
Integrating semantic interference detection into version management systems

Danhua Shao, Sarfraz Khurshid, and Dewayne E. Perry
Electrical and Computer Engineering, The University of Texas at Austin

{dshao, khurshid, perry}@ece.utexas.edu

Abstract
Global software developments intensify parallel

changes. Although parallel changes can improve
performance, their interferences contribute to faults.
Current Software Configuration Management
(SCM) systems can detect the interference between
changes at textual level. However, our empirical
study shows that, compared with textual
interference, semantic approach is more effective
and efficient in detecting interference in high-
degree parallel changes. We propose to integrate
semantic interference checking into SCM system.
Semantic interferences detected during check in can
alert developers to potential faults.

1. Introduction

In the development of global software projects,
parallel changes are becoming increasingly
prevalent. Multiple developers work on the same
module or program at the same time. Parallel-style
development is important because: development
teams are distributed; the size of the software
systems are often too large to be handled by few
developers; and markets bring pressure to develop
new features or new product quickly.

However, in a global development setting,
parallel development also brings problems: 24-hour
workdays shorten the interval between changes;
geographic and temporal distances cause difficulty
in coordination; and parallel changes in such
environments are very likely to conflict with each
other. A case study on a subsystem of Lucent
Technologies 5ESS Telephone Switching System
[1] shows that faults are strongly correlated with
degrees of parallel change.

To detect interferences between parallel changes,
current SCM systems use textual approaches.
Conflicts are identified by matching the source code
modified by one change with that modified by other
changes during the same period.

However, our empirical study shows that,
compared with the high density of faults found in
high-degree parallel changes, the conflicts at the
textual level are very low. According to the change
history of 5ESS, only 3% of the changes made

within 24 hours by different developers physically
overlapped each others’ changes.

To detect more conflicts for fault prediction and
prevention, we proposed a semantic approach [3].
This approach is based on data dependency analysis
and program slicing. Our empirical evaluation [2]
shows that this semantic interference detection
algorithm best detects interference in high-degree
parallel changes. Thus, integrating semantic
interference detection into current SCM systems can
help developers to find more faults in global
software development.

This paper describes our research on integrating
a semantic interference detection algorithm with an
SCM system.

2. Algorithm
Our semantic interference detection algorithm

combines data dependency analysis and program
slicing. Data dependency analysis discloses the
semantic structure of a program. Program slicing
can identify which semantic substructures are
impacted by changes. The overlap of the impacted
parts of the two changes is their interference.

Figure 1 illustrates the semantic interference
detection algorithm. V0 is base version and V0 V1
and V0 V2 are two parallel changes on V0.

First, we identify data dependencies within each
version. We use a triple (var: def, use) to represent a
dependency, where var is the variable on which the
dependence is built, def is the line that defines
variable var, and the use line uses the variable
defined at def line. For example, the dependencies
in V0 are {(a: 1, 3), (b: 2, 4), (i: 3, 5), (j: 4, 5)}.

Second, identify the changed lines for each
change. Change V0 V1 modified the first line
from "a=0" to "a=1" while change V0 V2
modified the second line from "b=0" to "b=5".

Third, for each change, we calculate its semantic
impact by forward slicing from the changed lines.
Change V0 V1 modified Line 1. According to the
variable defuse chains, {(a: 1, 3), (i: 3, 5)}, Line 3
and 5 are impacted. So the impact of change
V0 V1 is {3, 5}. Similarly the impact of change
V0 V2 is {4, 5}.

Fourth, we identify semantic interference by
checking the overlap between impacts of the two
changes. The impact of change V0 V1 and impact
of change V0 V2 overlap on Line 5, which is their
semantic interference.

3. Implementation
To integrate semantic interference detection, an

SCM system needs to change its repository and
procedures for check-in and check-out.

• Repository: add a dependency graph for
each version of every source file.

• Check-out procedure: record the base
version number in local work space.

• Check-in procedure: add semantic
interference detection to the existing textural
interference detection

Figure 2 illustrates an example of the check-out
and check-in procedure in a SCM with semantic
interference checking. Given a version Vi, Vi.s
represents the source code file and Vi.d represents
the variable def-use dependency within version Vi.
In Figure 2, V0 is the base version when a
developer checks out a program file. After making
changes on V0, the developer want to check in a
new version Vc. At this moment, Vn is the latest
version in repository. Figure 3 shows the steps of
the check-in procedure.

4. Summary
Global software developments intensify the

interference among parallel changes. A 24-hour
workday shortens the interval between changes.
Geographic and temporal distances increase
difficulties in coordination. Thus, detecting conflicts
in parallel changes becomes important to project
management and product quality.

We propose to integrate semantic interference
detection into SCM systems because it is more
effective than textual approaches in interference
detection. With semantic interference detection,
SCM can report more conflicts to developers when
a new version is checked in. If a bug is reported,
semantic impact and interference from previous
versions can help developers to locate fault-
inducing changes. Modules with high degrees of
interferences can help development team to pay
attention to the most dangerous parts. So SCM
system with semantic interference detection is very
helpful for developers to improve product quality in
global software development processes.

a = 0;

b = 0;

i = a + 2;

j = b * 3;

k = i + j;

Source Code
Dependency

(a: 1, 3)
(b: 2, 4)
(i: 3, 5)
(j: 4, 5)

Version V0

Version V1

a = 1;

b = 0;

i = a + 2;

j = b * 3;

k = i + j;

Source Code
Dependency

(a: 1, 3)
(b: 2, 4)
(i: 3, 5)
(j: 4, 5)

Change Impact
{3,5}

{3,5} ∩ {4,5} = {5}
semantic interference

k = i + j;

Source Code
Dependency

(a: 1, 3)
(b: 2, 4)
(i: 3, 5)
(j: 4, 5)

Version V2

Change Impact
{4,5}

a = 0;

b = 5;

i = a + 2;

j = b * 3;

k = i + j;

a = 0;

b = 0;

i = a + 2;

j = b * 3;

k = i + j;

Source Code
Dependency

(a: 1, 3)
(b: 2, 4)
(i: 3, 5)
(j: 4, 5)

Version V0

a = 0;

b = 0;

i = a + 2;

j = b * 3;

k = i + j;

a = 0;

b = 0;

i = a + 2;

j = b * 3;

k = i + j;

Source Code
Dependency

(a: 1, 3)
(b: 2, 4)
(i: 3, 5)
(j: 4, 5)

Version V0

Version V1

a = 1;

b = 0;

i = a + 2;

j = b * 3;

k = i + j;

Source Code
Dependency

(a: 1, 3)
(b: 2, 4)
(i: 3, 5)
(j: 4, 5)

Change Impact
{3,5}

Version V1

a = 1;

b = 0;

i = a + 2;

j = b * 3;

k = i + j;

a = 1;

b = 0;

i = a + 2;

j = b * 3;

k = i + j;

Source Code
Dependency

(a: 1, 3)
(b: 2, 4)
(i: 3, 5)
(j: 4, 5)

Change Impact
{3,5}

{3,5} ∩ {4,5} = {5}
semantic interference

k = i + j;

{3,5} ∩ {4,5} = {5}
semantic interference

k = i + j;

Source Code
Dependency

(a: 1, 3)
(b: 2, 4)
(i: 3, 5)
(j: 4, 5)

Version V2

Change Impact
{4,5}

a = 0;

b = 5;

i = a + 2;

j = b * 3;

k = i + j;

Source Code
Dependency

(a: 1, 3)
(b: 2, 4)
(i: 3, 5)
(j: 4, 5)

Version V2

Change Impact
{4,5}

a = 0;

b = 5;

i = a + 2;

j = b * 3;

k = i + j;

a = 0;

b = 5;

i = a + 2;

j = b * 3;

k = i + j;

1. Check textual conflicts between
V0.s Vn.s and V0.s Vc.s;

2. Prompt developer to solve conflicts.
Result is a new version Vc'.

3. Check semantic conflicts between
V0 Vn and V0 Vc' using
dependencies in V0.d, Vn.d, and
Vc'.d.

4. Prompt developer to manually solve
conflicts. Result is version Vc"

5. if (Vc' = = Vc"){
 Save Vc".s as Vn+1.s;

 Save Vc".d as Vn+1.d;
 Done;
 } else {
 Vc = Vc";
 Goto step 1;
 }

Figure 3. The check-in process of a SCM with semantic
interference detection. Figure 1. Detect Semantic Interference between

V0 V1 and V0 V2.

Acknowledgements
This work was supported in part by NSF CISE

Grant IIS-0438967.

Reference
[1] D.E. Perry, H.P. Siy, and L.G. Votta, “Parallel

Changes in Large Scale Software Development: An
Observational Case Study”, ACM Transactions on
Software Engineering and Methodology, Vol. 10,
No. 3, July, 2001, 308-337.

[2] D. Shao, S. Khurshid, and D.E. Perry, “Evaluation of
semantic interference detection in parallel changes:
an exploratory experiment”, Proc. of the 23rd IEEE
International Conference on Software Maintenance
(ICSM’07), Paris, France, October 2007, 74-83.

V0
.s .d

V1
.s .d

Vn
.s .d

V0
.s

Versions in SCM
repository

Vc
.s .d

Versions in local
work space

Vn+1
.s .d

Check-out Check-in

V0
.s .d

V1
.s .d

Vn
.s .d

V0
.s

Versions in SCM
repository

Vc
.s .d

Versions in local
work space

Vn+1
.s .d

Check-out Check-in

Figure 2. Version evolution in a SCM with semantic
interference detection

[3] G.L. Thione, and D.E. Perry, “Parallel Changes:
Detecting Semantic Interferences”, The 29th Annual
International Computer Software and Applications
Conference (COMPSAC 2005), Edinburgh, Scotland,
July 2005, 47-56.

	1. Introduction
	2. Algorithm
	3. Implementation
	4. Summary
	Acknowledgements
	Reference

