
Release Engineering Processes in Open Source Projects
Hyrum K. Wright and Dewayne E. Perry

Emperical Software Engineering Laboratory
Department of Electrical and Computer Engineering

The University of Texas at Austin
{hwright,perry}@ece.utexas.edu

MethodologyProject Release ProcessesOverview

2
.6
.2
0

2
.6
.2
0
.1

2
.6
.2
0
.2

...

2
.6
.2
1

2
.6
.2
0
.3

2
.6
.2
0
.5

2
.6
.2
0
.4

2
.6
.2
1
-rc
1

2
.6
.2
1
-rc
5

2
.6
.2
1
-rc
4

2
.6
.2
1
-rc
2

2
.6
.2
1
-rc
3

2
.6
.2
1
-rc
6

2
.6
.2
0
.6

...

2
.6
.2
0
.2
1

2
.6
.2
2
-rc
1

...

...

2
.6
.2
1
.1

Linux post-2.6 release process

2
.2
.0

2
.3
.0

2
.3
.1

2
.4
.0

2
.3
.3

2
.3
.5

2
.3
.4

2
.2
.1

2
.2
.5

2
.2
.4

2
.2
.2

2
.2
.3

2
.2
.2
8

2
.3
.6

...

2
.4
.1

...

...

2
.5
.1

2
.3
.2

2
.3
.7

2
.3
.7
5

2
.5
.0

...

Linux pre-2.6 release process
GCC release process

4.2 branched

4.2.0

4.2.1

...

4.3 branched

4.2.2

4.2.4

4.2.3

...

...

4.3.0

Stage 1 Stage 2 Stage 1Stage 3

Subvesion release process

1
.4
.x

b
ra
n
c
h
e
d

1
.4
.0

1
.4
.1

...

1
.4
.2

1
.4
.4

1
.4
.3

...

...

1
.5
.0

1
.5
.x

b
ra
n
c
h
e
d

1
.4
.5

1
.5
.1

References

Release engineering is the part of the software engineering
process during which the release artifact, usually an exe-

cutable, installer, or source code package, is produced. In tradi-
tional software development methodologies, such as the spiral
or waterfall models, release engineering comes as part of the re-
lease and maintenance phases. In recent years, commercial and
open source software projects have begun to employ dedicated
release teams. These groups are tasked with building the final
shipping product.

As projects and organizations mature, the release process changes
over time. Observing the changes to project releases projects
can help predict and identify trends, and areas for improve-
ment. We seek to analyze the release process evolution of open
source projects, and then draw conclusions regarding the trends
in release strategies observed. W e also discuss the lessons learned
from the Subversion 1.5 release process. We also seek to learn
how the lessons learned from this analysis can assist open source
projects avoid common pitfalls.

We have begun a qualitative study the evolution of the re-
lease process for three specific open source projects: the

Linux Kernel; the Subversion version control system; and the
Gnu Compiler Collection (GCC). Each project organization has
significantly changed the release management process during
their history, allowing us to study how process changes affected
the release artifact. We can model the releases and correlate the
artifacts with process events on a time line.

To carry the work forward, we will need to create a formal
process model for each of the six processes under considera-
tion and perform an analysis of each. We will use data in the
form of process deliberation from email logs and process mea-
surement data to identify the factors that necessitated the pro-
cess changes. Because open source projects have greater trans-
parency and lower institutional inertia, they provide a good op-
portunity for observing changing trends in software develop-
ment.

[1] B. W. Boehm. A spiral model of software development and enhancement. Com-
puter, 21(5):61–72, 1988.

[2] J. R. Erenkrantz. Release Management Within Open Source Projects. In Pro-
ceedings of the ICSE 3rd Workshop on Open Source Software Engineering, May 2003.

[3] J. Estublier, D. Leblang, A. van der Hoek, G. Clemm, W. Tichy, and D. Wiborg-
Weber. Impact of software engineering research on the practice of software
configuration management. ACM Transactions on Software Engineering and
Methodology (TOSEM), 14(4):383–430, 2005.

[4] J. Howison, M. Conklin, and K. Crowston. FLOSSmole: A Collaborative
Repository for FLOSS Research Data and Analyses. International Journal of In-
formation Technology and Web Engineering, 1(3):17–26, 2006.

[5] J. Howison and K. Crowston. The perils and pitfalls of mining SourceForge.
Proceedings of the International Workshop on Mining Software Repositories (MSR
2004), pages 7–11, 2004.

[6] J. Y. Moon and L. Sproull. Essence of Distributed Work: The Case of the Linux
Kernel. Distributed Work, pages 381–404, 2002.

[7] M. Ramakrishnan. Software Release Management. Bell Labs Technical Journal,
9(1):205–210, 2004.

[8] W. W. Royce. Managing the development of large software systems: concepts
and techniques. In Proceedings of the 9th International Conference on Software
Engineering, pages 328–338. IEEE Computer Society Press Los Alamitos, CA,
USA, 1987.

[9] A. van der Hoek, R. S. Hall, D. Heimbigner, and A. L. Wolf. Software release
management. ACM SIGSOFT Software Engineering Notes, 22(6):159–175, 1997.

[10] A. L. Wolf and D. S. Rosenblum. A study in software process data capture
and analysis. In Second International Conference on the Software Process, pages
115–124, 1993.

Subversion 1.5 Study

In June 2008, the Subversion development team re-
leased Subversion 1.5.0. This release contained a

number of new features, but arrived only after a long
and painful development, test and release cycle. This
protracted process confused and frustrated both users
and developers. Some of the problems faced by this
release include:
• A failure to learn from the past mistakes of other

open and closed source projects.
• Defining a release by feature set, instead of letting

features slide and releasing existing completed fea-
tures.

• Developing the release-defining feature on a branch
for an extended period of time.

• Not following established processes. Although pro-
cesses could be adapted, the Subversion develop-
ers invented processes as the release cycle progressed.

• A lack of clear project direction.

Release Process Meta-model

Release engineering can usually be broken into several phases: stabilization, verification, and publi-
cation. We propose to create a formal process meta-model of the release engineering process, and

categorize each project’s sub-phases with respect to process controls, tool support, and other project
factors.

Stabilization
An ideal stabilization method includes a

dedicated stabilization branch and period
where the feature set for the release is set
and potential changes are closely reviewed.
Only changes meeting established criterial,
such as size or importance, are allowed into
a release. For example, a large change which
xes a ma jor regression may be allowed,
whereas a fundamental change to the sys-
tem architecture would not be.

Verification
Each project estabilishes its own guide-

lines for release quality, and release veri-
cation allows the project members to as-
sure the release meets their expectations.
This step also allows community members
to verify the release contains the expected
code, and has not been altered by the re-
lease manager. Community members may
provide digital signatures for the release can-
didate, certifying it to be authentic.

Publication
When a release is deemed to be of suf-

ficient quality, the release manager follows
several steps to make the release widely avail-
able. These steps may include: verifying
signatures provided by the community; an-
nouncing the release via email or web page;
and corrdinating the availability of source
and binary code in multiple distribution chan-
nels, such as web page mirrors. The release
manager may also work with down stream
packagers or distributors to coordinate ad-
ditional user-oriented packages.

... ...

On-going Development

Stabilization Verification Publication


