Subversion 1.5: A Case Study in Open Source
Release Mismanagement

Hyrum K. Wright and Dewayne E. Perry

Subversion 1.5: A Case Study in Open Source Release
Mismanagement

Hyrum K. Wright and Dewayne E. Perry

Empirical Software Engineering Laboratory
Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, Texas 78712

{hwright, perry}@ece.utexas.edu

Summary. In June 2008, the Subversion development team released Subversion 1.5.0. This
release contained a number of new features, but arrived only after a long and difficult devel-
opment, test and release cycle. This protracted process confused and frustrated both users and
developers. In this paper, we discuss the events which led to this breakdown, how the release
process is being improved, and what lessons other open source projects can learn from the
Subversion community’s mistakes.

Key words: Release Engineering, Software Process

1 Introduction

Open source projects rely upon timely and quality releases to encourage higher user
adoption and attract developers. These releases are the public image of the project,
and influence both mindshare and market share. Users adopt projects they see as
responsive to their needs, while developers enjoy being part of a vibrant development
community. A timely release process can help achieve these goals.

Subversion is a popular version control system whose initial goal was to replace
the aging CVS with a more modern design and feature set. With the release of Sub-
version 1.4.0, these goals were largely accomplished, and the community focused on
making additional improvements to Subversion. These included features requested
by both open source users and corporate deployments, with the primary one being
merge tracking.

As the release manager, one of the authors saw first-hand the frustration and
confusion caused by the protracted release cycle for Subversion 1.5.0. This release
cycle lasted much longer than anticipated, which negatively impacted both users and
developers. This paper offers a retrospective view of the experience, how it could
have been better, and what the community is doing to improve the process for future
release cycles.

2 Hyrum K. Wright and Dewayne E. Perry

In this paper, we recount the history of the Subversion 1.5.0 release process,
which ultimately ended in the delivery of Subversion 1.5.0 in June 2008, more than
a year after planned, and almost two years after Subversion 1.4.0. We discuss the
established process of creating a Subversion release, how that process helped and
hindered the 1.5.0 release, and ultimately what lessons can be learned from this ex-
perience for Subversion and other open source projects. We also discuss the subse-
quent steps the Subversion community is taking to address these issues in upcoming
feature releases.

2 Subversion Release Process

In the early days of the project, Subversion developers established a guiding docu-
ment known as the “Hacker’s Guide to Subversion” [2]. Colloquially referred to as
HACKING, this document outlines many aspects of community processes and proce-
dures, including release processes. Although the community allows for circumstan-
tial variation in these processes, HACKING is fairly specific as to how the release
process should proceed.

Crafting a release of Subversion involves many individuals in a coordinated effort
following established procedures. In the following sections, we describe the roles
these individuals fill, the different types of releases, and the significance of version
numbers for Subversion releases. We also describe the process used to create a new
feature release of Subversion. In Section 3, we compare the ideal described here with
what actually happened when releasing Subversion 1.5.0.

2.1 Community Roles

In a large and complex open source community, such as Subversion, different mem-
bers take on different roles within the project. Individuals may fill more than one
role, (i.e., a person may be both the release manager and a committer), but the roles
themselves are distinct. Below we describe the pertinent roles in creating a release
of Subversion.

Release manager

The release manager for the Subversion project is a volunteer individual who over-
sees the entire release process. Typically one of the developers, the release man-
ager coordinates branching dates, signature collection, tarball distribution and release
publication and announcement. Rarely does the release manager make unilateral de-
cisions, but his voice is influential in directing the release process and coordinating
discussion within the community.

Subversion 1.5: A Case Study in Open Source Release Mismanagement 3

Committers

Committers are individuals with full commit rights to all locations in the Subver-
sion source code repository. How an individual becomes a committer is beyond the
scope of this paper, but the primary qualifications for this designation are good judg-
ment and trust within the community. As part of the release process, committers run
independent tests of the candidate tarball on a platform of their choosing. Upon suc-
cessful completion of the tests, they provide cryptographic signatures verifying the
integrity of the release.

Third-party distributors

Rarely do users make direct use of Subversion source code as provided, and the
project itself does not provide binary packages. Instead, a vibrant community of
third-party distributors provides binary packages of Subversion for various plat-
forms.! Because of Subversion’s well-documented APIs [3], many third parties build
tools on top of the Subversion libraries that integrate with other platforms and envi-
ronments. While not directly involved in the release process, the feedback from these
consumers helps validate API consistency between releases, and provides important
testing during the validation of a potential release.

2.2 Versioning Guidelines

Subversion has adopted the “MAJOR.MINOR.PATCH” release numbering strategy,
similar to that used for the Apache webserver [7]. The version numbers allow users
to know what compatibility guarantees they can expect between different releases.

All releases with the same MAJOR.MINOR numbers are considered part of the
same release series, with MAJOR.MINOR.O being the first release in the series.
Subsequent releases within the series are considered patch or bug fix releases, and
the project guarantees that several important parameters, such as APIs and on-disk
working copy database formats will not change. Thus, users and API consumers can
know that interfaces will stay consistent between patch releases. New features are
never delivered as part of a patch release.

Changes to the MINOR number result in a new feature release. These releases
contain new features, and may change database formats on both the client and server.
Features releases are promised to be backwards compatible, both in features and
APIs, and work with old database formats. Newer releases can read and write older
formats, but old releases are not guaranteed to be able to read newer formats (though
often are able to).

In addition to code and database compatilibity, all releases with the same MAJOR
version number are compatible client-to-server. Older clients may not be able to take
advantage of more advanced features in newer servers, but they will still be able to
communicate. This compatibility is both forward and backward.

1A recent informal poll at a meeting of Subversion users indicated that not one in a group
of over sixty professionals used the source packages as provided by the project. When
deploying Subversion, these users all relied on third-party packages.

4 Hyrum K. Wright and Dewayne E. Perry

Table 1: Dates between feature release branches and releases

Release Branch date Release date Time to first Time to re- Time from
RC (days) lease (days) previous
release (days)

1.0 19 Dec 2003 23 Feb 2004 63 66 N/A
1.1 10 Jul 2004 29 Sep 2004 4 81 219
1.2 04 Apr 2005 21 May 2005 1 47 234
1.3 28 Sep 2005 30 Dec 2005 7 93 223
1.4 05 May 2006 10 Sep 2006 27 128 254
1.5 30Jan 2008 19 Jun 2008 69 141 648

2.3 Release Procedure

For several years, Subversion has used a hybrid between feature- and time-based
release strategies. Feature-based releases define particular releases to specific fea-
tures, while time-based releases use strict timetables to determine release dates. In
Subversion’s hybrid model, the developers would wait some amount of time, usually
around six months, determine which features were completed or nearing completion,
and use those features to define the next release.

Several weeks prior to a new feature release, a release branch is created for that
release. This branch is a snapshot of the main development branch, frunk, and is
used for bug fixing and stabilization prior to release. This branch is ideally created
at a time when frunk is considered stable enough for release, but more often than not
the need arises to perform additional stablization on the branch before releasing.

To port changes from trunk to the release branch during stabilization, committers
nominate and vote on specific changes or groups of changes. A change must receive
positive votes, with no vetoes, to be approved for inclusion in the release. Any change
may be nominated, but successful nominations are for changes which fix a known
bug, increase performance in a non-invasive manner, or fix known API problems.
A candidate change must recieve three positive votes from committers, with any
committer holding veto power.

When the release branch is considered sufficiently stable, a release candidate
(RC) is created from the branch. This release candidate is just that: a candidate for
what will eventually become the official release. The RC enters a period known as
the soak. If no critical errors are found during the soak, a final RC is created, which
eventually becomes the new feature release. If a critical error is found, the release
manager publishes a new RC with the problems fixed, and restarts the soak period.
Table 1 shows the historic times for creating Subversion feature releases.

Each RC, feature release and patch release goes through a validation process be-
fore being published. As mentioned before, committers thoroughly test the candidate
using the included unit and regression test suites, and upon sucessful completion,
cryptographically sign the release artifacts. In addition, enthusiastic users are invited

Subversion 1.5: A Case Study in Open Source Release Mismanagement 5

to test the candidate tarballs and provide feedback, but their testing is not counted
toward the required number of signatures.

Committers test on the platform of their choice, but the project requires three
signatures from testers on both POSIX and Windows platforms, in addition to that of
the release manager. When these signatures have been collected, the release manager
uploads the release tarballs to the distribution server and publicly announces the re-
lease. For each release, the project distributes source code in .tar.gz, .tar.bz2,
and . zip formats, as well as a set of dependencies in the same formats.

After the feature release is published, committers continue to nominate and port
candidate changes to the release branch. When a large enough group of bug fixes
accrues, a new patch release is issued from this branch, following the same pattern
as creating a RC, including committer testing and signature collection. This process
may be expedited for serious bugs or regressions.

3 Releasing Subversion 1.5.0

Following the Subversion 1.4.0 release in September 2006, the Subversion develop-
ers turned their attention to the next feature release, Subversion 1.5.0. Subversion
had largely fulfilled it’s goal as a replacement for CVS, and the developers started
looking for ways to further enhance the feature set. The project needed direction, and
found it in merge tracking.

3.1 Merge tracking

Merge tracking is keeping track of which changes occured on which branches and
how these changes have been applied, or merged to additional branches. In Sub-
version 1.4 and earlier, Subversion required users to manually track this informa-
tion, which proved tedious and error-prone. Individual users, as well as corporate
customers wanted Subversion to track this information and use it when performing
merges between branches. The developers decided that merge tracking would be the
defining feature for Subversion 1.5.0.

Work on the merge tracking feature began on a feature branch, a copy of rrunk
used to implement potentially destabilizing features. Feature branches are useful in
isolating incomplete or broken code from unwitting developers, but have the draw-
back that code on the branch is not as well reviewed or tested. Six months after
creation, the merge tracking branch had grown quite complex, but had not yet been
merged back to trunk.

Several months after merge tracking was started, in March 2007, several devel-
opers proposed releasing currently available features in an intermediate feature re-
lease, prior to releasing merge tracking [9]. However, the community felt that merge
tracking was close to completion, and that any effort spent creating and stabilizing a

2 For further information about Subversion’s merge tracking design and implementation, see
http://subversion.tigris.org/merge—-tracking/

6 Hyrum K. Wright and Dewayne E. Perry

feature release would futher delay its release. Shortly after this decision, the merge
tracking branch was merged to trunk. At this point, it was estimated that Subversion
1.5.0 would be released by September 2007.

The complexity of merge tracking also hindered development efforts. Only a
small percentage of the development community was actively working on the merge
tracking feature, but it had grown so complex that additional developers where hesi-
tant to invest the time required to make meaningful contributions. As the release cy-
cle progressed, many individuals knew enough about merge tracking to raise mean-
ingful concerns, but not enough to solve the issues presented.

As the testing of merge tracking progressed, defect rates failed to stabilize, and
the developers continued to work to increase performance. Additionally, the initial
design was flawed, which required additional workarounds. Internal and external
pressure mounted to create a release, in spite of the chaotic state of the code base.

3.2 From branch to release

Finally, after a couple of abortive attempts, the 1.5 series release branch was created
at the end of January 2008 (see Table 1). Fixes began to flow into the branch, leading
to an initial alpha release on 22 Feb 2008. This release did not pass the committer
verification, and was quickly followed by a second alpha release on 29 Feb 2008.
This was the first time the Subversion project had used the term “alpha” on a release,
and both alpha releases contained a number of known issues.

While stability continued to increase, a discussion opened within the project
about what the next pre-release should be called. One faction wanted to proceed
with an RC so the four-week soak period could start, while others, recognizing the
bugs that existed were severe enough to prevent an actual feature release, wanted
to be more conservative when naming pre-releases. Eventually, a compromise was
worked out, and a beta release was followed by the first true RC on 7 Apr 2008. This
was more than two months after the branch was created (see Table 1), an abnormally
long time for branch stabilization for a feature release.

Unfortunately, the first RC had critical bugs, and itself was not officially pub-
lished, nor were the second or third RCs. It was not until RC-4 was announced on 24
Apr 2008 that the official soak period began. Additional minor bugs were found and
more RCs created, some of which were never published due to the near-immediate
discovery of still more problems. As the soak period ended, third-party consumers
found additional API bugs which required yet more RCs, often with less than a week
of separation between them. Over the course of the process, the release manager cre-
ated eleven separate RCs, five of which would never be released because they did not
pass internal validation.

Subversion 1.5.0 was finally released on 19 Jun 2008. This release came after
much debate and struggle within the community, but the developers decided to re-
lease even with known issues. The prevailing rationale was that postponing the re-
lease would do more harm than good, and existing bugs could be fixed in subsequent
patch releases. After experiencing the marathon 1.5.0 release process, developers
also felt it was time for a change in release processes.

Subversion 1.5: A Case Study in Open Source Release Mismanagement 7
4 Discussion

In the several months since the release of Subversion 1.5.0, and as the developers
work toward the next feature release, they have identified several places where the
1.5.0 release process failed. The developers plan on using these observations to im-
plement improvements when releasing additional feature releases.

4.1 Learn from the past

Despite the transparency of process and free exchange of ideas, open source projects
can sometimes be slow to learn from the experiences of others. Sometimes this hap-
pens intentionally, but most of the time, community members are either unaware of
the problems other projects face, being too busy working on their own work to no-
tice, or convincing themselves that the same problems are not at play in their own
project. A combination of these factors played into the delay in releasing Subversion
1.5.0.

Software projects are notorious for being delivered late. For example, the Emacs
text editor released version 22.1 in June 2007, nearly 6 years after the previous fea-
ture release. The long development cycle and time between releases frustrated users,
who were forced to download and build their own copy of the latest development
sources just to have access to features that had already been included in the devel-
opment branch for years, but were unavailable in the last official release. Devel-
opers also felt alienated by the unresponsiveness of the community leadership and
frustrated by the long time between when code was written and when it actually
shipped [6]. The Subversion community could have seen and worked to avoid frus-
tration by releasing sooner, but did not.

Another project which faced problems similar to Subversion 1.5.0 was the
FreeBSD operating system [1]. FreeBSD 5.0 languished in stabilization for sev-
eral years as new features were added and stabilized in an ambitious development
effort. As with Emacs, some of the Subversion developers were aware of the experi-
ences of FreeBSD, but no one thought these same problems could apply to Subver-
sion. Naiveté, ego or both prevented developers from learning from these mistakes
in preparing Subversion 1.5.0.

4.2 Follow the process

Projects typically create guidelines to assist with the release process, and Subver-
sion is no different. HACKING exists to bring order to the occasionally chaotic na-
ture of open source development, and to help newcomers become involved in the
project. Consistently following established guidelines can help a project create re-
leases which are both timely and of acceptable quality.

In an effort to publish a release, any release, the release manager began putting
out alpha and beta releases, without any formal definition of what they meant, and
how those releases differed from typical RCs. When true RCs did start appearing,
there was some question as to their quality; over the course of the release cycle,

8 Hyrum K. Wright and Dewayne E. Perry

five of the eleven RCs were never published. The Subversion community did have a
process, and attempted to follow it, but the process was not designed for such large
features as merge tracking.

It wasn’t until the developers neared the end of the soak period and actually
started threatening to create the final release that API consumers and third-party
distributors started seriously testing the RCs. This led to the discovery of another set
of bugs, more RCs, and more schedule slippage in attempting to deliver Subversion
1.5.0.

The community was also unwilling to firmly set a date and release code with
known issues. No developer wants to release buggy code, but for most users, perfect
code is nonexistant code if it has not yet been released. As the number of changes
in subsequent patch releases attests, Subversion 1.5.0 did have many bugs, but none
were showstoppers for the release, and most have been addressed in subsequent patch
releases.

4.3 Time-based releases

Many projects, from complete GNU/Linux distributions to individual software pack-
ages, have adopted a time-based release strategy. The theory behind such a strategy
is to keep the time between when a feature is implemented and when it is released
beneath some known upper bound. We call this the “bus station strategy”: if a fea-
ture misses a release, the next will be along shortly, so the release should not be held
up for any one feature. This type of process helps keep developers engaged in the
project, and users can plan upgrade cycles around known dates. It also helps devel-
opers plan their efforts to allow frunk to be in a branchable state when release dates
approach.

This type of strategy should work well for Subversion in particular because of the
large number of third-party distributors who rely on releases created by the project.
These consumers’ products often require extensive development and testing to in-
corporate new features in a Subversion release. During the Subversion 1.5.0 release
process, it wasn’t until the developers threatened imminent release that some third-
party users started testing thoroughly. Having a well-publicized schedule would help
these communities as they build their own products.

Creating “time-based” releases is not a panacea for ensuring a consistent re-
lease process. Planning releases becomes difficult in open source projects where
resources levels are unknown and constantly shifting. When release deadlines ap-
proach, and features are not complete, the community has to make difficult decisions
about removing features, letting release dates slip, or shipping partial features. In
a consensus-based community, such as Subversion, making these decisions can be
difficult, and require resources which can detract from further development. As with
any methodology, “time-based” release should be used in conjunction with other
techniques to produce high-quality software.

Subversion 1.5: A Case Study in Open Source Release Mismanagement 9
4.4 Defining releases independent of features

Early in the 1.5 release process, developers and other interested parties came to ex-
pect that Subversion 1.5.0 would include the much-hyped merge tracking feature.
This feature was crucial for a number of potential adopters, and heavily desired by
one of Subversion’s corporate sponsors, CollabNet. As the development cycle con-
tinued, it became evident that merge tracking was a complex problem, and would
take much longer than anticipated, but it continued to define the 1.5.0 release.

Since most of the merge tracking development was happening on a branch, frunk
was still in a releasable state, and an intermediate feature release could have been
created in early 2007. A number of developers floated this idea, but the community
ultimately rejected it in favor of focusing on delivering a 1.5.0 release which con-
tained merge tracking, estimated to be delivered by September 2007.

Instead of defining Subversion 1.5.0 as the release which would add merge track-
ing, the community should have examined which features already existed, and been
satisfied with creating a release with those features. As a result of a delay in merge
tracking, many other desirable features were also delayed, forcing users to run poten-
tially unstable development sources to obtain those new features, much like Emacs
users did during the period described in Section 4.1.

By defining features independent of releases, developers not only create the op-
protunity to release more frequently, they also constrain themselves to more modular
designed software. In the case of Subversion 1.5.0, the the merge tracking feature
turned out to be much larger than anticipated, and the community ill-equiped to han-
dle it. As a result, instead of dividing and parallelizing the development effort on
merge tracking, the developers forced themselves to deliver it as an atomic feature.
This further prolonged development and release time by increasing testing complex-

1ty.

5 Aftermath

In the aftermath of the disastrous Subversion 1.5.0 release, the developers realized
policies and procedures, as well as project mentality, had to change. In response,
they instituted a much more rapid cycle for the 1.5.x patch release series, and time-
based feature releases. While these have only recently been implemented, developer
response has been positive and the community expects more rapid and better quality
releases in the future.

5.1 Patch Releases

In preparing the patch releases for the 1.5.x series, the Subversion community has
been much more aggressive than previously, creating more frequent releases. They
have noticed several advantages to this approach, some of which are similar to the
increased frequency of feature releases, just on a micro scale. For instance, frequent
patch releases help get fixes to annoying bugs and regressions into the hands of users

10 Hyrum K. Wright and Dewayne E. Perry

faster, just as more frequent feature releases get new features to users quicker. Also,
by publishing more patch releases, community testers more frequently test and sign
releases, keeping these skills sharp.

We should caution about being foo agressive with patch releases, since new re-
leases do require some amount of effort for testing, packaging, and deployment.
However, the Subversion community feels that the current strategy of 1-2 months
between patch releases is sufficient to balance these drawbacks. The current 1.5 se-
ries patch releases have been spaced roughly 6 weeks apart, with the spacing growing
slightly larger as the defect rate decreases.

5.2 Feature Releases

Additionally, at the 2008 Subversion Developer Summit, a group of the core develop-
ers committed to using time-based releases for upcoming feature releases. By giving
contributors a set date for a release, they can plan development and stabilization ef-
forts around known target dates. This helps keep release and development cycles
consistent, which then helps avoid the frustration and confusion which impromptu
and drawn out release cycles can lead to. The response has generally been positive,
with Subversion 1.6 currently branched and being stabilized for a late-December
2008 release. (We hope to report the successful release of Subversion 1.6 in the final
version of this paper.)

5.3 Dividing Features

Subversion continues to improve and incorporate new features which have the scale
and complexity of merge tracking. Two of these features, the next-generation work-
ing copy (WC-NG) [5] and tree conflict resolution [8, 4], are both being implemented
in a modular fashion. This allows them to be released in a partial, but still useful state,
creating smaller testing surfaces, and helping to facilitate time-based releases. This
approach has the added benefit of creating features which are small enough to reduce
the learning curve of new developers who wish to become involved.

6 Conclusion

In this paper, we discussed the Subversion 1.5.0 development and release cycle,
where it went wrong and how it can be improved. We outlined the established Sub-
version processes, where the 1.5 series deviated from those processes, and how the
Subversion community is working to improved their processes. Specifically, we dis-
cussed how time-based releases, learning from past mistakes, and feature modularity
can all improve the release cycle and are currently being implemented today.

Releasing quality software in a timely manner is not trivial, but is essential to the
continuing health of open source projects. We hope that both proprietary and open
source projects can learn from the experience of the Subversion team in releasing
Subversion 1.5.0.

Subversion 1.5: A Case Study in Open Source Release Mismanagement 11

7 Acknowledgements

The authors wish to thank the members of the Subversion community who reviewed
this paper. C. Michael Pilato, Mark Phippard, Stefan Sperling and Neels J. Hofmeyr
all offered constructive comments, as did Justin Erenkrantz. Paul Grisham assisted
in proofing and editing the paper, along with many others.

References

1. Choosing the FreeBSD Version That Is Right For You. http://www.freebsd.org/
doc/en/articles/version-guide/.

2. Hacker’s Guide to Subversion. http://subversion.tigris.org/hacking.
html.

3. Subversion Documentation. http://svn.collab.net/svn-doxygen/.

4. Subversion Tree Conflict Notes. http://svn.collab.net/repos/svn/trunk/
notes/tree-conflicts/.

5. WC-NG Design. http://svn.collab.net/repos/svn/trunk/notes/
wc-ng-design.

6. J. Corbet. Waiting for Emacs 22. http://lwn.net/Articles/234593/,2007.

7. J. R. Erenkrantz. Release Management Within Open Source Projects. In Proceedings of
the ICSE 3rd Workshop on Open Source Software Engineering, May 2003.

8. S. Sperling. Investigation of tree conflict handling in selected version control systems,
2008.

9. H. K. Wright. Subversion 1.5. http://svn.haxx.se/dev/archive-2007-03/
0170.shtml.

