
Software repositories have provided a rich source for retrospective
empirical studies ranging from studying faults to studying evolution
phenomena. As such they provide extensive primary data about software
systems and software development processes to be characterized,
classified and analyzed. Frustratingly, software repositories tend to be
used mostly by researchers but seldomly by developers or project
managers. For the latter, repositories could provide significant support
for continuous process and product improvement. For example, even
richer data about faults could be supplied at the time of version deposit
and used to detect fault-prone activities or fault-inducing types of
changes.

For both researchers and practitioners there are still innovative uses of
software repositories untapped: repositories have been used extensively
for retrospective studies but used very little for prospective studies (i.e., in
experiments rather than just observational and relational studies).
Change and version management repositories provide largely untapped
resources for rigorously evaluating various software development
techniques, methods, processes and tools. For example, they provide
rich data with which to evaluate analysis and testing techniques and
tools. For each component of a system we can build evolution and fault
profiles, characterizing both the kinds of changes as well as the kinds of
faults generated by these different changes. Given this change and fault
data, we can rigorously evaluate fault detection and prediction
techniques and tools to determine for which kinds of changes and faults
they are the most effective. Given these rigorous evaluation approaches
we can then effectively and fruitfully compare different analysis and
testing approaches to measure how well they perform in the contexts
most important for different types of projects.

This experimental approach side-steps a number of validity problems
with techniques currently used in such analysis and testing evaluations,
such as fault seeding (usually performed with little or no justification for
the frequency and the types of faults seeded). With these repositories we
avoid those problems. We can then focus on the primary problem of
building benchmark sets of data covering a variety of different domains
as well as a variety of different tradeoffs in non-functional requirements.

Prof. Dewayne E Perry is the Motorola Regents Chair in Software
Engineering at The University of Texas at Austin. Prior to UT, he spent
half his career as a practicing software engineer and half as a researcher
in software engineering at Bell Laboratories in Murray Hill NJ.

not a new pic – but apparently the only one i have online ☺

