
Subversion 1.5: A Case Study in Open Source Release Mismanagement

Hyrum K. Wright and Dewayne E. Perry
Empirical Software Engineering Laboratory

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, Texas 78712
{hwright,perry}@ece.utexas.edu

Abstract

In June 2008, the Subversion development team released
Subversion 1.5.0. This release contained a number of new
features, but arrived only after a long and difficult develop-
ment, test and release cycle. This protracted process con-
fused and frustrated both users and developers. In this pa-
per, we discuss the events which led to this breakdown, how
the release process is being improved, and what lessons
other open source projects can learn from the Subversion
community’s mistakes.

1 Introduction

Open source projects rely upon timely and quality re-
leases to encourage higher user adoption and attract devel-
opers. These releases are the public image of the project,
and influence both mindshare and market share. Users
adopt projects they see as responsive to their needs, while
developers enjoy being part of a vibrant development com-
munity. A timely release process can help achieve these
goals.

Subversion is a popular version control system whose
initial goal was to replace the aging CVS with a more mod-
ern design and feature set. With the release of Subversion
1.4.0, these goals were largely accomplished, and the com-
munity focused on making additional improvements to Sub-
version. These included features requested by both open
source users and corporate deployments, with the primary
one being merge tracking.

As the release manager, one of the authors saw first-hand
the frustration and confusion caused by the protracted re-
lease cycle for Subversion 1.5.0. This release cycle lasted
much longer than anticipated, which negatively impacted
both users and developers. This paper offers a retrospec-
tive view of an actual release experience, how it could have

been better, and what the community is doing to improve
the process for future release cycles.

We recount the history of the Subversion 1.5.0 release
process, which ultimately ended in the delivery of Subver-
sion 1.5.0 in June 2008, more than a year after planned, and
almost two years after Subversion 1.4.0. We discuss the
established process of creating a Subversion release, how
that process helped and hindered the 1.5.0 release, and ulti-
mately what lessons can be learned from this experience for
Subversion and other open source projects. We also discuss
the subsequent steps the Subversion community is taking to
address these issues in upcoming feature releases.

2 Subversion Release Process

In the early days of the project, Subversion developers
established a guiding document known as the “Hacker’s
Guide to Subversion” [2]. Colloquially referred to as
HACKING, this document outlines many aspects of com-
munity processes and procedures, including release pro-
cesses. Although the community allows for circumstantial
variation in these processes, HACKING is fairly specific as
to how the release process should proceed.

Crafting a release of Subversion involves many individu-
als in a coordinated effort following established procedures.
In the following sections, we describe the roles these indi-
viduals fill, the different types of releases, and the version
numbering scheme for Subversion releases. We also de-
scribe the process used to create a new feature release of
Subversion. In Section 3, we compare the ideal described
here with what actually happened when releasing Subver-
sion 1.5.0.

2.1 Community Roles

In a large and complex open source community, such
as Subversion, different members take on different roles



within the project. Individuals may fill more than one role,
(i.e., a person may be both the release manager and a com-
mitter), but the roles themselves are distinct [7]. Below we
describe the pertinent roles in creating a release of Subver-
sion.

2.1.1 Release manager

The release manager for the Subversion project is a vol-
unteer individual who oversees the entire release process.
Typically one of the developers, the release manager coor-
dinates branching dates, signature collection, tarball distri-
bution and release publication and announcement. Rarely
does the release manager make unilateral decisions, but his
voice is influential in directing the release process and co-
ordinating discussion within the community.

2.1.2 Committers

Committers are individuals with full commit rights to all lo-
cations in the Subversion source code repository. How an
individual becomes a committer is beyond the scope of this
paper, but the primary qualifications for this designation are
good judgment and trust within the community. As part of
the release process, committers run independent tests of the
candidate tarball on a platform of their choosing. Upon suc-
cessful completion of the tests, they provide cryptographic
signatures verifying the integrity of the release.

2.1.3 Third-party distributors

Rarely do users make direct use of Subversion source code
as provided, and the project itself does not provide binary
packages. Instead, a vibrant community of third-party dis-
tributors provides binary packages of Subversion for vari-
ous platforms.1 Because of Subversion’s well-documented
APIs, many third parties build tools on top of the Subver-
sion libraries that integrate with other platforms and envi-
ronments. While not directly involved in the release pro-
cess, the feedback from these consumers helps validate API
consistency between releases, and provides important test-
ing during the validation of a potential release.

2.2 Versioning Guidelines

Subversion has adopted the “MAJOR.MINOR.PATCH”
release numbering strategy, similar to that used for the
Apache webserver [8]. The version numbers allow users
to know what compatibility guarantees they can expect be-
tween different releases.

1A recent informal poll at a meeting of Subversion users indicated that
not one in a group of over sixty professionals used the source packages as
provided by the project. When deploying Subversion, these users all relied
on third-party packages.

All releases with the same MAJOR.MINOR numbers
are considered part of the same release series, with MA-
JOR.MINOR.0 being the first release in the series. Subse-
quent releases within the series are considered patch or bug
fix releases, and the project guarantees that several impor-
tant parameters, such as APIs and on-disk working copy
database formats will not change. Thus, users and API
consumers can know that interfaces will stay consistent be-
tween patch releases. New features are never delivered as
part of a patch release.

Changes to the MINOR number result in a new fea-
ture release. These releases contain new features, and may
change database formats on both the client and server. Fea-
tures releases are promised to be backwards compatible,
both in features and APIs, and work with old database for-
mats. Newer releases can read and write older formats, but
old releases are not guaranteed to be able to read newer for-
mats (though often are able to).

In addition to code and database compatibility, all re-
leases with the same MAJOR version number are compat-
ible client-to-server. Older clients may not be able to take
advantage of more advanced features in newer servers, but
they will still be able to communicate. This compatibility is
both forward and backward.

2.3 Release Procedure

For several years, Subversion has used a hybrid between
feature- and time-based release strategies. Feature-based re-
leases define particular releases to specific features, while
time-based releases use strict timetables to determine re-
lease dates [9]. In Subversion’s hybrid model, the devel-
opers would wait some amount of time, usually around six
months, determine which features were completed or near-
ing completion, and use those to define the next release.

Several weeks prior to a new feature release, a release
branch is created for that release. This branch is a snap-
shot of the main development branch, trunk, and is used for
bug fixing and stabilization prior to release. This branch
is ideally created at a time when trunk is considered stable
enough for release, but frequently the need arises to perform
additional stabilization on the branch prior to releasing.

To port fixes from trunk to the release branch during
stabilization, committers nominate and vote on specific
changes or groups of changes. A change must receive three
positive votes from different committers to be approved for
inclusion in the release. Any change may be nominated, but
successful nominations are for changes which fix a known
bug, increase performance in a non-invasive manner, or fix
known API problems. Any committer may veto any change.

When the release branch is considered sufficiently sta-
ble, a release candidate (RC) is created from the branch.
This release candidate is just that: a candidate for what will



eventually become the official release. The RC enters a pe-
riod known as the soak, a four-week waiting period during
which early adopters are encouraged to test the potential re-
lease. If no critical errors are found during the soak, a final
RC is created, which eventually becomes the new feature
release. If a critical error is found, the release manager pub-
lishes a new RC with the problems fixed, and restarts the
soak period. Table 1 shows the historic times for creating
Subversion feature releases.

Each RC, feature release and patch release goes through
a validation process before being published. As mentioned
before, committers thoroughly test the candidate using the
included unit and regression test suites, and upon success-
ful completion, cryptographically sign the release artifacts.
In addition, enthusiastic users are invited to test the candi-
date tarballs and provide feedback, but their testing is not
counted toward the required number of signatures.

Committers test on the platform of their choice, but
the project requires three signatures from testers on both
POSIX and Windows platforms, in addition to that of the re-
lease manager. When these signatures have been collected,
the release manager uploads the release tarballs to the distri-
bution server and publicly announces the release. For each
release, the project distributes source code in .tar.gz,
.tar.bz2, and .zip formats, a set of dependencies in
the same formats, and the signatures generated as part of
the validation process.

After the feature release is published, committers con-
tinue to nominate and port candidate changes to the release
branch. When a large enough group of bug fixes accrues, a
new patch release is issued from this branch, following the
same pattern as creating a RC, including committer testing
and signature collection. This process may be expedited for
serious bugs or regressions.

3 Releasing Subversion 1.5.0

Following the Subversion 1.4.0 release in September
2006, the developers turned their attention to the next fea-
ture release, Subversion 1.5.0. Subversion had largely ful-
filled it’s goal as a replacement for CVS, and the developers
started looking for ways to further enhance the feature set.
The project needed direction, and found it in merge track-
ing.

3.1 Merge tracking

Merge tracking was defined within the project as keep-
ing track of which changes occurred on which branches
and how these changes have been applied, or merged to
additional branches. In Subversion 1.4 and earlier, Sub-
version required users to manually track this information,
which proved tedious and error-prone. Individual users,

as well as corporate customers wanted Subversion to track
this information and use it when performing merges be-
tween branches. The developers decided that merge track-
ing would be the defining feature for Subversion 1.5.0 [3].

Work on the merge tracking feature began on a feature
branch, a copy of trunk used to implement potentially desta-
bilizing features. Feature branches are useful in isolating
incomplete or broken code from unwitting developers, but
have the drawback that code on the branch is not as well
reviewed or tested. Six months after creation, the merge
tracking branch had grown quite complex, but had not yet
been merged back to trunk.

Several months after merge tracking was started, in
March 2007, several developers proposed releasing cur-
rently available features in an intermediate feature release,
prior to releasing merge tracking. However, the community
felt that merge tracking was close to completion, and that
any effort spent creating and stabilizing an interim feature
release would further delay this feature. Shortly after this
decision, the merge tracking branch was merged to trunk,
and the developers felt that Subversion 1.5.0 would be re-
leased by September 2007.

The complexity of merge tracking also hindered devel-
opment efforts. Only a small percentage of the development
community was actively working on the merge tracking fea-
ture, and it had grown so complex that additional developers
were hesitant to invest the time required to make meaning-
ful contributions. As the release cycle progressed, many
individuals knew enough about merge tracking to raise im-
portant concerns, but lacked the knowledge to solve them.

As the testing of merge tracking progressed, defect rates
failed to stabilize, and the developers continued to work to
increase performance. Additionally, the initial design was
flawed, which required additional workarounds. Internal
and external pressure mounted to create a release, in spite
of the chaotic state of the code base.

3.2 From branch to release

Finally, after a couple of abortive attempts, the 1.5 series
release branch was created at the end of January 2008. Fixes
began to flow into the branch, leading to an initial alpha re-
lease on 22 Feb 2008. This release did not pass committer
verification, and was quickly followed by a second alpha
release on 29 Feb 2008. This was the first time the Sub-
version project had used the term “alpha” on a release, and
both alpha releases contained a number of known issues.

While stability continued to increase, a discussion
opened within the project about what to call the next pre-
release. One faction wanted to proceed with an RC so the
four-week soak period could start, while others, recogniz-
ing the bugs that existed were severe enough to prevent an
actual feature release, wanted to be more conservative when



Release Branch date Release date Time to first
RC (days)

Number of
RCs

Time to re-
lease (days)

Time from previ-
ous release (days)

1.0 19 Dec 2003 23 Feb 2004 63 1 66 N/A
1.1 10 Jul 2004 29 Sep 2004 4 4 81 219
1.2 04 Apr 2005 21 May 2005 1 4 47 234
1.3 28 Sep 2005 30 Dec 2005 7 7 93 223
1.4 05 May 2006 10 Sep 2006 27 5 128 254
1.5 30 Jan 2008 19 Jun 2008 69 11 141 648
1.6 16 Feb 2009 ?? 0 ?? ?? ??

Table 1. Dates between feature release branches and releases

naming pre-releases. Eventually, the groups reached a com-
promise, and a beta release was followed by the first true
RC on 7 Apr 2008. This was more than two months after
the branch was created (see Table 1), an abnormally long
time for branch stabilization for a feature release.

Unfortunately, the first RC had critical bugs, and itself
was not officially published, nor were the second or third
RCs. It was not until RC-4 was announced on 24 Apr 2008,
nearly three months after the feature branch was created,
that the official soak period began. Additional minor bugs
were found and more RCs created, some of which were
never published due to the near-immediate discovery of still
more problems. As the soak period ended, third-party con-
sumers found additional API bugs which required yet more
RCs, often with less than a week of separation between
them. Over the course of the process, the release manager
created eleven separate RCs, five of which would never be
released because they did not pass internal validation.

Subversion 1.5.0 was finally released on 19 Jun 2008.
This release came after much debate and struggle within the
community, but the developers decided to release even with
known issues. The prevailing rationale was that postpon-
ing the release would do more harm than good, and existing
bugs could be fixed in subsequent patch releases. After ex-
periencing the marathon 1.5.0 release process, developers
also felt it was time for a change in release processes.

4 Discussion

In the several months since the release of Subversion
1.5.0, and as the developers work toward the next feature
release, they have identified several places where the 1.5.0
release process failed. The developers plan on using these
observations to implement improvements when releasing
additional feature releases.

4.1 Learn from the past

Despite the transparency of process and free exchange of
ideas, open source projects can sometimes be slow to learn

from the experiences of others. Sometimes this happens in-
tentionally, but most of the time community members are
either unaware of the problems other projects face, being
too focused on their own work to notice, or convinced that
the same problems are not at play in their own project. A
combination of these factors played into the delay in releas-
ing Subversion 1.5.0.

Software projects are notorious for being delivered
late [11]. For example, the Emacs text editor released ver-
sion 22.1 in June 2007, nearly 6 years after the previous fea-
ture release. The long development cycle and time between
releases frustrated users, who were forced to download and
build their own copy of the latest development sources just
to have access to features that had already been included
in the development branch for years, but were unavailable
in the last official release. Developers also felt alienated by
the unresponsiveness of the community leadership and frus-
trated by the long time between when code was written and
when it actually shipped [6]. The Subversion community
could have seen and worked to avoid frustration by releas-
ing sooner, but did not.

Another project which faced problems similar to Subver-
sion 1.5.0 was the FreeBSD operating system [1]. FreeBSD
5.0 languished in stabilization for several years as new fea-
tures were added and stabilized in an ambitious develop-
ment effort. As with Emacs, some of the Subversion de-
velopers were aware of the experiences of FreeBSD, but
no one thought these same problems could apply to Sub-
version. Naı̈veté, ego or both prevented developers from
learning from these mistakes in preparing Subversion 1.5.0.

4.2 Follow the process

Projects typically create guidelines to assist with the re-
lease process, and Subversion is no different. HACKING
exists to bring order to the occasionally chaotic nature of
open source development, and to help newcomers become
involved in the project. Consistently following established
guidelines can help a project create releases which are both
timely and of acceptable quality.



In an effort to publish a release, any release, the release
manager began putting out alpha and beta releases, without
any formal definition of what they meant, and how those
releases differed from typical RCs. When true RCs did
start appearing, there was some question as to their qual-
ity; over the course of the release cycle, five of the eleven
RCs were never published. The Subversion community did
have a process, and attempted to follow it, but the process
was not designed for such large features as merge tracking.

It wasn’t until the developers neared the end of the soak
period and actually started threatening to create the final re-
lease that API consumers and third-party distributors started
seriously testing the RCs. This led to the discovery of an-
other set of bugs, more RCs, and more schedule slippage in
attempting to deliver Subversion 1.5.0.

The community was also unwilling to release code with
known issues. No developer wants to release buggy code,
but for most users, perfect code is nonexistent code if it has
not yet been released. As the number of changes in subse-
quent patch releases attests, Subversion 1.5.0 did have many
bugs, but none were showstoppers for the release, and most
have been addressed in subsequent patch releases.

4.3 Time-based releases

Many projects, from complete GNU/Linux distributions
to individual software packages, have adopted a time-based
release strategy. The theory behind such a strategy is to keep
the time between when a feature is implemented and when
it is released beneath some known upper bound. We call this
the “bus station philosophy”: if a feature misses a release,
the next will be along shortly, so the release should not be
held up for any one feature. This type of process helps keep
developers engaged in the project, and gives users the abil-
ity to plan upgrade cycles around known dates. It also helps
developers plan their efforts to allow trunk to be in a branch-
able state when release dates approach.

This type of strategy should work well for Subversion
in particular because of the large number of third-party dis-
tributors who rely on releases created by the project. These
consumers’ products often require extensive development
and testing to incorporate features new in a Subversion re-
lease. During the Subversion 1.5.0 release process, it wasn’t
until the developers threatened imminent release that some
third-party users started testing thoroughly. Having a well-
publicized schedule helps these communities as they build
their own products.

Creating “time-based” releases is not a panacea for en-
suring a consistent release process. Planning releases be-
comes difficult in open source projects where resources lev-
els are unknown and constantly shifting. When release
deadlines approach, and features are not complete, the com-
munity has to make difficult decisions about removing fea-

tures, letting release dates slip, or shipping partial features.
In a consensus-based community, such as Subversion, mak-
ing these decisions can be difficult, and require resources
which detract from further development.

4.4 Defining releases independent of fea-
tures

Early in the 1.5 release process, developers and other in-
terested parties came to expect that Subversion 1.5.0 would
include the much-hyped merge tracking feature. This fea-
ture was crucial for a number of potential adopters, and
heavily desired by one of Subversion’s corporate sponsors,
CollabNet. As the development cycle continued, it became
evident that merge tracking was a complex problem, and
would take much longer than anticipated, but it continued
to define the 1.5.0 release.

Since most of the merge tracking development was hap-
pening on a branch, trunk was still in a releasable state, and
an intermediate feature release could have been created in
early 2007. A number of developers floated this idea, but
the community ultimately rejected it in favor of focusing on
delivering a 1.5.0 release which contained merge tracking,
estimated to be delivered by September 2007.

Instead of defining Subversion 1.5.0 as the release which
would add merge tracking, the community should have ex-
amined which features already existed, and been satisfied
with creating a release with those features. As a result of a
delay in merge tracking, many other desirable features were
also delayed, forcing users to run potentially unstable de-
velopment sources to obtain those new features, much like
Emacs users did during the period described in Section 4.1.

By defining features independent of releases, developers
not only create the opportunity to release more frequently,
they also constrain themselves to more modularly designed
software. In the case of Subversion 1.5.0, the the merge
tracking feature ended up being much larger than antici-
pated, and the community ill-equipped to handle it. As a
result, instead of dividing and parallelizing the development
effort on merge tracking, the developers forced themselves
to deliver it as an atomic feature. This also increased testing
complexity, further prolonging the release cycle.

5 Aftermath

In the aftermath of the Subversion 1.5.0 release, the de-
velopers realized policies and procedures, as well as project
mentality, had to change. In response, they instituted a
much more rapid cycle for the 1.5.x patch release series, and
time-based feature releases. While these have only recently
been implemented, response from both users and develop-
ers has been positive and the community expects more rapid
and better quality releases in the future.



5.1 Patch Releases

In preparing the patch releases for the 1.5.x series, the
Subversion community has been much more aggressive
than previously, creating more frequent releases. They have
noticed several advantages to this approach, some of which
are similar to the increased frequency of feature releases,
but on a micro scale. For instance, frequent patch releases
help get fixes to annoying bugs and regressions into the
hands of users faster, just as more frequent feature releases
get new features to users quicker. Also, by publishing more
patch releases, community testers more frequently test and
sign releases, keeping these skills sharp.

We should caution about being too aggressive with patch
releases, since creating new releases does require some
amount of effort for testing, packaging, and deployment.
However, the Subversion community feels that the current
strategy of 1-2 months between patch releases provides suf-
ficient benefits to balance these drawbacks. The current 1.5
series patch releases have come roughly 6 weeks apart, with
the intervals growing slightly as the defect rate decreases.

5.2 Feature Releases

Additionally, at the 2008 Subversion Developer Sum-
mit, a group of the core developers committed to producing
time-based feature releases. By giving contributors a set
date for a release, they can plan development and stabiliza-
tion efforts around known target dates. This helps keep re-
lease and development cycles consistent, which then helps
avoid the frustration and confusion which impromptu and
drawn out release cycles can lead to. The response has gen-
erally been positive; Subversion 1.6 branched in February
2009 with a planned March 2009 release.

5.3 Dividing Features

Subversion continues to improve and incorporate new
features which have the scale and complexity of merge
tracking. Two of these features, the next-generation work-
ing copy (WC-NG) [5] and tree conflict resolution [10, 4],
are both being implemented in a modular fashion. This al-
lows them to be released in a partial, but still useful state,
creating smaller testing surfaces, and helping to better facil-
itate time-based releases. This approach also leads to fea-
tures which are small enough to reduce the learning curve
of new developers who wish to become involved.

6 Conclusion

In this paper, we discussed the Subversion 1.5.0 develop-
ment and release cycle, where it went wrong and how it can

be improved. We outlined the established Subversion pro-
cesses, where the 1.5 series deviated from those processes,
and how the Subversion community is working to improve
their processes. Specifically, we discussed how time-based
releases, learning from past mistakes, and feature modular-
ity can all improve the release cycle and are currently being
implemented today.

Releasing quality software in a timely manner is not triv-
ial, but is essential to the continuing health of open source
projects. We hope that both proprietary and open source
projects can learn from the experience of the Subversion
team in releasing Subversion 1.5.0.

7 Acknowledgements

The authors wish to thank the members of the Subver-
sion community who reviewed this paper. C. Michael Pi-
lato, Mark Phippard, Stefan Sperling and Neels J. Hofmeyr
all offered constructive comments, as did Justin Erenkrantz.
Paul Grisham assisted in proofing and editing the paper,
along with many others. We also thank the anonymous re-
viewers for their constructive comments. This work was
partially supported by NASA grant NNX08AC48G.

References

[1] Choosing the FreeBSD Version That Is Right For You.
http://www.freebsd.org/doc/en/articles/
version-guide/.

[2] Hacker’s Guide to Subversion. http://subversion.
tigris.org/hacking.html.

[3] Subversion Merge Tracking Notes. http:
//subversion.tigris.org/merge-tracking/.

[4] Subversion Tree Conflict Notes. http://svn.
collab.net/repos/svn/trunk/notes/
tree-conflicts/.

[5] WC-NG Design. http://svn.collab.net/repos/
svn/trunk/notes/wc-ng-design.

[6] J. Corbet. Waiting for Emacs 22. http://lwn.net/
Articles/234593/, 2007.

[7] K. Crowston and J. Howison. The social structure of free and
open source software development. First Monday, 10(2),
2005.

[8] J. R. Erenkrantz. Release Management Within Open Source
Projects. In Proceedings of the ICSE 3rd Workshop on Open
Source Software Engineering, May 2003.

[9] M. Michlmayr, F. Hunt, and D. Probert. Release Manage-
ment in Free Software Projects: Practices and Problems. In-
ternational Federation for Information Processing, 234:295,
2007.

[10] S. Sperling. Investigation of tree conflict handling in se-
lected version control systems. BSc Thesis, 2008.

[11] M. van Genuchten. Why is software late? an empirical study
of reasons for delay in software development. IEEE Trans-
actions on Software Engineering, 17(6):582–590, 1991.


