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Abstract 
 
Recent research in software architecture has reasserted 
an emphasis on keeping track of design decisions and 
their rationales during the development process, that is, 
on maintaining architectural knowledge (AK). This 
knowledge takes the form of explicit assets, interrelated in 
decision networks. We argue that the relationships 
structuring these networks contain valuable information, 
specially those describing negative semantics. For this 
reason, we have extended an architecture-centric, model-
driven development process, ATRIUM, which already 
provides support for AK, with new AK relationships to 
define AK as a network of knowledge.  

 
1. Introduction 

 
The traditional approach for architectural description 

has been to provide the final architecture of the software 
system, i.e. the result of the design process. However, this 
means that much of the design information gets simply 
lost. Recent research suggests to avoid that by capturing 
the rationale and design intent, documenting every design 
decision in the process and relating it to the architecture. 

The resulting structure, the architectural rationale, can 
be considered just documentation; but in recent research 
it has acquired quite an active role. It can be seen as a 
computational structure, composed of small assets of 
design knowledge, tracing back to some requirements and 
forward towards an implementation: this defines our 
architectural knowledge (AK). This AK is composed of 
architectural elements, requirements, and a number of 
design assets (DA). There are several ways to represent 
them; we talk about Design Decisions (DDs) and Design 
Rationales (DRs), which comprise a concrete decision in 
the process, and the reasoning behind it. When just the 
final architecture is described, all that is unrepresented 
design knowledge; but now architecture includes this 
information as part of the rationale. 

From the AK perspective, architecture is therefore 
better defined as “a set of design decisions” [5]. But it is 

not a set, but a network. DDs are related to some others 
and both forward and backwards, defining an intertwined 
chain of decisions. When the rationale is conceived as a 
network of AK assets, much of the structure can be 
subsumed by the network itself. However, these 
relationships can either be positive or negative, indicating 
conflicts in the design and the resulting compromises. A 
decision not taken, or inhibited due to some other, is not 
visible (there are no traces of it) in the final architecture. 
This unrepresented knowledge cannot be deduced from 
the final design, and should be explicitly considered.  

In this paper, we describe the AK relationships that we 
have defined up to date. They are analyzed highlighting 
their importance to comprehend the reasoning 
accomplished during software architecture (SA) 
specification. A core of concepts has been identified that 
has allowed us to extend an existing model-driven 
(MDD) methodology, ATRIUM [9]. It already has the 
support for DDs, but it previously lacked the support for 
relationships, which are added in the new version. 

This paper is structured as follows. After this 
introduction, section 2 summarizes current approaches to 
AK relationships, discussing its benefits and extension. 
Section 3 describes how ATRIUM has been extended 
with AK relationships. Finally, section 4 describes our 
conclusions and lines of further research. 

 
2. Background on AK Relationships 

 
The most natural way to think about a design decision 

is to consider it separately from the rest of the system by 
a process of abstraction. However, such a view is 
necessarily incomplete and partial. Design decisions are 
connected, because they refer to and affect each other. In 
fact, there is a complex fabric of relationships 
surrounding them: even the simplest model of DDs in 
existing literature provides some structure. First, every 
decision can be traced back to the goal it achieves, or the 
requirement(s) it satisfies. Second, every decision is 
implemented by some design artifact, some architectural 
element. Apart from these two reifying relationships, any 
decision relates to other decisions in different ways. 



Design Decisions and Rationales (DD&DRs) can be 
correctly considered as the basic assets which compose 
our design knowledge. However, to provide a coherent 
system-wide rationale these have to be complemented 
with the information about their mutual referrals and 
connections. Therefore, those Architectural Knowledge 
Relationships (AKRs) present themselves as another 
invaluable basic asset, which transform the set of design 
decisions into a network of design knowledge. 

Some authors [5] describe this network of decisions 
using a single (dependency) relationship, or perhaps 
several assimilated ones. Even this simple layout is useful 
and much more than a simple “set” of decisions, as many 
details depend just on topology. But there are still many 
details left, such as positive and negative relationships, 
respectively exposing synergies and divergences within 
the design; these interactions should also be considered.  

Many authors recognize the inherent complexity of 
managing and combining “knowledge assets”, and thus 
they advocate an ontological approach [1][2][3] [6][7][8] 
to provide a solid basis for this reasoning. These 
ontologies are able to identify the basic properties of the 
knowledge contained in an asset. They can also help to 
define the basic relationships between assets, and to 
provide a more complete metamodel for them. 

However, most of the work in this area, even those 
inspired by an ontological approach, has focused on the 
description of the (internal) structure of DDs. For most of 
them, relationships play just a secondary role, if any.  

For instance, Tang et al. [11] provide a structural 
model for their basic asset, the architectural rationale. 
This is defined as the composition of a quantitative and a 
qualitative rationale, with scenarios and possibly some 
aggregations, defining an alternate DD. The resulting 
structure is quite useful, particularly for documentation of 
a single decision. However, this model does not scale 
well: first, every decision is complex, including cases and 
alternates; and second, there is not support to relate a 
decision to any other, except for aggregation itself. 
Therefore, the resulting “global” rationale is defined as an 
unstructured discourse, which does not provide an 
organization for architectural knowledge. 

The situation improves a lot when considering it as a 
network of design assets, as it captures much of the 
complexity itself. First, AKRs must assume ontological 
features, which can be independent from DDs 
themselves; and second, the structure of the network 
itself becomes significant. Moreover, the connections 
capture some essential facts, not only about the 
architecture itself, but also about the construction process. 
Therefore, a network of very simple DDs is able to 
capture perhaps even more information than a poorly 
structured set of complex DDs.  

In existing literature, the most popular relationships 
are constrains, which expresses the self-evident positive 

implication, and alternative, probably the most cited 
among them, which expresses variability. It provides the 
support to express a choice and refer to otherwise 
unrepresented, vaporized design knowledge, and it is also 
very useful in the context of product lines [10]. 

Table 1 summarizes many of the existing approaches 
for AKRs described by current research, providing some 
terminological equivalence and some references covering 
their definition or use. Kruchten [6] provides the most 
complete reference about this topic. He not only provides 
the definition for most existing AKRs, but also the way 
they relate to each other. Other references, such as 
[1][3][7], basically use the same ontological framework. 
As mentioned, they are not mutually exclusive: bound to, 
for instance, is defined in terms of constrains; also 
enables and comprises, are described respectively as 
weaker and stronger versions of it.  

Although the names of these relationships must be 
understood in terms of this particular context, some of 
them can be considered within a wider scope; these have 
been marked with a star (*) in Table 1.  

This refers, in particular, to conflicts with and traces 
from/to. In the restricted sense, they obviously refer to 
marking conflicting decisions and keeping track in a 
chain of decisions. Both of them can also be conceived as 
derived relationships (see Table 2) in the context of DDs, 
but there is also a general meaning out of this scope, 
namely the traditional traceability relationship (trace), 
and schemas of conflict between requirements, combined 
to trace to provide derived decisions. 

Other relationships have been marked with a double 
star (**). The issue here is generalization. Both depends 
and subsumes can be considered as generic versions of 
the rest. First, dependency can be considered the basic 
relationship, by definition, so that every other inherits 
from it. Then every AKR would also be a dependency 
[5]. On the other hand, subsumption is usually considered 
as the target relationship for ontologies, acting as the 
transitive closure for ontological relationships.  

Table 1. Analyzing current AKR approaches 
Relationship Synonyms References 
Constrains Implies, Refines [6][2][3][5][7] 
Forbids Excludes [6][3][7] 
Enables  [6][3][7] 
Subsumes (**) [6][3][7] 
Conflicts with (*) [6][3][7] 
Overrides  [6][3][7] 
Comprises Made Of [6][3][7][11] 
Bound To  [6][3][7] 
Alternative Alternate DD [6][2][3][7][11] 
Related To  [6][3] [7] 
Traces From/To Addresses, 

Implements (*) 
[6][2][3] [7] [11][12] 

Not Complies  [6][3][7] 
Depends on (**) [5][7] 

 



Considering all of the above, we can see that AKRs 
provide a particularly rich framework to capture design 
knowledge. As already said, this makes also possible to 
work with smaller DDs. Also, the conceptual closeness 
between some of them makes it possible to apply simple 
analysis techniques. The potential of exploiting all this 
information remains still unexplored, and there are very 
few works in this direction [12]. In summary, though not 
very frequent yet, AKRs provide a very useful framework 
to define, use and reuse architectural knowledge. 

 
3. Extending ATRIUM with AKRs 

 
ATRIUM [9] is a model-driven software development 

methodology, designed to automate the transition from a 
goal-based requirements model to the proto-architecture 
of a system, with explicit support for AK. 

The first model in the ATRIUM process, the Goal 
Model, is in charge of manipulating most of the AK.  The 
building blocks of this model are Goal, requirement and 
operationalization . Goals constitute expectations that the 
system should meet. Requirements are services that the 
system should provide, or constraints on these services. 
And operationalizations describe both the DDs and DRs 
made to satisfy the established requirements. A seamless 
transition from requirements to operationalizations is 
defined by the contribution relationship, which specifies 
how solutions contribute positively and/or negatively to 
meet the corresponding requirements.  
One of the main advantages of AK management is the 
capability to explore the reasoning in the software 
architecture by exploiting the network of AK. In order to 
provide ATRIUM with this facility, several relationships 
were defined in its metamodel, to allow the analyst to 
describe the AK as a network. As shown in [9], these 
relationships were first defined on operationalizations, as 
they are in charge of describing both the DDs and the 
DRs. The analysis performed in section 2 was considered 
in their definition, establishing the following 
relationships: 
• constrains is a binary and unidirectional relationship 

with positive semantics. Let’s consider operational-
izations A and B , describing different design 
decisions. Having a constraint relationship from A to 
B means that B’s design decision cannot be made 
unless A’s design decision is also made. 

• inhibits is a binary and unidirectional relationship used 
to specify negative semantics. Let’s consider 
operationalizations A and B, describing different 
design decisions. Having an inhibition relationship 
from A to B means that if A’s design decision is made, 
it hinders B’s design decision to be made. 

• excludes is a binary and unidirectional relationship 
with stronger negative semantics than inhibits. Let’s 
consider operationalizations A and B, describing 

different design decisions. Having an exclusion 
relationship from A to B means that if A’s design 
decision is made, it prevents B’s design decision to be 
made. 
Table 2 shows a brief resume of how the selection of 

these specific relationships provides us with the necessary 
expressiveness to cover most of the existing approaches 
in the area. It compares these three relationships to the set 
of AKRs surveyed in section 2. When Table 2 indicates 
“equivalent”, there is a full coincidence with some 
existing definition in the bibliography. When it indicates 
“opposite”, the reversed relationship would have been 
equivalent; therefore that is a trivial conversion. When it 
indicates “derived”, it means that the current relationship 
can be non-atomically built using some of the selected, 
using some conditions to strengthen or weaken their 
definition. 

Both subsumes and traces relationships deserve a 
special mention. For the former we simply note that 
subsumption is usually defined as the transitive closure of 
a positive relationship – hence constrains. For the latter, 
the reasoning is similar, it can be extended to consider 
also requirements and architectural elements; and in this 
case it must be combined with the trace relationship.  

Of course, the nature of most of the proposed AKRs is 
essentially ontological; consequently, we are not claiming 
that our three relationships capture every semantic feature 
in them. But both their basic meaning and, even more 
importantly, the positive or negative nature of the 
connections they define, can indeed be expressed in terms 
of these, as summarized in Table 2.  

As presented in [9], one of the advantages of ATRIUM 
is that it facilitates the generation of the DDs along with 
the proto-architecture, so that each architectural element 
is related to the set of DDs that motivated its specification 
and the DRs that justify those decisions. Fig. 1 shows 
(part of) the Architectural metamodel. It can be observed 
that every Architectural Element is related to a set of 
Design Assets that describe both the DDs and the DRs. 

 
Fig. 1 Describing AK relationships in ATRIUM 
 



As can be observed, the DesignAssets can be related by 
means of constrains, excludes and inhibits relationships 
in a similar way to the operationalizations in the Goal 
Metamodel.  

It is worth noting that the main difference is the use of 
operationalizations in the goal model and Design Assets 
in the architectural model. The former are in charge of 
specifying all the design decisions and design rationales 
that were analysed during the specification of the system, 
that is, they describe the reasoning carried out to evaluate 
which were the best alternatives for the system. The latter 
describe the reasoning behind the current specification of 
the system, that is, why the system has its current 
specification. Therefore, they help to maintain AK from 
different perspectives. 

 
4.   Conclusions and further research 

 
Our work in this paper has shown the influence of 

relationships in AK. What once was a set of small-sized 
design decisions is now a complex decision network. In 
fact, once that relationships have been included, the 
network of AK can get as complex as the architecture 
itself; comparatively, even more, as the final architecture 
is just a part of the rationale. 

Now architecting, instead of simply constructing the 
architecture, and losing valuable context knowledge in 
every decision, becomes the process of writing the 
architectural rationale. Two complex structures are 
obtained: the architecture and the rationale; but being 
closely intertwined, they are just one structure. The act of 
building the first is also the act of writing the second. 

The combination of the basic support with a model-
driven approach gives enormous benefits, as already 
shown in [9]. As traceability relationships are also 
provided by MORPHEUS, the environment supporting 
ATRIUM, they are easily composed to each other, and 
their consequences can be fully exploited – including the 
scope of a requirement, the implementation of a decision, 
or finer strategies for network analysis. 

Further work for the future includes the definition of 
special decisions, as well as automatic support to exploit 
the decision network, using standard techniques for 
network analysis, which will led to the identification of 
special nodes and critical decisions. We also plan to 
provide more sophisticated methods to visualize the 
information contained in the structure, and to complete 
this knowledge with the definition, and even local 
implementation of several adequate metrics. 
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