
A Case for Using Data-flow Analysis to Optimize 

Incremental Scope-bounded Checking 

(Informal Extended Abstract) 
 

Danhua Shao   Divya Gopinath   Sarfraz Khurshid   Dewayne E. Perry  

The University of Texas at Austin 
{dshao, dgopinath, khurshid, perry}@ece.utexas.edu 

Abstract. Given a program and its correctness specification, scope-bounded 

checking encodes control-flow and data-flow of bounded code segments into 

declarative formulas and uses constraint solvers to search for correctness 

violations. For non-trivial programs, the formulas are often complex and 

represent a heavy workload that can choke the solvers. To scale scope-bounded 

checking, our previous work introduced an incremental approach that uses the 

program’s control-flow as a basis of partitioning the program and generating 

several sub-formulas, which represent simpler problem instances for the 

underlying solvers. We have developed a new approach that optimizes 

incremental checking using the program’s data-flow, specifically variable-

definitions. We expect that splitting different definitions of the same variable 

into sub-programs will reduce the number of variables in the resulting formulas 

and the workload to the backend solvers will be effectively reduced.  

1   Introduction 

In software verification, scope-bounded checking [2] of programs has become an 

effective technique for finding subtle bugs. Given bounds (that are iteratively relaxed) 

on input size and length of execution paths, the code of a program is translated into a 

relational logic formula, and a conjunction of this formula with the negation of the 

post condition specification ( )Pre translate Proc Post∧ ∧ ¬  is solved using off-the-

shelf SAT solvers. A solution to this formula corresponds to a counterexample. 

Traditional scope-bounded checking [1] translates the bounded code segment of 

the whole program into one input formula. For non-trivial programs, the translated 

formulas can be quite complex and the solvers can fail to find a counterexample in a 

desired amount of time. When a solver times out, typically there is no information 

about the likely correctness of the program or the coverage of the analysis completed. 

Recently, we introduced an incremental approach based on the program’s control-

flow to increase the efficiency and effectiveness of scope-bounded checking [3].  

The key idea is to partition the set of executions of the bounded code fragment into a 

number of subsets and encode each subset into a sub-formula. We split the program 

into smaller sub-programs, which are checked according to the correctness 

specification. Thus, the problem of scope-bounded checking for the given program 

reduces to several sub-problems, where each sub-problem requires the constraint 

solver to check a less complex formula.  

The splitting strategy in our previous work [3] focuses solely on the program’s 

control-flow, and is therefore limited to the syntactical structure of the program and 

fails to exploit the program semantics. 



Since the complexity of the formulas comes from both the data-flow and the 

control-flow, we hypothesize that the use of data-flow in defining splitting strategies 

is likely to further reduce the workload of the constraint solvers. We introduce a 

splitting strategy based on variable-definitions. Specifically, we split the program 

based on different definitions of the same variable into sub-programs, which leads to 

a reduction in the number of variables in the resulting sub-formulas. The rationale 

behind this is that decrease in the number of definitions for a variable would reduce 

the number of intermediate variable names and thus the number of frame conditions 

introduced in data flow encoding. 

2   Example 

Suppose we want to check the contains() method of class IntList (Figure 1 (a)). 

An object of IntList represents a singly-linked list. The header field points to 

the first node in the list. Objects of the inner class Entry represent list nodes. The 

value field represents the (primitive) integer data in a node. The next field points to 

the next node in the list. Figure 1 (b) shows an instance of IntList. 

Consider checking the method contains() of class IntList. Assume a 

bound on execution length is one loop unrolling. Figure 2(a) shows the program and 

its computation graph [2] for this bound. 

Our program splitting strategy is variable-definition based. Given a variable in the 

computation graph, we split the graph into multiple sub-graphs such that each sub-

graph has at most one definition for the variable ,that can reach the exit statement.The  

definition of this variable in each  sub-graph is different.  

In Figure 2 (a), the definition of variable this and key is empty set {}. Definitions 

of variable return is statement set {4, 8, 11}, and definition of variable e is statement 

set {1, 5, 9}. All of these definitions can reach the exit statement.  

Suppose we select definitions of variable e (the most modified variable) to split the 

computation graph, we construct three sub-programs: Figure 2(b), 2(c), and 2(d). 

Each sub-program only contains one definition of variable e.  

3   Summary 

Scalability is a key challenge for scope-bounded checking. For non-trivial programs, 

the formulas translated from control-flow and data-flow can be quite complex and the  

   
(a)                     (b) 

Figure 1. Class IntList (contains() method and an instance). 



heavy workload can choke the solvers. Our previous work used control-flow as a 

basis of an incremental approach to scope-bounded checking by splitting the program 

into smaller sub-programs and checking each sub-program separately, and 

demonstrated significant speed-ups over the traditional approach. We recently 

developed a new splitting strategy based on data-flow, specifically variable 

definitions, to optimize the incremental approach. We believe that use of variable 

definitions can effectively reduces the number of variables the complexity of the 

ensuing formulas and provides more efficient analysis. 
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  public boolean  

  constains(int key) 

   { 

1 : Entry e = this.header; 

2 : if (e != null){ 

3 :  if (e.value == key){ 

4 :   return true; 

     } 

5 :  e = e.next; 

6 :  if (e != null){ 

7 :   if (e.value == key){ 

8 :    return true; 

      } 

9 :   e = e.next; 

     } 

10:  assume(e == null); 

    }  

11: return false; 

0 :}  

(a) 

 
  public boolean  

  sub1(int key) 

   { 

1 : Entry e = this.header; 

2 : if (e != null){ 

3’:  assume (e.value==key) 

4 :   return true; 

      

5 :   

6 :   

7 :   

8 :   

       

9 : 

      

10:  

    }  

11: return false; 

0 :}  

(b) 

 
  public boolean  

  sub2(int key) 

   { 

1 : Entry e = this.header; 

2’: assume (e != null); 

3”: assume !(e.value==key); 

4 :  

     

5 :  e = e.next; 

6 :  if (e != null){ 

7’:   assume(e.value==key); 

8 :   return true  

     } 

9 :   

      

10:   

      

11: return false; 

0 :}  

(c) 

 
  public boolean  

  sub3(int key) 

  { 

1 : Entry e = this.header; 

2’: assume(e != null); 

3”: assume !(e.value==key); 

4 :  

     

5 : e = e.next; 

6’: assume (e != null); 

7”: assume !(e.value==key); 

8 : 

      

9 : e = e.next; 

 

10: assume(e == null); 

     

11: return false; 

0 :}  

(d) 

Figure 2. Splitting of program contains() based on definitions of variable e. Broken lines in 

sub-graph indicate edges removed constructing this sub-program during splitting. Gray nodes in 

a sub-graph denote that a branch statement in original program has been transformed into an 

assume statement. In programs below computation graph, the corresponding statements are 

show in Italic. Black nodes denote the statements removed during splitting. Subgraph (a) is 

program contains() and its computation graph after one-round unrolling. At exit, there are 

three definitions of variable e: Statement 1, 5, 9. Subgraph (b) is based on definition at 

statement 1. Subgraph (c) is based on definition at statement 5. Subgraph (d) is based on 

definition at statement 9. 


