
Weaving a Network of Architectural Knowledge

Elena Navarro Carlos E. Cuesta Dewayne E. Perry
Computing Systems

Department, University of
Castilla-La Mancha

Department of Computing
Languages and Systems II,
Rey Juan Carlos University

Department of Electrical and
Computer Engineering, The
University of Texas at Austin

elena.navarro@uclm.es carlos.cuesta@urjc.es perry@ece.utexas.edu

Abstract

Recent research in software architecture has reasserted
an emphasis on keeping track of design decisions and
their rationales during the development process, that is,
on maintaining architectural knowledge (AK). This
knowledge takes the form of explicit assets, interrelated in
decision networks. We argue that the relationships
structuring these networks contain valuable information,
specially those describing negative semantics. For this
reason, we have extended an architecture-centric, model-
driven development process, ATRIUM, which already
provides support for AK, with new AK relationships to
define AK as a network of knowledge.

1. Introduction

The traditional approach for architectural description

has been to provide the final architecture of the software
system, i.e. the result of the design process. However, this
means that much of the design information gets simply
lost. Recent research suggests to avoid that by capturing
the rationale and design intent, documenting every design
decision in the process and relating it to the architecture.

The resulting structure, the architectural rationale, can
be considered just documentation; but in recent research
it has acquired quite an active role. It can be seen as a
computational structure, composed of small assets of
design knowledge, tracing back to some requirements and
forward towards an implementation: this defines our
architectural knowledge (AK). This AK is composed of
architectural elements, requirements, and a number of
design assets (DA). There are several ways to represent
them; we talk about Design Decisions (DDs) and Design
Rationales (DRs), which comprise a concrete decision in
the process, and the reasoning behind it. When just the
final architecture is described, all that is unrepresented
design knowledge; but now architecture includes this
information as part of the rationale.

From the AK perspective, architecture is therefore
better defined as “a set of design decisions” [5]. But it is

not a set, but a network. DDs are related to some others
and both forward and backwards, defining an intertwined
chain of decisions. When the rationale is conceived as a
network of AK assets, much of the structure can be
subsumed by the network itself. However, these
relationships can either be positive or negative, indicating
conflicts in the design and the resulting compromises. A
decision not taken, or inhibited due to some other, is not
visible (there are no traces of it) in the final architecture.
This unrepresented knowledge cannot be deduced from
the final design, and should be explicitly considered.

In this paper, we describe the AK relationships that we
have defined up to date. They are analyzed highlighting
their importance to comprehend the reasoning
accomplished during software architecture (SA)
specification. A core of concepts has been identified that
has allowed us to extend an existing model-driven
(MDD) methodology, ATRIUM [9]. It already has the
support for DDs, but it previously lacked the support for
relationships, which are added in the new version.

This paper is structured as follows. After this
introduction, section 2 summarizes current approaches to
AK relationships, discussing its benefits and extension.
Section 3 describes how ATRIUM has been extended
with AK relationships. Finally, section 4 describes our
conclusions and lines of further research.

2. Background on AK Relationships

The most natural way to think about a design decision

is to consider it separately from the rest of the system by
a process of abstraction. However, such a view is
necessarily incomplete and partial. Design decisions are
connected, because they refer to and affect each other. In
fact, there is a complex fabric of relationships
surrounding them: even the simplest model of DDs in
existing literature provides some structure. First, every
decision can be traced back to the goal it achieves, or the
requirement(s) it satisfies. Second, every decision is
implemented by some design artifact, some architectural
element. Apart from these two reifying relationships, any
decision relates to other decisions in different ways.

Design Decisions and Rationales (DD&DRs) can be
correctly considered as the basic assets which compose
our design knowledge. However, to provide a coherent
system-wide rationale these have to be complemented
with the information about their mutual referrals and
connections. Therefore, those Architectural Knowledge
Relationships (AKRs) present themselves as another
invaluable basic asset, which transform the set of design
decisions into a network of design knowledge.

Some authors [5] describe this network of decisions
using a single (dependency) relationship, or perhaps
several assimilated ones. Even this simple layout is useful
and much more than a simple “set” of decisions, as many
details depend just on topology. But there are still many
details left, such as positive and negative relationships,
respectively exposing synergies and divergences within
the design; these interactions should also be considered.

Many authors recognize the inherent complexity of
managing and combining “knowledge assets”, and thus
they advocate an ontological approach [1][2][3] [6][7][8]
to provide a solid basis for this reasoning. These
ontologies are able to identify the basic properties of the
knowledge contained in an asset. They can also help to
define the basic relationships between assets, and to
provide a more complete metamodel for them.

However, most of the work in this area, even those
inspired by an ontological approach, has focused on the
description of the (internal) structure of DDs. For most of
them, relationships play just a secondary role, if any.

For instance, Tang et al. [11] provide a structural
model for their basic asset, the architectural rationale.
This is defined as the composition of a quantitative and a
qualitative rationale, with scenarios and possibly some
aggregations, defining an alternate DD. The resulting
structure is quite useful, particularly for documentation of
a single decision. However, this model does not scale
well: first, every decision is complex, including cases and
alternates; and second, there is not support to relate a
decision to any other, except for aggregation itself.
Therefore, the resulting “global” rationale is defined as an
unstructured discourse, which does not provide an
organization for architectural knowledge.

The situation improves a lot when considering it as a
network of design assets, as it captures much of the
complexity itself. First, AKRs must assume ontological
features, which can be independent from DDs
themselves; and second, the structure of the network
itself becomes significant. Moreover, the connections
capture some essential facts, not only about the
architecture itself, but also about the construction process.
Therefore, a network of very simple DDs is able to
capture perhaps even more information than a poorly
structured set of complex DDs.

In existing literature, the most popular relationships
are constrains, which expresses the self-evident positive

implication, and alternative, probably the most cited
among them, which expresses variability. It provides the
support to express a choice and refer to otherwise
unrepresented, vaporized design knowledge, and it is also
very useful in the context of product lines [10].

Table 1 summarizes many of the existing approaches
for AKRs described by current research, providing some
terminological equivalence and some references covering
their definition or use. Kruchten [6] provides the most
complete reference about this topic. He not only provides
the definition for most existing AKRs, but also the way
they relate to each other. Other references, such as
[1][3][7], basically use the same ontological framework.
As mentioned, they are not mutually exclusive: bound to,
for instance, is defined in terms of constrains; also
enables and comprises, are described respectively as
weaker and stronger versions of it.

Although the names of these relationships must be
understood in terms of this particular context, some of
them can be considered within a wider scope; these have
been marked with a star (*) in Table 1.

This refers, in particular, to conflicts with and traces
from/to. In the restricted sense, they obviously refer to
marking conflicting decisions and keeping track in a
chain of decisions. Both of them can also be conceived as
derived relationships (see Table 2) in the context of DDs,
but there is also a general meaning out of this scope,
namely the traditional traceability relationship (trace),
and schemas of conflict between requirements, combined
to trace to provide derived decisions.

Other relationships have been marked with a double
star (**). The issue here is generalization. Both depends
and subsumes can be considered as generic versions of
the rest. First, dependency can be considered the basic
relationship, by definition, so that every other inherits
from it. Then every AKR would also be a dependency
[5]. On the other hand, subsumption is usually considered
as the target relationship for ontologies, acting as the
transitive closure for ontological relationships.

Table 1. Analyzing current AKR approaches
Relationship Synonyms References
Constrains Implies, Refines [6][2][3][5][7]
Forbids Excludes [6][3][7]
Enables [6][3][7]
Subsumes (**) [6][3][7]
Conflicts with (*) [6][3][7]
Overrides [6][3][7]
Comprises Made Of [6][3][7][11]
Bound To [6][3][7]
Alternative Alternate DD [6][2][3][7][11]
Related To [6][3] [7]
Traces From/To Addresses,

Implements (*)
[6][2][3] [7] [11][12]

Not Complies [6][3][7]
Depends on (**) [5][7]

Considering all of the above, we can see that AKRs
provide a particularly rich framework to capture design
knowledge. As already said, this makes also possible to
work with smaller DDs. Also, the conceptual closeness
between some of them makes it possible to apply simple
analysis techniques. The potential of exploiting all this
information remains still unexplored, and there are very
few works in this direction [12]. In summary, though not
very frequent yet, AKRs provide a very useful framework
to define, use and reuse architectural knowledge.

3. Extending ATRIUM with AKRs

ATRIUM [9] is a model-driven software development

methodology, designed to automate the transition from a
goal-based requirements model to the proto-architecture
of a system, with explicit support for AK.

The first model in the ATRIUM process, the Goal
Model, is in charge of manipulating most of the AK. The
building blocks of this model are Goal, requirement and
operationalization . Goals constitute expectations that the
system should meet. Requirements are services that the
system should provide, or constraints on these services.
And operationalizations describe both the DDs and DRs
made to satisfy the established requirements. A seamless
transition from requirements to operationalizations is
defined by the contribution relationship, which specifies
how solutions contribute positively and/or negatively to
meet the corresponding requirements.
One of the main advantages of AK management is the
capability to explore the reasoning in the software
architecture by exploiting the network of AK. In order to
provide ATRIUM with this facility, several relationships
were defined in its metamodel, to allow the analyst to
describe the AK as a network. As shown in [9], these
relationships were first defined on operationalizations, as
they are in charge of describing both the DDs and the
DRs. The analysis performed in section 2 was considered
in their definition, establishing the following
relationships:
• constrains is a binary and unidirectional relationship

with positive semantics. Let’s consider operational-
izations A and B , describing different design
decisions. Having a constraint relationship from A to
B means that B’s design decision cannot be made
unless A’s design decision is also made.

• inhibits is a binary and unidirectional relationship used
to specify negative semantics. Let’s consider
operationalizations A and B, describing different
design decisions. Having an inhibition relationship
from A to B means that if A’s design decision is made,
it hinders B’s design decision to be made.

• excludes is a binary and unidirectional relationship
with stronger negative semantics than inhibits. Let’s
consider operationalizations A and B, describing

different design decisions. Having an exclusion
relationship from A to B means that if A’s design
decision is made, it prevents B’s design decision to be
made.
Table 2 shows a brief resume of how the selection of

these specific relationships provides us with the necessary
expressiveness to cover most of the existing approaches
in the area. It compares these three relationships to the set
of AKRs surveyed in section 2. When Table 2 indicates
“equivalent”, there is a full coincidence with some
existing definition in the bibliography. When it indicates
“opposite”, the reversed relationship would have been
equivalent; therefore that is a trivial conversion. When it
indicates “derived”, it means that the current relationship
can be non-atomically built using some of the selected,
using some conditions to strengthen or weaken their
definition.

Both subsumes and traces relationships deserve a
special mention. For the former we simply note that
subsumption is usually defined as the transitive closure of
a positive relationship – hence constrains. For the latter,
the reasoning is similar, it can be extended to consider
also requirements and architectural elements; and in this
case it must be combined with the trace relationship.

Of course, the nature of most of the proposed AKRs is
essentially ontological; consequently, we are not claiming
that our three relationships capture every semantic feature
in them. But both their basic meaning and, even more
importantly, the positive or negative nature of the
connections they define, can indeed be expressed in terms
of these, as summarized in Table 2.

As presented in [9], one of the advantages of ATRIUM
is that it facilitates the generation of the DDs along with
the proto-architecture, so that each architectural element
is related to the set of DDs that motivated its specification
and the DRs that justify those decisions. Fig. 1 shows
(part of) the Architectural metamodel. It can be observed
that every Architectural Element is related to a set of
Design Assets that describe both the DDs and the DRs.

Fig. 1 Describing AK relationships in ATRIUM

As can be observed, the DesignAssets can be related by
means of constrains, excludes and inhibits relationships
in a similar way to the operationalizations in the Goal
Metamodel.

It is worth noting that the main difference is the use of
operationalizations in the goal model and Design Assets
in the architectural model. The former are in charge of
specifying all the design decisions and design rationales
that were analysed during the specification of the system,
that is, they describe the reasoning carried out to evaluate
which were the best alternatives for the system. The latter
describe the reasoning behind the current specification of
the system, that is, why the system has its current
specification. Therefore, they help to maintain AK from
different perspectives.

4. Conclusions and further research

Our work in this paper has shown the influence of

relationships in AK. What once was a set of small-sized
design decisions is now a complex decision network. In
fact, once that relationships have been included, the
network of AK can get as complex as the architecture
itself; comparatively, even more, as the final architecture
is just a part of the rationale.

Now architecting, instead of simply constructing the
architecture, and losing valuable context knowledge in
every decision, becomes the process of writing the
architectural rationale. Two complex structures are
obtained: the architecture and the rationale; but being
closely intertwined, they are just one structure. The act of
building the first is also the act of writing the second.

The combination of the basic support with a model-
driven approach gives enormous benefits, as already
shown in [9]. As traceability relationships are also
provided by MORPHEUS, the environment supporting
ATRIUM, they are easily composed to each other, and
their consequences can be fully exploited – including the
scope of a requirement, the implementation of a decision,
or finer strategies for network analysis.

Further work for the future includes the definition of
special decisions, as well as automatic support to exploit
the decision network, using standard techniques for
network analysis, which will led to the identification of
special nodes and critical decisions. We also plan to
provide more sophisticated methods to visualize the
information contained in the structure, and to complete
this knowledge with the definition, and even local
implementation of several adequate metrics.

Acknowledgments. This work has been funded in part by
the National R&D&I Program, META/MOMENT
Project, TIN2006-15175-C05-01, and in part by NSF
CISE SRS Grant CCF-0820251.

References

[1] A. Akerman, J. Tyree, “Using Ontology to Support

Development of Software Architectures,” IBM Systems
Journal, 45(4), 2006, pp. 813-826.

[2] A. Erfanian, F.S. Aliee, “An Ontology-Driven Software
Architecture Evaluation Method”, Proc. Workshop
SHARK, ACM Computing, 2008, pp. 79-86.

[3] R. Farenhorst, R.C de Boer, “Core Concepts of an
Ontology of Architectural Design Decisions,” Technical
Report IR-IMSE-002, Dept. Computer Science, Vrije
Universiteit Amsterdam, 2006.

[4] S.A. Hendrickson, S. Subramanian, A. van der Hoek,
“Multi-Tiered Design Rationale for Change Set Based
Product Line Architectures”, Proc. 3rd Work. SHARK,
ACM Computing, ACM New York, 2008, pp. 41-44.

[5] A. Jansen, J. Bosch, “Software Architecture as a Set of
Architectural Design Decisions,” Proc 5th Working
IEEE/IFIP WICSA, IEEE CS, 2005, pp. 109-120.

[6] P. Kruchten, “An Ontology of Architectural Design
Decisions,” in J. Bosch (ed.), Proc. 2nd Workshop of Soft.
Variability Man., Groningen, 2004, pp. 54-61.

[7] P. Kruchten, P. Lago, H. van Vliet, “Building Up and
Reasoning About Architectural Knowledge,” Proc. 2nd
QoSA, LNCS 4214, Springer Verlag, 2006, pp. 43-58.

[8] T. Lenin Babu, M. Seetha Ramaiah, T.V. Prabhakar, D.
Rambabu, “ArchVoc – Towards an Ontology for Software
Architecture”, Proc. 2nd W. SHARK, IEEE CS, 2007, pp. 5.

[9] E. Navarro, C. E. Cuesta, “Automating the Trace of
Architectural Design Decisions and Rationales Using a
MDD Approach”, Proc. ECSA 2008, LNCS 5292, Springer
Verlag, 2008, pp. 114-130.

[10] M. Sinnema, S. Deelstra, “Classifying Variability
Modeling Techniques,” Journal on Information and
Software Technology, 49(7), 2007, pp. 717-739.

[11] A. Tang, J. Han, “Architecture Rationalization: A
Methodology for Architecture Verifiability, Traceability
and Completeness,” Proc. 12th IEEE Intl. Conf. ECBS,
IEEE CS, 2005, pp. 135-144.

[12] A. Tang, Y. Jin, J. Han, A. Nicholson, “Predicting Change
Impact in Architecture Design with Bayesian Belief
Networks,” Proc. 5th Work. IEEE/IFIP WICSA, IEEE CS,
2005, pp. 67-76.

Table 2. Evaluating proposed AKRs in ATRIUM
Relationship Constrains Inhibits Excludes
Constrains Equivalent
Forbids Equivalent
Enables Opposite
Subsumes Closure
Conflicts with Derived
Overrides Derived
Comprises Derived
Bound To Derived
Alternative Derived
Related To Derived
Traces From/To Plus trace
Not Complies Derived Opposite
Depends on Derived

	1. Introduction
	2. Background on AK Relationships
	3. Extending ATRIUM with AKRs
	4. Conclusions and further research
	References

