every time a new leaf in the program
execution tree is to be explored could cause significant
overhead in terms of execution time.
The symbolic execution of GUI event handlers is
different form the traditional symbolic execution. First,
event handlers have multiple input entry points. Inputs
are fields of the event passed to the event handler
(replaced by symbolic event) and the fields of GUI

widgets. We identify a widget field as an input variable
if its getter is called in the event handler. Second,
symbolic execution of event handlers requires uniform
handling of symbolic execution over primitives and
strings including constraint solving and concretization.

4.6. Test reduction algorithm
During the symbolic execution we generate a test case
for each visited branch of the program. Doing so we
potentially generate a suboptimal test suite i.e. it is
possible an equivalent test suite with less test cases to
be constructed. After generation of a candidate test
suite we run the test reduction algorithm presented on
Figure 6 that implements three test pruning heuristics.
We keep executing the algorithm until no improvement
in the test reduction is detected (line 1). Applying one
reduction heuristic may enable further refinement by
other pruning procedures which did not yield
improvement in the previous iteration of the algorithm.

Our first heuristic is simply pruning of duplicate tests.
Such tests are generated for disjoint branches in the
program with the same path condition. This step is
performed first (line 3-7) to avoid subsequent
processing of duplicate data.
The second test reduction heuristic is discarding tests
subsumed in other tests (line 9-13). Single test may
cover several branches in the program for some of
which a test may already exist. Consider the example
in Figure 7. The messages on line two and six are part
of different branches with constraints for printing the
message on line two: x > 5, and constraints for printing
the message on line six: x > 5 and x > 10. All
constraints for executing the code on line two are
satisfied by a test which executes the code on line six.
In this case our algorithm would discard the test
generated for visiting the statement on line two.

1 while (tests.isReduced()) {
2 //remove duplicates
3 for (Test t: tests) {
4 if (tests.isDuplicate(t)) {
5 t.prune();
6 }
7 }
8 //remove subsumed tests
9 for (Test t: tests) {
10 if (tests.isSubsumed(t)) {
11 t.prune();
12 }
13 }
14 //merge disjoint tests
15 for (Test t: tests) {
16 Test disj = tests.getDisjoint(t);
17 if (disj != null) {
18 t.merge(disj);
19 disj.prune();
20 }
21 }
22} Figure 6. Test reduction algorithm

1 for (Branch b: branches){
2 Path.createNewState();
3 Path.addConstraint(constr);
4 Path.addVarsBeforeModified();
5 Path.generateTestCase();
6 Path.restoreModifiedVars();
7 Path.removeState ();
8 }

Figure 5. State processing algorithm

The last heuristic we apply to reduce the number of
tests is appending compatible tests (line 15-21).
Consider the example on Figure 8. There are two input
variables: x and y.

Lines three and six belong to different branches of the
program and visiting each of them depends on disjoint
sets of input variables. Since our symbolic execution
algorithm generates test inputs for each branch of the
program two separate test cases are generated. The first
test consists of a concrete value for x and the second
for y respectively. Our algorithm also generates
concrete value for each program variable that has been
modified in the current branch of the program. This
guarantees that test cases with values for disjoint
variable sets are safe to be merged since they do not
interfere with each other. In such cases we construct a
new test case that combines the input values from the
merged tests. The only case in which we do not merge
tests is if one of the tests is generated for a terminal
branch i.e. branch containing a return statement.
Once potential tests are reduced a script for their
execution on Squish [16] is generated. Barad also
writes XML files containing the test suite for each
event handler. These files could be used as an input by
tools for automatic test execution. Our tool also
generates a report containing information about the
constraints for each branch, their feasibility, the input
variables and their concrete values (if any). In the
report unreachable branches are reported as such.

5. Case study
This section provides a case study using a more
sophisticated, application and provides an assessment
for the applicability of symbolic execution in GUI
testing and the effectiveness of our prototype.

5.1. Subject application
The application under test is a workout generator used
by sports club Apolon. The GUI takes as input user’s
biometric characteristics such as gender, height,

weight, age, metabolism, and experience level. On the
basis of this input data the application generates a
weekly workout program. Figure 9 shows a screenshot
of the Workout Generator GUI.

The application has two event handlers triggered by
clicking on each of the buttons respectively. The code
first checks if all the user input is provided and if not
shows a prompt message to the user. The input widgets
consist of three combo-boxes and three text-boxes.
Each of the combo-boxes provides an enumeration of
possible values: for Gender—Male, Female; for
Metabolism—Slow, Normal, Fast; and for
Experience—Beginner, Intermediate, Advanced. These
controls are not editable thus always containing a valid
input. The text-boxes are initially empty. They accept
only numeric characters and for each of them a check
for emptiness is performed. The logic of the main
generation algorithm has fifty-four branches that
depend on values provided by the user. During the
process of workout generation, coefficients for the
reps, sets and cardio level are adjusted depending on
the group to which the user belongs. Depending on the
user level of experience different number and kinds of
exercises are added to the workout.

5.2. Testing the Subject Application
The Workout Generator is 649 lines of code and has
two event handlers. After performing an analysis of
the subject application Barad generated a suite of thirty
tests. Log file containing control data was also created.
Obtained results are presented in Table 3.
The test suite generation time includes bytecode
instrumentation, symbolic execution, and test
reduction. The full branch and code coverage is not a
surprise since symbolic execution generates tests for
all reachable branches and all the branches in the event
handlers of the Workout Generator are reachable.

1 if(x > 5) {
2 System.out.println("x > 5");
3 }
4 if(x > 5)
5 if(x > 10) {
6 System.out.println("x > 10 && x > 10");
7 }

Figure 7. Subsumed tests example

Figure 9. Screenshot of the workout generator

1 if(x > 5){
2 System.out.println("x > 5");
3 }
4 if(y < 5) {
5 System.out.println("y < 5");
6 }

Figure 8. Disjoint tests example

Table 3. Results of symbolically generated test suite

Tests Branch Coverage Code Coverage Generation
time

30 100% 100% 6.57 sec

Since our approach is focused on generating user
inputs and traditional GUI testing techniques rely on
manual specification of such inputs, we compare it to
random input generation (the general case if a
specification is lacking). During random test
generation test suites of different sizes are created and
run on the GUI. For generation of each test suite, a
different seed is used. We generate fifty test suites for
each of sizes twenty-five, fifty, one-hundred and two-
hundred tests. These tests are generated using the
following approach: For combo-boxes, a random
choice of value is made. For the age text-box a random
value from 10 to 80 is selected. The text-boxes for
weight and height accept three digit input. However,
there is some realistic upper bound on these biometric
characteristics. Upper bound of 220 centimeters for
height and 200 kilos for weight are adopted. For
concrete value generation the standard Java random
generator is used. Notice that this way of random test
generation uses some domain knowledge to restrict the
number of possible values and differs from pure
randomization. Obtained branch coverage from
execution of the randomly generated test suites is
presented in Figure 10.

Branch Coverage of Random Test Suites

76
82.8

91.7 96.8

0
10
20
30
40
50
60
70
80
90

100

25 50 100 200

Number of Tests

Br
an

ch
 C

ov
er

ag
e

%

While random generation of inputs in its initial phase
increases coverage the rate of increase abruptly
decreases as covering unvisited branches requires
specific values which are unlikely to be generated at
random. Table 4 shows the results after execution of a
test suite with two-hundred tests. The results are
average of fifty runs.
Note that during symbolic execution we have
identified an event handler and multiple event
sequences (test cases) required to thoroughly test it.

Table 4. Results of randomly generated test suite
Number
Of Tests Branch Coverage Code Coverage

200 96.8% 99.2%

The randomized approach we used benefits from the
fact that we fill all required fields (perform
bootstrapping events) before executing the event
handler. Traditional GUI testing frameworks are not
capable of detecting such a dependency and if a
specification is lacking the bootstrapping event
sequence would most probably remain unidentified.

6. Related work
To the best of our knowledge the technique of
symbolic execution is not applied in GUI testing. This
section investigates the existing approaches for GUI
testing, string representation, and some areas where
symbolic execution is used for test input generation.
In his Ph.D. Dissertation [7] Memon presents a
framework for GUI testing that generates, runs, and
assesses GUI tests. This is the first introduced
framework capable of performing the whole process of
test generation, execution, and result assessment for
GUIs. This framework focuses on the event-flow of
GUI applications. For emulating user input a
specification based approach is adopted—using values
from a prefilled data-base. The main components of
the framework are presented in [8], [9], [11], [12]. The
most recent research based on this tool is presented in
[18] by Memon and Xie. Our approach focuses the
data-flow of GUIs and is complementary to this work.
Memon, Banarjee and Nagarajan present a framework
for regression testing of nightly/daily builds of GUI
applications [10]. This tool addresses the rapidly
evolving GUI applications executing small enough test
suite that the test process could be accomplished in less
than a day/night. This tool also uses a specification
based approach for emulating user inputs and is
complementary to Barad.
Another approach is the GUI to be represented as a
Variable Finite State Machine from which after a
transformation to an FSM, tests are obtained [15]. This
approach does not consider user input while focusing
on the event-flow of GUIs. Such a technique could be
adopted in Barad to enable the capability for complete
testing of GUI applications.
A technique that transforms GUIs into a FSM and uses
different techniques to reduce the states of the FSM to
avoid state space explosion is proposed in [17]. In this
work the focus is on collaborating selections and user
sequences over different objects in the GUI. User input

Figure 10. Branch coverage of random test suites

is not handled and again this technique is
complementary rather than competing to our approach.
Symbolic execution for test data generation is used in
[19]. The program is represented as a deterministic
FSM and using symbolic execution test data is
generated. This work deals exclusively with numeric
constraints. Barad performs symbolic execution over
strings (in addition to primitives). Also the input
variables for GUI event handlers have multiple entry
points opposed to this approach where input variables
have a single entry point—the method parameters.
Java String Analyzer [4] performs static analysis of
Java programs and generates a context-free grammar
for each string expression represented as a multilevel
automaton. Barad uses similar approach to
dynamically build a finite state automaton for each
string variable that accepts only non-conflicting with
the path conditions values.

7. Conclusion
We introduced a technique for systematically checking
GUI applications by symbolically executing the event
handlers of Java applications. Our tool Barad performs
automatic Java bytecode instrumentation and concrete
input generation for the data widgets of the GUIs.
Experimental results using our prototype show that it
provides significantly better performance compared to
random input generation, in terms of line and branch
coverage. Barad also captures event sequences that
transform a GUI in a state appropriate for execution of
a particular segment of event handler code.
Barad complements the traditional approaches for GUI
testing by providing a technique for testing a class of
GUI applications that conventional approaches could
not effectively verify. We believe that combining our
approach with existing frameworks [7] [10] presents a
promising approach for systematic testing of GUIs.
8. References
[1] A. Møller. Brics automaton library.

 http://www.brics.dk/automaton.
[2] ASM, Retrieved on November 1, 2007 from ASM:

http://asm.objectweb.org/
[3] Choco, Retrieved on January 25, 2008 from ASM:

http://choco-solver.net/index.php?title=Main_Page
[4] Christensen, A., S., Møller, A., and Schwartzbach, M.,

I. Precise Analysis of String Expressions. SAS 2003,
1-18, 2003.

[5] King, J., Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[6] Lori, C., A system to generate test data and
symbolically execute programs, IEEE Transactions on
Software Engineering, 2(3):215-222, September 1976.

[7] Memon, A. A comprehensive Framework For Testing
Graphical User Interfaces. Ph.D. Thesis, University of
Pittsburgh, Pittsburgh, 2001.

[8] Memon, A. Using Tasks to Automate Regression
Testing of GUIs. In International Conference on
Artificial intelligence and Applications (AIA 2004),
Innsbruck, Austria, Feb. 16-18, 2004. (BibTeX).

 [9] Memon, A., Banarjee, I., and Nagarajan, A. GUI
Ripping: Reverse Engineering of Graphical User
Interfaces for Testing. In Reverse Engineering, 2003,
WRCE 2003. Proceedings. 10th Working Conference
on, November 13-16, 2003, 260-269.

 [10] Memon, A., Banarjee, I., and Nagarajan, A. “DART: A
Framework for Regression Testing Nightly/Daily
Builds of GUI Applications”. In International
Conference on Software Maintenance 2003 (ICSM'03),
Amsterdam, The Netherlands, Sep. 22-26, 2003, pages
410-419. (BibTeX).

[11] Memon, A., Banarjee, I., and Nagarajan, A. What Test
Oracle Should I use for Effective GUI Testing?. In
IEEE International Conference on Automated
Software Engineering (ASE'03), Montreal, Quebec,
Canada, Oct. 6-10 2003, pages 164-173. (BibTeX).

[12] Memon, A., and McMaster, S. Call Stack Coverage for
GUI Test-Suite Reduction. In Proceedings of the 17th
IEEE International Symposium on Software Reliability
Engineering (ISSRE 2006), Raleigh, NC, USA, Nov.
6-10 2006.

[13] Ramamoorthy, V., Siu-Bun, H., and Chen, W., On the
automated generation of program test data, IEEE
Transactions TSE, 2(4):293-300, 1976.

[14] Shannon, D., Hajra, S., Lee, A., Zhan, D.,
Khurshid, S., Abstracting Symbolic Execution with
String Analysis Testing: Academic and Industrial
Conference Practice and Research Techniques-
MUTATION, 2007. TAICPART-MUTATION 2007.

[15] Shehady, R., K., and Siewiorek, D., P. A Method to
Automate User Interface Testing Using Variable Finite
State Machines. In 27th International Symposium on
Fault-Tolerant Computing (FTCS '97), p. 80, 1997.

[16] Squish, Retrieved on January 25, 2008 from FrogLogic
http://www.froglogic.com/pg?id=Products&category=
squish&sub=overview&subsub=overview

[17] White, L., and Almezen, H. Generating Test Cases for
GUI Responsibilities Using Complete Interaction
Sequences. In 11th International Symposium on
Software Reliability Engineering (ISSRE'00), p.110,
2000.

[18] Xie, Q., and Atif M. Memon, Using a Pilot Study to
Derive a GUI Model for Automated Testing,
ACM Trans. on Softw. Eng. and Method., 2008

[19] Zhang, J., Xu, C., and Wang, X. Path-Oriented Test
Data Generation Using Symbolic Execution and
Constraint Solving Techniques. In Software
Engineering and Formal Methods (SEFM 2004),
p.242-250, 2004

