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Abstract 
While Graphical User Interfaces (GUIs) have become 
ubiquitous, testing them remains largely ad-hoc. Since 
the state of a GUI is defined by a sequence of events on 
the GUI's widgets, a test input for a GUI is such an 
event sequence. Due to the combinatorial nature of the 
sequences, testing a GUI thoroughly is problematic 
and time-consuming.  Moreover, the wide range of 
possible values for certain GUI widgets, such as a 
textbox, compounds the problem. 
This paper presents a novel test generation approach 
based on symbolic execution to obtain data inputs and 
enumerate event sequences that are likely to maximize 
code coverage of a GUI application. Key contributions 
are introducing the technique of symbolic execution in 
GUI testing (addressing a common weakness of 
traditional GUI testing frameworks) and performing 
symbolic execution over strings (in addition to 
primitives). Doing so minimizes the number of event 
sequences that form the resulting test suite. To 
determine feasibility of path conditions that arise in 
symbolic execution, we implement a solver for 
constraints over strings (in addition to primitives). We 
evaluate our test generation approach. 

General Terms 
Verification, Reliability 

Keywords 
D.2.5 Symbolic Execution, D.2.5 Testing Strategies, 
D.2.5 Testing Tools 

1. Introduction 
A Graphical User Interface (GUI) is a convenient way 
to interact with the computer. It consists of virtual 
objects (widgets) that are more intuitive to use, for 
example buttons, edit boxes, etc. While GUIs have 
become ubiquitous, testing them remains largely ad-
hoc. In contrast with console applications where there 
is only one point of interaction (the command line), 
GUIs provide multiple points each of which might 
have different states. This structure makes GUI testing 
especially challenging because of its large input space.  

A classic challenge in GUI testing is how to select a 
feasible number of event sequences, given the 
combinatorial explosion due to arbitrary event 
interleavings. To illustrate, consider testing a GUI with 
five buttons, where any sequence of button clicks is a 
valid GUI input. Exhaustive testing requires trying all 
120 possible combinations because in the internal logic 
of the GUI, triggering of one event before another may 
cause execution of different code segments. 
An orthogonal challenge is how to select values for 
data widgets, i.e., GUI widgets that are used for user 
input, such as textboxes, edit-boxes and combo-boxes, 
and can have an extremely large space of possible 
values. To illustrate, consider testing a GUI with one 
textbox that takes a ten character string as an input. 
Exhaustive testing requires 1026 possible input strings 
(assuming we limit each character to be from the 
English alphabet in lower-case). 
Automation of GUI testing has traditionally focused on 
minimizing the event sequences. Data widgets have 
either been abstracted away by not considering GUI 
behaviors dependent on data values, or populated by 
values generated at random, or selected from a 
manually constructed set consisting of a small number 
of values [7] [10] [14] [15].  As a consequence, data 
dependent behaviors are inadequately tested. For 
example, consider generating a string value that is 
necessary for satisfying an if-condition.  Random 
selection is unlikely to generate the desired value. 
Manual selection requires a tedious code inspection 
and does not scale. A specification-based (black-box) 
approach may find this “special” value, however it 
would require detailed specifications, which are often 
not feasible to write and often not provided.  
This paper presents Barad, a novel GUI testing 
framework based on symbolic execution [5] [6] [13]. 
Barad generates values for data widgets and enables a 
systematic approach that uniformly addresses the data-
flow as well as event-flow for white-box testing of a 
GUI application. We symbolically execute the code of 
GUI event handlers and generate data inputs that 



maximize code coverage while minimizing the number 
of tests needed to systematically check the GUI.  
During symbolic execution all reachable paths of the 
program are systematically explored and (for decidable 
constraints) infeasible paths are detected. For each 
feasible path data inputs for the GUI widgets are 
generated. Because of the multiple points of interaction 
of GUIs these inputs may include the current state of 
several GUI widgets. These widgets could be not only 
data widgets but also sequence widgets—widgets used 
for user input in the form of event sequences (buttons, 
check-boxes, radio-buttons). Identifying a state of the 
GUI that allows us to execute a program path (selected 
radio-button) defines an event sequence (selecting the 
radio-button) that should be applied to the GUI to 
reach this state. This way our approach also addresses 
the event-flow of GUI testing.  
In this paper we explore the applicability of symbolic 
execution for systematically testing GUI applications 
by generating data inputs for the GUI widgets. We 
present an algorithm that generates such values and 
implements efficient solvers for strings and primitives. 
Is also minimizes the number of the generated inputs 
while (ideally) preserving the code coverage.  We have 
implemented our algorithm in a prototype Barad for 
testing of Java applications. Barad performs analysis of 
a GUI application fully automatically by instrumenting 
its Java bytecode.  

2. Example 
This section provides the basics of how our technique 
is applied to GUI testing. The goal is to show an 
example where conventional GUI testing techniques 
would most probably achieve low coverage unless a 
prohibitively large test suite is used. 
The GUI presented in Figure 1 is a program (300 lines 
of code) we developed to demonstrate our approach. It 
calculates the amount due for a train ticket. A user 
must provide a passenger class, name, ID, group to 
which she belongs, and begin and end points. The 
passenger groups are Senior, Adult, Student, and Child.  

 
 

 
Each passenger class has its own coefficient that is 
used during the calculation. Each group has different 
base price depending on the distance to be traveled, 
which is the difference between the values in the text-

boxes From mile and To mile. The application has 
multiple branches the execution of which depends on 
user input both in the form of input data and event 
sequence (i.e. selecting a radio button). Figure 2 shows 
a code fragment for the Senior group. The calculation 
method has twenty-two branches with conditions 
nested three levels.  

 
 
 

Using Barad a test suite is generated and run on the 
GUI. Results are presented in Table 1. The full branch 
and code coverage are not surprising since symbolic 
execution guarantees visiting of all reachable branches. 

 

Tests Branch Coverage Code Coverage Generation 
time 

22 100%  100% 4.34 sec 

 
We next compare our approach to random test 
generation. Our methodology is as follows. For the 
passenger class we select randomly from—1st, and 
2nd. For the group a random choice is made out of the 
four possible values in the combo-box.  The input for 
the text-boxes From mile and To mile is a number 
between zero and ninety-nine chosen randomly. For 
randomization, the Java random class is used. Fifty test 
suites, each with different seed, are generated and the 
results averaged. Table 2 presents these results. The 
results of the random test suite show that it should be 
about twenty times larger to achieve nearly full 
coverage.    

Table 2. Results of randomly generated test suite 
Tests Branch Coverage Code Coverage 

400 96.3%  97.80% 

During the symbolic execution it was ascertained that 
one of the radio buttons for choosing company should 

… 
1  int distanceRange =          
2     Integer.parseInt(text3.getText().trim())-   
3     Integer.parseInt(text4.getText().trim()); 
4  String class =  combo1.getText().trim(); 
5  if (group.equals("Senior")) { 
6    if (distanceRange < 50) {   
7      amountDue = 120 * coeficient; 
8    } else if (distanceRange < 60) {             
9      amountDue = 130 * coeficient; 
19   } else if (distanceRange < 70) { 
11      amountDue = 145 * coeficient; 
12   } else if (distanceRange < 80) {  
13      amountDue = 150 * coeficient; 
14   } else if (distanceRange < 100){ 
15      amountDue = 160 * coeficient; 
16   } 
17 } else if (group.equals("Adult")) { 

Figure 1. Example application

Table 1. Results of symbolically generated test suite 

Figure 2. Code fragment for the Senior group



be pressed for any code to be executed. This 
demonstrates the applicability of our approach for 
identifying event sequences that are prerequisite for 
the execution of a particular path. 

3. Background 
This section provides the reader with some background 
knowledge about the processes of symbolic execution 
and GUI testing. 

3.1. Symbolic execution 
Symbolic execution is execution of the original 
program, but instead of concrete values to its variables 
symbols are assigned. Every time a variable is 
modified, its current value becomes a function of its 
previous symbolic state and the current operation.  
During symbolic execution of a program, symbolic 
variables, a program counter, and a path condition are 
maintained. The path condition contains accumulated 
constraints over the input variables that must be 
satisfied for visiting a particular branch. It is a 
quantifier-free Boolean formula, such that if evaluated 
as true, then there is at least one combination of inputs 
that will execute the current branch.  Intuitively, if the 
path condition evaluates to false the branch is 
unreachable.  Every time the program encounters a 
branch statement, all the possible outcomes are 
explored.  For example, if the execution reaches an if-
statement, there are two possible scenarios to be 
considered.  This exploration of all feasible paths 
forms the execution tree of the program with nodes 
representing the states and edges representing state 
transitions. Consider the example in Figure 3. 

 
 
 

The initial values of the variables X and Y are set as 
symbols. Every time a symbolic variable is modified it 
accumulates the operation as an expression. After 
entering a particular branch the path condition (PC) is 
updated and its satisfiability checked.    

3.2. GUI event model 
A GUI is an abstraction for providing the user with an 
interface to interact with an application through actions 
on virtual objects. User actions trigger events in the 
GUI. The code executed upon such actions is placed in 
event handlers that register for a specific event. While 
the number of possible events accepted by a widget is 
constant usually not all of these events have 
corresponding handlers. Hence, focusing the analysis 
on event handlers restricts the set of GUI events to be 
explored during the GUI testing process. 

3.3. GUI testing 
Since contemporary software extensively uses GUIs to 
interact with users, verifying GUI’s reliability becomes 
important. There are two approaches to test GUIs.  
The first is to keep the GUI light and move all the 
business logic into the background, thus avoiding the 
step of GUI testing. In this case the GUI could be 
considered as a “skin” for the software. Since the main 
portion of the application code is not in the GUI, it 
may be tested using conventional techniques. This 
approach places architectural limitations on system 
designers. The second approach is testing to be 
performed for which several different techniques exist. 
First, there is the null case of omitting the testing; this 
leads to production of lower quality software. Second, 
the GUI is tested with tools that record and replay 
event sequences [16]. This is laborious and time 
consuming. Third, tools for automatic test generation, 
execution, and assessment could be used [7] [10].  
Our approach is focused on symbolic execution of 
event handlers of GUIs. The handlers may implement 
business logic or delegate to other entities. We 
instrument the handlers and all methods called from 
these handlers providing a technique that is applicable 
regardless where the main processing occurs.    
4. Barad: Symbolic execution for GUIs 
This section presents Barad, our framework for GUI 
testing. We provide an overview of the processing 
performed by Barad. 
4.1. Process overview 
The process of GUI testing performed by Barad is 
depicted on Figure 4. The initial phase is 
instrumentation of the GUI event handlers’ bytecode 
using the ASM [2] library. The next step is symbolic 
execution of the instrumented code.  

 

 

 
 

  

Figure 3. Program and its execution tree 

line 4

line 1

x:X, y:Y 
PC: true 

 x:X, y:Y 
PC: X < Y 

x:X, y:Y 
PC: X > Y 

x:X + Y, y:Y 
PC: X < Y 

x:X, y:Y 
PC: X >=Y 

x:X, y:Y 
PC: X >= Y && X < Y 

false

1  int x, y 
2  if (x > y) { 
3  x =x + y; 
4  } else {  
5      if (x <y) { 
6         printf(“true”); 
7      } else { 
8         printf(“false”);  
9      } 
10 } 

line 2 line 6

line 8 line 10



 
 
 
As a result from the symbolic execution a log file and a 
test suite are generated. The log file contains 
constraints on the input variables and concrete values 
for these variables (if the constraints are satisfiable). 
The test suite is a script or XML file. 

4.2. Symbolic primitives 
Barad provides symbolic equivalents of all primitive 
types (integer, float, Boolean) and defines the semantic 
of operations on these types (character is represented 
as string with length one). For symbolic integers and 
floats supported operations are: and, or, addition, 
difference, multiplication, division, less than, greater 
than, greater than or equal and less than or equal. 
Booleans are represented as integers. 

4.3. Symbolic strings 
Our symbolic string representation uses finite state 
automata to model the set of possible values for a 
string variable. Similar approach is used in [14]. We 
represent a symbolic string (value of a GUI widget 
field) as a finite state automaton (provided by [1]) and 
beginning and end indexes. These indexes define the 
initial and final position of the automaton sequence 
that represents the value of the symbolic string. This 
enables support of operations such as substring, starts 
with, ends with, and character at (in addition to equal, 
not equal, and concatenation).  Path constraints on a 
symbolic string are used to refine its automaton in way 
that it rejects values contradicting the accumulated 
path conditions. The benefit of using automata is that it 

encapsulates all path conditions and possible values 
serving as a constraint solver. Note that for each state 
(created on visiting a new branch of the program) we 
store a clone of modified variables (required for 
backtracking) which requires a string constraint solver 
to aggregate the path conditions on each string variable 
(in different states) and perform its concretization.        

4.4. Constraint solvers 
For solving constraints that arise during the process of 
symbolic execution Barad requires constraint solvers 
for numeric data and strings. The architecture of our 
tool allows the user to specify concrete 
implementations of the constraint solvers. This is 
configured in a properties file and a factory 
dynamically provides constraint solver instances at 
runtime. Our tool provides its own constraint solver 
implementations for numeric and string data. 
The numeric constraint solver uses the Choco [3] 
library for solving linear constraints on integers and 
real numbers. It takes as an input symbolic integer 
entities (variables and constants), float entities, and 
constrains. The solver is also responsible for 
generation of concrete values for the input variables 
(concretization). Note that not all variables passed to 
the solver are input variables i.e. inputs for the event 
handlers. Input variables are fields of the symbolic 
event passed to the event handler or widget field 
values. During the process of symbolic execution we 
provide information to the constraint solver which 
variables are program inputs and should be 
concretized. Each numeric input variable could define 
its own range of possible values which is propagated to 
the solver, otherwise configurable default is used. For 
infeasible constraints the solver returns an empty set of 
concrete values. 
The string constraint solver takes as input symbolic 
string entities that implement the symbolic string 
interface. Note that constraints on the string entities are 
captured by their automatons and are not explicitly 
passed to the solver. The solver is also responsible for 
concretization of the input variables which are 
specified during the symbolic execution. In case of 
infeasible constraints an empty set of concrete values 
is returned.  

4.5. Symbolic execution in Barad 
During the process of symbolic execution we use 
chronological backtracking to visit all the branches of 
the program. For each branch we perform the 
algorithm in Figure 5. First, we create a new state   
(line 2) which stores the constraint for visiting this 
branch (line 4) and values of local variables that are to 
be modified (line 6). 

Execution of the test 
suite on the GUI  

Instrumentation 

Barad libraries GUI under test 

Instrumented 
code 

Execution of 
instrumented code Constraint solving 

Test suite Log file 

Reporting the results 

 
Figure 4. GUI testing process 



 
 
 
 
 
 
 
We store only deltas to the previous state. Note that we 
instrument Java bytecode and detect modification of a 
local variable just before that happens via intercepting 
the bytecode instructions that store values in the local 
variable table. Before leaving the branch we generate a 
test case (line 8) and backtrack by restoring the 
program variables modified in this state (line 10) 
followed by removing of the state from the state stack 
(line 12). The state stack is a data structure that stores 
all the states before the current one. The set of 
constrains for these states must be satisfied to reach the 
currently explored branch.      Note that branches could 
be nested and in such cases the state for the outer 
branch is removed after all nested branches have been 
explored (i.e. their states removed). 
During the bytecode instrumentation we generate an 
inline version (with branching statements removed) of 
the program with primitives, strings, and conditional 
instructions for these types replaced with the 
corresponding symbolic classes provided by our 
library. We use as a guide the bytecode labels and 
jump instructions in the original program to add 
appropriate bytecode statements that will perform new 
state creation, backtracking, storing and restoring of 
local variables, adding path constraints and input 
variables, reversing path constraints (in the else part of 
if statements), and logging operations (optional). As a 
result of this manipulation we obtain an inline, 
symbolic version of the program which when executed 
performs symbolic execution of the original code with 
chronological backtracking. This implementation 
reaches full branch coverage. Our technique for 
handling loops is bounded unwinding (configurable). 
We perform symbolic execution with inline method 
code, implement chronological backtracking, and store 
state deltas because we plan to extend our technique to 
handle the entire GUI application. In such a case 
restarting the application (if no backtracking is 
performed) every time a new leaf in the program 
execution tree is to be explored could cause significant 
overhead in terms of execution time.  
The symbolic execution of GUI event handlers is 
different form the traditional symbolic execution. First, 
event handlers have multiple input entry points. Inputs 
are fields of the event passed to the event handler 
(replaced by symbolic event) and the fields of GUI 

widgets. We identify a widget field as an input variable 
if its getter is called in the event handler. Second, 
symbolic execution of event handlers requires uniform 
handling of symbolic execution over primitives and 
strings including constraint solving and concretization.   

4.6. Test reduction algorithm 
During the symbolic execution we generate a test case 
for each visited branch of the program. Doing so we 
potentially generate a suboptimal test suite i.e. it is 
possible an equivalent test suite with less test cases to 
be constructed. After generation of a candidate test 
suite we run the test reduction algorithm presented on 
Figure 6 that implements three test pruning heuristics. 
We keep executing the algorithm until no improvement 
in the test reduction is detected (line 1). Applying one 
reduction heuristic may enable further refinement by 
other pruning procedures which did not yield 
improvement in the previous iteration of the algorithm.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Our first heuristic is simply pruning of duplicate tests. 
Such tests are generated for disjoint branches in the 
program with the same path condition. This step is 
performed first (line 3-7) to avoid subsequent 
processing of duplicate data. 
The second test reduction heuristic is discarding tests 
subsumed in other tests (line 9-13). Single test may 
cover several branches in the program for some of 
which a test may already exist. Consider the example 
in Figure 7. The messages on line two and six are part 
of different branches with constraints for printing the 
message on line two: x > 5, and constraints for printing 
the message on line six: x > 5 and x > 10. All 
constraints for executing the code on line two are 
satisfied by a test which executes the code on line six. 
In this case our algorithm would discard the test 
generated for visiting the statement on line two.  
 

1 while (tests.isReduced()) { 
2    //remove duplicates 
3    for (Test t: tests) { 
4      if (tests.isDuplicate(t)) { 
5        t.prune(); 
6      } 
7    } 
8    //remove subsumed tests 
9    for (Test t: tests) { 
10     if (tests.isSubsumed(t)) { 
11       t.prune(); 
12     } 
13   } 
14   //merge disjoint tests 
15  for (Test t: tests) { 
16    Test disj = tests.getDisjoint(t); 
17    if (disj != null) { 
18      t.merge(disj); 
19      disj.prune(); 
20    } 
21  } 
22} Figure 6. Test reduction algorithm 

1 for (Branch b: branches){ 
2   Path.createNewState(); 
3   Path.addConstraint(constr); 
4   Path.addVarsBeforeModified(); 
5   Path.generateTestCase(); 
6   Path.restoreModifiedVars(); 
7   Path.removeState (); 
8 } 

Figure 5. State processing algorithm 



 
 
 
 
 

 
 
The last heuristic we apply to reduce the number of 
tests is appending compatible tests (line 15-21). 
Consider the example on Figure 8. There are two input 
variables: x and y. 
 
 
 
 
 
 
 
Lines three and six belong to different branches of the 
program and visiting each of them depends on disjoint 
sets of input variables. Since our symbolic execution 
algorithm generates test inputs for each branch of the 
program two separate test cases are generated. The first 
test consists of a concrete value for x and the second 
for y respectively. Our algorithm also generates 
concrete value for each program variable that has been 
modified in the current branch of the program. This 
guarantees that test cases with values for disjoint 
variable sets are safe to be merged since they do not 
interfere with each other. In such cases we construct a 
new test case that combines the input values from the 
merged tests. The only case in which we do not merge 
tests is if one of the tests is generated for a terminal 
branch i.e. branch containing a return statement.  
Once potential tests are reduced a script for their 
execution on Squish [16] is generated. Barad also 
writes XML files containing the test suite for each 
event handler. These files could be used as an input by 
tools for automatic test execution. Our tool also 
generates a report containing information about the 
constraints for each branch, their feasibility, the input 
variables and their concrete values (if any). In the 
report unreachable branches are reported as such.    

5. Case study 
This section provides a case study using a more 
sophisticated, application and provides an assessment 
for the applicability of symbolic execution in GUI 
testing and the effectiveness of our prototype. 

5.1. Subject application 
The application under test is a workout generator used 
by sports club Apolon. The GUI takes as input user’s 
biometric characteristics such as gender, height, 

weight, age, metabolism, and experience level. On the 
basis of this input data the application generates a 
weekly workout program. Figure 9 shows a screenshot 
of the Workout Generator GUI. 

 
 
 
The application has two event handlers triggered by 
clicking on each of the buttons respectively. The code 
first checks if all the user input is provided and if not 
shows a prompt message to the user. The input widgets 
consist of three combo-boxes and three text-boxes. 
Each of the combo-boxes provides an enumeration of 
possible values: for Gender—Male, Female; for 
Metabolism—Slow, Normal, Fast; and for 
Experience—Beginner, Intermediate, Advanced. These 
controls are not editable thus always containing a valid 
input. The text-boxes are initially empty. They accept 
only numeric characters and for each of them a check 
for emptiness is performed. The logic of the main 
generation algorithm has fifty-four branches that 
depend on values provided by the user. During the 
process of workout generation, coefficients for the 
reps, sets and cardio level are adjusted depending on 
the group to which the user belongs.  Depending on the 
user level of experience different number and kinds of 
exercises are added to the workout.  

5.2. Testing the Subject Application  
The Workout Generator is 649 lines of code and has 
two event handlers.   After performing an analysis of 
the subject application Barad generated a suite of thirty 
tests. Log file containing control data was also created. 
Obtained results are presented in Table 3. 
The test suite generation time includes bytecode 
instrumentation, symbolic execution, and test 
reduction. The full branch and code coverage is not a 
surprise since symbolic execution generates tests for 
all reachable branches and all the branches in the event 
handlers of the Workout Generator are reachable. 

1 if(x > 5) { 
2   System.out.println("x > 5"); 
3 } 
4 if(x > 5) 
5   if(x > 10) { 
6     System.out.println("x > 10 && x > 10"); 
7 } 

Figure 7. Subsumed tests example 

Figure 9. Screenshot of the workout generator 

1 if(x > 5){ 
2   System.out.println("x > 5"); 
3 } 
4 if(y < 5) { 
5   System.out.println("y < 5"); 
6 } 

Figure 8. Disjoint tests example 



Table 3. Results of symbolically generated test suite 

Tests Branch Coverage Code Coverage Generation 
time 

30 100%  100% 6.57 sec 

Since our approach is focused on generating user 
inputs and traditional GUI testing techniques rely on 
manual specification of such inputs, we compare it to 
random input generation (the general case if a 
specification is lacking). During random test 
generation test suites of different sizes are created and 
run on the GUI. For generation of each test suite, a 
different seed is used. We generate fifty test suites for 
each of sizes twenty-five, fifty, one-hundred and two-
hundred tests. These tests are generated using the 
following approach: For combo-boxes, a random 
choice of value is made. For the age text-box a random 
value from 10 to 80 is selected. The text-boxes for 
weight and height accept three digit input. However, 
there is some realistic upper bound on these biometric 
characteristics. Upper bound of 220 centimeters for 
height and 200 kilos for weight are adopted. For 
concrete value generation the standard Java random 
generator is used. Notice that this way of random test 
generation uses some domain knowledge to restrict the 
number of possible values and differs from pure 
randomization.  Obtained branch coverage from 
execution of the randomly generated test suites is 
presented in Figure 10.  
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While random generation of inputs in its initial phase 
increases coverage the rate of increase abruptly 
decreases as covering unvisited branches requires 
specific values which are unlikely to be generated at 
random. Table 4 shows the results after execution of a 
test suite with two-hundred tests. The results are 
average of fifty runs.  
Note that during symbolic execution we have 
identified an event handler and multiple event 
sequences (test cases) required to thoroughly test it. 

Table 4. Results of randomly generated test suite  
Number 
Of Tests Branch Coverage Code Coverage 

200 96.8% 99.2% 

The randomized approach we used benefits from the 
fact that we fill all required fields (perform 
bootstrapping events) before executing the event 
handler. Traditional GUI testing frameworks are not 
capable of detecting such a dependency and if a 
specification is lacking the bootstrapping event 
sequence would most probably remain unidentified. 

6. Related work 
To the best of our knowledge the technique of 
symbolic execution is not applied in GUI testing. This 
section investigates the existing approaches for GUI 
testing, string representation, and some areas where 
symbolic execution is used for test input generation.   
In his Ph.D. Dissertation [7] Memon presents a 
framework for GUI testing that generates, runs, and 
assesses GUI tests. This is the first introduced 
framework capable of performing the whole process of 
test generation, execution, and result assessment for 
GUIs. This framework focuses on the event-flow of 
GUI applications. For emulating user input a 
specification based approach is adopted—using values 
from a prefilled data-base. The main components of 
the framework are presented in [8], [9], [11], [12]. The 
most recent research based on this tool is presented in 
[18] by Memon and Xie. Our approach focuses the 
data-flow of GUIs and is complementary to this work.   
Memon, Banarjee and Nagarajan present a framework 
for regression testing of nightly/daily builds of GUI 
applications [10]. This tool addresses the rapidly 
evolving GUI applications executing small enough test 
suite that the test process could be accomplished in less 
than a day/night. This tool also uses a specification 
based approach for emulating user inputs and is 
complementary to Barad.   
Another approach is the GUI to be represented as a 
Variable Finite State Machine from which after a 
transformation to an FSM, tests are obtained [15]. This 
approach does not consider user input while focusing 
on the event-flow of GUIs. Such a technique could be 
adopted in Barad to enable the capability for complete 
testing of GUI applications.      
A technique that transforms GUIs into a FSM and uses 
different techniques to reduce the states of the FSM to 
avoid state space explosion is proposed in [17]. In this 
work the focus is on collaborating selections and user 
sequences over different objects in the GUI. User input 

Figure 10. Branch coverage of random test suites 



is not handled and again this technique is 
complementary rather than competing to our approach.   
Symbolic execution for test data generation is used in 
[19]. The program is represented as a deterministic 
FSM and using symbolic execution test data is 
generated. This work deals exclusively with numeric 
constraints. Barad performs symbolic execution over 
strings (in addition to primitives). Also the input 
variables for GUI event handlers have multiple entry 
points opposed to this approach where input variables 
have a single entry point—the method parameters.  
Java String Analyzer [4] performs static analysis of 
Java programs and generates a context-free grammar 
for each string expression represented as a multilevel 
automaton. Barad uses similar approach to 
dynamically build a finite state automaton for each 
string variable that accepts only non-conflicting with 
the path conditions values.  

7. Conclusion 
We introduced a technique for systematically checking 
GUI applications by symbolically executing the event 
handlers of Java applications. Our tool Barad performs 
automatic Java bytecode instrumentation and concrete 
input generation for the data widgets of the GUIs.  
Experimental results using our prototype show that it 
provides significantly better performance compared to 
random input generation, in terms of line and branch 
coverage. Barad also captures event sequences that 
transform a GUI in a state appropriate for execution of 
a particular segment of event handler code.   
Barad complements the traditional approaches for GUI 
testing by providing a technique for testing a class of 
GUI applications that conventional approaches could 
not effectively verify. We believe that combining our 
approach with existing frameworks [7] [10] presents a 
promising approach for systematic testing of GUIs. 
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