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Where Do Most Software Flaws Come From?

Dewayne Perry

The holy grail of software development management is “cheaper, faster, and better.”

Unfortunately, a lot of poor management decisions are made in pursuit of this grail. While

“cheaper and faster” are often very important, “better” clearly is the most important in a wide

variety of software systems where reliability or safety is of paramount importance.

There are a variety of different ways in which a product can be made better, ranging from more

clearly understanding customer needs to minimizing faults in the software system. It is the

latter that is the focus of this chapter. Only by understanding the mistakes we make can we

determine what remedies need to be applied to improve either the products or the processes.

Monitoring faults is a relatively simple matter, either as they are found or in project

retrospectives (often referred to as “project post-mortems”).

A fundamental aspect in minimizing faults in software systems is the managing of complexity,

the most critical of essential characteristics of software systems [Brooks 1995]. One of the most

useful techniques in managing that complexity is that of separating the interfaces of

components from their implementations. It is because of this critical technique that the

difference between interface and implementation faults is an important distinction that is

addressed in this chapter.
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AU: THIS WAS BLANK, FILL IN
On the one hand, it is frustrating that so few studies of software faults have been published to

guide researchers in finding ways of detecting, ameliorating, or preventing these faults from

happening. On the other hand, it is not at all surprising that projects are reluctant to make

such sensitive data public because of internal politics or external competitiveness in software-

intensive businesses.

Despite this paucity of studies and the reluctance of companies to make data available, there

is a set of landmark studies about software faults that provide useful foundations for product

and process improvements. Endres [Endres 1975], Schneidewind and Hoffmann

[Schneidewind and Hoffmann 1979], and Glass [Glass 1981] reported on various fault analyses

of software development. A weakness in their work is that they do not delineate interface faults

as a specific category.

Thayer, Lipow, and Nelson [Thayer et al. 1978] and Bowen [Bowen 1980] provide extensive

categorization of faults, but with a relatively narrow view of interface faults. Basili and 

Perricone [Basili and Perricone 1984] offer the most comprehensive study of problems

encountered in the development phase of a medium-scale system, reporting data on the fault,

the number of components affected, the type of the fault, and the effort required to correct the

fault. Interface faults were the largest class of faults (39% of the faults).

We note, however, that none of these studies address the kinds of problems that arise in very

large-scale software developments, nor do they address the evolutionary phase of

developments. Perry and Evangelist [Perry and Evangelist 1985], [Perry and Evangelist

1987] were the first to address fault studies in the evolution of a large real-time system. An

extremely important factor in this study is the fact that interface faults were by far the

overwhelming and dominant faults (68% of the faults). An important question that was left

unanswered was whether these interface faults were the easy or the hard ones to find and fix.

The distinction between an evolutionary software system release and an initial development

release is a critical one. In the latter case, the design and implementation choices are much less

constrained than in evolutionary development. In the former, you have to make changes to

an existing system, and so the choices are far more constrained and there are many more

difficulties in understanding the implications of changes. As the evolutionary development part

of a system’s life cycle is far greater than its initial development, so too are studies of the faults

in that evolutionary part much more important.

In this study, we take a detailed look at one specific release of one ultra-reliable, ultra-large-

scale, real-time system rather than a more superficial look at several more moderately sized

systems in several domains. The advantage of this approach is that we gain a deeper

understanding of the system and its problems. The disadvantage is that we are less able to

generalize our results compared to the latter course. This type of trade-off is often encountered

in empirical studies.
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As we will see, however, this deeper look provides us with a number of practical and useful

insights. For example, it is commonly accepted wisdom that “once a bug is found, it is easy to

fix.” Unfortunately, our data contradicts this “common wisdom.” Or, in the case of the

unanswered question about interface faults, our data supports our original but unsubstantiated

intuition that interface faults are harder to fix than implementation faults.

Context of the Study
The system discussed in this chapter is a very large-scale (that is, a million lines or more),

distributed, real-time system written in the C programming language (with additional domain-

specific languages as needed) in a Unix-based, multiple machine, multiple location

environment.

The organizational structure is typical with respect to projects for systems of this size and for

the number of people in each organization. Not surprisingly, different organizations are

responsible for various parts of the system development: requirements specification;

architecture, design, coding and capability testing; system and system stability testing; and

alpha testing.

The process of development is also typical with respect to projects of this size. Systems engineers

prepare informal and structured documents defining the requirements for the changes to be

made to the system. Designers prepare informal design documents that are subjected to formal

reviews by 3 to 15 peers, depending on the size of the unit under consideration. The design is

then broken into design units for low-level design and coding. The products of this phase are

subjected both to formal code reviews by three to five reviewers and to low-level unit testing.

As components are available, integration and system testing is performed until the system is

completely integrated.

The release considered here is a “non-initial” release—one that can be viewed as an arbitrary

point in the evolution of this class of systems. Because of the size of the system, the system

evolution process consists of multiple, concurrent releases—that is, while the release dates are

sequential, a number of releases proceed concurrently in differing phases. This concurrency

accentuates the inter-release dependencies and their associated problems. The magnitude of

the changes (approximately 15–20% new code for each release) and the general make up of

the changes (bug fixes, improvements, new functionality, etc.) are generally uniform across

releases. It is because of these two facts that we consider this study to provide a representative

sample in the life of the project.

Faults discovered during testing phases are reported and monitored by a modification

request (MR) tracking system (such as, for example, CMS [Rowland et al. 1983]). Access to 

source files for modification is possible only through the tracking system. Thus all change

activity (whether fixing faults, adding new functionality, or improving existing functionality—

that is, whether they are corrective, adaptive, or perfective changes) is automatically tracked

by the system. This activity includes not only repairs, but enhancements and new functionality
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as well. It should be kept in mind, however, that this fault tracking activity occurs only during

the testing and released phases of the project, not during the architecture, design, and coding

phases. Problems encountered during these earlier phases are resolved informally without

being tracked by the MR system.

The goal of this study was to gain insight into the current process of system evolution by

concentrating on one release of a particular system. The approach we used is that of surveying,

by means of a prepared questionnaire, those developers who “owned” the fault MR at the time

it was closed, surveying first the complete set of faults and then concentrating on the largest

set of faults in more depth. This survey was the first of its type, although there have been some

smaller studies using random selections. The CMS MR database was used to determine the

initial set of fault MRs to survey and the developers who were responsible for closing those

fault MRs. The survey identifying the fault MR was then sent to the identified developer to

complete.

For a variety of reasons (schedule pressure among them), there were significant constraints

placed on the study by project management: first, the study had to be completely non-intrusive;

second, it had to be strictly voluntary; and third, it had to be completely anonymous. We will

see in the later discussion about validity issues that these mandates were the source of some

study weaknesses.

It is with this background that we present our surveys, analyses, and results.

Phase 1: Overall Survey
There were three specific purposes in the original overall survey:

• To determine, generally, what kinds of problems were found (which we report here), as

well as, specifically, what kinds of application-specific problems arose during the

preparation of this release (which we do not report, because of their lack of generality)

• To determine how the problem was found (that is, in which testing phase)

• To determine when the problem was found

One of the problems encountered in any empirical survey study is ensuring that the survey is

in the “language” of those being surveyed. By this “language” we mean both the company- or

project-specific jargon that is used but also the process that is being used. You want the

developer surveyed to clearly understand what is being asked in terms of his own context.

Failing to understand this results in questions about the validity of the survey results. To this

end, we used developers to help us design the survey, and we used the project jargon and

process to provide a familiar context.
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Summary of Questionnaire

The first phase of the survey questionnaire had two main components: the determination of

the category of the fault reported in the MR and the testing phase in which the fault was found.

In determining the fault, two aspects were of importance: first, the development phase in which

the fault was introduced, and second, the particular type of the fault. Since the particular type

of fault reported at this stage of the survey tended to be application or methodology specific,

we have emphasized the phase-origin nature of the fault categorization. The general fault

categories are as follows:

Previous

Residual problems left over from previous releases

Requirements

Problems originating during the requirements specification phase of development

Design

Problems originating during the architectural and design phases of development

Coding

Problems originating during the coding phases of development

Testing environment

Problems originating in the construction or provision of the testing environment (for

example, faults in the system configuration, static data, etc.)

Testing

Problems in testing (for example, pilot faults, etc.)

Duplicates

Problems that have already been reported

No problems

Problems due to misunderstandings about interfaces, functionality, etc., on the part of the

user

Other

Various problems that do not fit neatly in the preceding categories, such as hardware

problems, etc.

The other main component of the survey concerned the phase of testing that uncovered the

fault. The following are the different testing phases:

Capability Test (CT)

Testing isolated portions of the system to ensure proper capabilities of that portion

System Test (ST)

Testing the entire system to ensure proper execution of the system as a whole in the

laboratory environment
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System Stability Test (SS)

Testing with simulated load conditions in the laboratory environment for extended periods

of time

Alpha Test (AT)

Live use of the release in a friendly user environment

Released (RE)

Live use. However, in this study, this data refers not to this release, but the previous

release. Our expectation is that this provides a projection of the fault results for this release

The time interval during which the faults were found (that is, when the fault MRs were

initiated and when they were closed) was retrieved from the MR tracking system database.

Ideally, the testing phases occur sequentially. In practice, however, due to the size and

complexity of the system, various phases overlap. The overlap is due to several specific factors.

First, various parts of the system are modified in parallel. This means that the various parts of

the system are in different states at any one time. Second, the iterative nature of evolution

results in recycling back through previous phases for various parts of the system. Third, various

testing phases are begun as early as possible, even though it is known that that component

may be incomplete. Looked at in one way, testing proceeds in a hierarchical manner: testing

is begun with various pieces, then subsystems, and finally integrating those parts into the

complete system. It is a judgment call as to when different parts of the system move from one

phase to the next, determined primarily by the percentage of capabilities incorporated and the

number of tests executed. Looked at in a slightly different way, testing proceeds by increasing

the size and complexity of the system, while at the same time increasing its load and stress.

Summary of the Data

Table 25-1 summarizes the fault MRs by fault category. The fault MRs representing the earlier

part of the development or evolution process (that is, those representing requirements, design,

and coding) are the most significant, accounting for approximately 33.7% of the fault MRs.

Given that the distinction between a design fault and a coding fault required a “judgment call”

on the part of the respondent, we decided to merge the results of those two categories into

one: design/coding faults account for 28.8% of the MRs. However, in the process structure

used in the project, the distinction between requirements and design/coding is much clearer.

Requirements specifications are produced by systems engineers, whereas the design and coding

are done by developers.
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TABLE 25-1. Summary of faults

MR category Proportion

Previous 4.0%

Requirements 4.9%

Design 10.6%

Coding 18.2%

Testing environment 19.1%

Testing 5.7%

Duplicates 13.9%

No problems 15.9%

Other 7.8%

The next most significant subset of MRs were those that concern testing (the testing

environment and testing categories)—24.8% of the MRs. On the one hand, it is not surprising

that a significant number of problems are encountered in testing a large and complex real-time

system where conditions have to be simulated to represent the “real world” in a laboratory

environment. First, the testing environment itself is a large and complex system that must be

tested. Second, as the real-time system evolves, so must the laboratory test environment

evolve. On the other hand, this general problem is clearly one that needs to be addressed by

further study.

“Duplicate” and “no problem” MRs account for another significant subset of the data—29.8%.

Historically, these have been considered to be part of the overhead. Certainly the “duplicate”

MRs are in large part due to the inherent concurrency of activities in a large-scale project and,

as such, are difficult to eliminate. The “no problem” MRs, however, are in large part due to the

lack of understanding that comes from informal and out-of-date documentation. Obviously,

measures taken to reduce these kinds of problems will have beneficial effects on other

categories as well. In either case, reduction of administrative overhead will improve the cost

effectiveness of the project.

“Previous” MRs indicate the level of difficulty in finding some of the faults in a large, real-time

system. These problems may have been impossible to find in the previous releases and have

only now been exposed because of changes in the use of the system.

Figure 25-1 charts the requirements, design, and coding MRs by testing phase. We have focused

on this early part of the software development process because that is where the most MRs

occurred and, accordingly, where closer attention should yield the most results.
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FIGURE 25-1. Fault categories found by phase

Please note that the percentages used in Figure 25-1 and Figure 25-2 are the percentages of

those faults relative to all the faults, not the percentages relative to just the charted faults. The

phases in Figure 25-1 appear as sequential when in actual fact (as is almost always the case in

software systems’ development) there is a lot of parallelism, with phases overlapping

significantly. With hundreds of software engineers developing hundreds of features

concurrently, the actual project life cycle is nothing like the sequential waterfall model, even

though software development proceeds through a set of, often iterative, phases. That is the

reason for Figure 25-2, which shows the same data relative to a fixed timeline.
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FIGURE 25-2. Fault categories found over time

There are two important observations. First, system test (ST) was the source of most of the

MRs in each category; capability testing (CT) was the next largest source. This is not particularly

surprising, since that is when we were looking the hardest for, and expecting the most, faults.

System test is where the various components are first integrated and is the most likely place

to encounter the mismatches and misassumptions among components. So while all testing is

looking for faults, system test is where we look the hardest. Capability testing is akin to unit

testing in an appropriate context—internal and initial interaction faults are looked for. The

capability test context limits the kinds of faults that can be exposed.
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Second, all testing phases found MRs of each fault category. It is also not surprising that coding

faults are found over the entire set of testing phases. One obvious reason for this phenomena

is that changes are continually made to correct the faults that are found in the various earlier

testing phases. Moreover, while it is disturbing to note that both design and requirements faults

continue to be found throughout the entire testing process, we feel that this is due to the lack

of precision and completeness in requirements and design documentation and is a general

problem in the current state-of-practice rather than a project-specific problem.

The time values in Figure 25-2 are fixed intervals. From the shape of the data, it is clear that

System Testing overlaps interval t4. It is unfortunate that we have only the calendar data (that

is, the time boundaries on the MRs), as a correlation with effort data [Musa et al. 1987] (that

is, the actual amount of time spent in that time period) would be extremely valuable.

For the requirements, design, and coding fault categories over time, Figure 25-2 shows that all

fault types peaked at time t4 and held through time t5, except for the coding faults, which 

decreased.

Summary of the Phase 1 Study

The following general observations may be drawn from this general survey of the problems

encountered in evolving a large-scale, real-time system:

• Implementation, testing, and administrative overhead faults occurred in roughly equal

proportions

• Requirements problems, while not overwhelmingly numerous, are still significant

(especially since the majority were found late in the testing process)

• All types of faults continued to be found in all the testing phases

• The most faults were found when the level of testing effort was the highest (that is, at

system test)

• The majority of faults were found late in the testing cycle

These observations are limited by the fact that the tracking of fault MRs is primarily a testing

activity. It would be extremely useful to observe the kinds and frequencies of faults that exist

in the earlier phases of the project. Moreover, it would be beneficial to incorporate ways of

detecting requirements and design faults into the existing development process.

Phase 2: Design/Code Fault Survey
As a result of the general survey, we decided to survey the design and coding MRs in depth.

The following were the goals we wanted to achieve in this part of the study:

• Determine the kinds of faults that occurred in design and coding

• Determine the difficulty both in finding or reproducing these faults and in fixing them
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• Determine the underlying causes of the faults

• Determine how the faults might have been prevented

• Compare the difficulty in finding and fixing interface and implementation faults

There were two reasons for choosing this part of the general set of MRs. First, it seemed to be

exceedingly difficult to separate the two kinds of faults. Second, catching these kinds of faults

earlier in the process would provide a significant reduction in overall fault cost; that is, the cost

of finding faults before system integration is significantly less than finding them in the

laboratory testing environment. Our internal cost data is consistent with Boehm’s [Boehm

1981](see also Chapter 10 by Barry Boehm). Thus, gaining insight into these problems will

yield significant and cost beneficial results.

In the two subsections that follow, we summarize the survey questionnaire, present the results

of our statistical analysis, and summarize our findings with regard to interface and

implementation faults.

The Questionnaire

The respondents were asked to indicate the difficulty of finding and fixing the problem,

determine the actual and underlying causes, indicate the best means of either preventing or

avoiding the problem, and give their level of confidence in their responses. It should be kept

in mind that the people surveyed were those who owned the MR at the time it was closed (i.e.,

completed).

• For each MR, rank it according to how difficult it was to reproduce the failure and locate

the fault.

1. Easy—could produce at will.

2. Moderate—happened some of the time (intermittent).

3. Difficult—needed theories to figure out how to reproduce the error.

4. Very Difficult—exceedingly hard to reproduce.

• For each MR, how much time was needed to design and code the fix, and document and

test it. (Note that what would be an easy fix in a single-programmer system takes

considerably more time in a large, multiperson project with a complex laboratory test

environment.)

1. Easy—less than one day

2. Moderate—1 to 5 days

3. Difficult—6 to 30 days

4. Very difficult—greater than 30 days
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• For each MR, consider the following 22 possible types and select the one that most closely

applies to the immediate cause (that is, the fault type).

1. Language pitfalls—for example, pointer problems, or the use of “=” instead of “= =”.

2. Protocol—violated rules about interprocess communication.

3. Low-level logic—for example, loop termination problems, pointer initialization, etc.

4. CMS complexity—for example, due to software change management system

complexity.

5. Internal functionality—either inadequate functionality or changes and/or additions

were needed to existing functionality within the module or subsystem.

6. External functionality—either inadequate functionality or changes and/or additions

were needed to existing functionality outside the module or subsystem.

7. Primitives misused—the design or code depended on primitives that were not used

correctly.

8. Primitives unsupported—the design or code depended on primitives that were not

adequately developed (that is, the primitives do not work correctly).

9. Change coordination—either did not know about previous changes or depended on

concurrent changes.

10. Interface complexity—interfaces were badly structured or incomprehensible.

11. Design/code complexity—the implementation was badly structured or

incomprehensible.

12. Error handling—incorrect handling of, or recovery from, exceptions.

13. Race conditions—incorrect coordination in the sharing of data.

14. Performance—for example, real-time constraints, resource access, or response-time

constraints.

15. Resource allocation—incorrect resource allocation and deallocation.

16. Dynamic data design—incorrect design of dynamic data resources or structures.

17. Dynamic data use—incorrect use of dynamic data structures (for example, initialization,

maintaining constraints, etc.).

18. Static data design—incorrect design of static data structures (for example, their location,

partitioning, redundancy, etc.).

19. Unknown interactions—unknowingly involved other functionality or parts of the

system.

20. Unexpected dependencies—unexpected interactions or dependencies on other parts of

the system.

21. Concurrent work—unexpected dependencies on concurrent work in other releases.

22. Other—describe the fault.
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• Because the fault may be only a symptom, provide what you regard to be the underlying

root cause for each problem.

1. None given—no underlying causes given.

2. Incomplete/omitted requirements—the source of the fault stemmed from either

incomplete or unstated requirements.

3. Ambiguous requirements—the requirements were (informally) stated, but they were

open to more than one interpretation. The interpretation selected was evidently

incorrect.

4. Incomplete/omitted design—the source of the fault stemmed from either incomplete or

unstated design specifications.

5. Ambiguous design—the design was (informally) given, but was open to more than one

interpretation. The interpretation selected was evidently incorrect.

6. Earlier incorrect fix—the fault was induced by an earlier, incorrect fix (that is, the fault

was not the result of new development).

7. Lack of knowledge—there was something that I needed to know, but did not know that

I needed to know it.

8. Incorrect modification—I suspected that the solution was incorrect, but could not

determine how to correctly solve the problem.

9. Submitted under duress—the solution was submitted under duress, knowing that it was

incorrect (generally due to schedule pressure, etc.).

10. Other—describe the underlying cause.

• For this fault, consider possible ways to prevent or avoid it, and select the most useful or

appropriate choice for preventing, avoiding, or detecting the fault.

1. Formal requirements—use precise, unambiguous requirements (or design) in a formal

notation (which may be either graphical or textual).

2. Requirements/design templates—provide more specific requirements (or design)

document templates.

3. Formal interface specifications—use a formal notation for describing the module

interfaces.

4. Training—provide discussions, training seminars, and formal courses.

5. Application walk-throughs—determine, informally, the interactions among the various

application-specific processes and data objects.

6. Expert person/documentation—provide an “expert” person or clear documentation

when needed.

7. Design/code currency—keep design documents up to date with code changes.

8. Guideline enforcement—enforce code inspections guidelines and the use of static

analysis tools such as lint.
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9. Better test planning—provide better test planning and/or execution (for example,

automatic regression testing).

10. Others—describe the means of prevention.

Confidence levels requested of the respondents were: very high, high, moderate, low, and very

low. We discarded the small number of responses that had a confidence level of either low or

very low.

Statistical Analysis

Out of all the questionnaires, 68% were returned. Of those, we dropped the responses that

were either low or very low in confidence (6%). The remainder of the questionnaires were

then subjected to Chi-Square analysis [Siegel et al. 1988] to test for independence (and for

interdependence) of various paired sets of data. In Chi-Square analysis, the lower the total chi-

square value, the more independent the two sets of data; the higher the value, the more

interdependent the two sets of data. The p-value indicates the significance of the analysis: the

lower the number, the less likely the relationships are due to chance. In Table 25-2, the

prevention data and the find data are the most independent (the total chi-square is the lowest),

and that lack of relationship is significant (the p-value is less than the standard .05 and indicates

that the odds are less than 1 in 20 that the relationship happened by chance). The fault-cause,

fault-prevention, and cause-prevention pairs are the most interdependent, as their total chi-

square values are the largest three of the entire set and the significance of these relationships

is very high (the odds are less than 1 in 10,000 of being by chance).

The fact that the relationships between the faults and their underlying causes, faults and means

of prevention, and means of prevention and the underlying causes are the most significantly

interdependent is a good thing: 1) faults should be strongly related to their underlying causes,

and 2) both faults and their underlying causes should be strongly related to their means of

prevention. This indicates that the respondents were consistent in their responses and the data

aligns with what one would logically expect.

TABLE 25-2. Chi-Square analysis summary

Variables Degrees of freedom Total Chi-Square p

Find, Fix 6 51.489 .0001

Fault, Find 63 174.269 .0001

Fault, Fix 63 204.252 .0001

Cause, Find 27 94.493 .0001

Cause, Fix 27 55.232 .0011

Fault, Cause 189 403.136 .0001

Prevention, Find 27 41.021 .041
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Variables Degrees of freedom Total Chi-Square p

Prevention, Fix 27 97.886 .0001

Fault, Prevention 189 492.826 .0001

Cause, Prevention 81 641.417 .0001

Finding and fixing faults

Table 25-3 provides a cross-tabulation of the difficulty in finding and fixing the design and

coding faults. Of these faults, 78% took five days or less to fix. In general, the easier-to-find

faults were easier to fix; the more difficult-to-find faults were more difficult to fix.

TABLE 25-3. Find versus fix comparison

Find/fix <1 day 1-5 days 6-30 days >30 days

  30.1% 48.8% 18.0% 3.6%

easy 67.5% 23.7% 32.1% 10.0% 1.7%

moderate 23.4% 4.2% 12.5% 5.6% 1.1%

difficult 7.7% 1.7% 3.4% 2.1% .5%

very difficult 1.4% .5% .3% .3% .3%

One of the interesting things about Chi-Square analysis is that it is based on the difference

between expected and observed values of the paired data. The expected value in this case is

the product of the observed find value and the observed fix value. If the two sets of data are

independent of each other, the expected percentages will match or be very close to the observed

percentages; otherwise, the two sets of data are not independent.

The first row of data is the observed percentages of how long it took to fix the MR; the first

column is the observed percentages of how hard it was to find/duplicate the problem. The

expected value of easy to find and fixable in a day or less is 67.1% x 30.1% = 20.2%, whereas

the actually observed value of 23.7% is 17% more than that expected value.

There were more faults that were easy to find and took less than one day to fix than were

expected by the Chi-Square analysis. Interestingly, there were fewer than expected easy to

find faults (expected: 12%) that took 6 to 30 days to fix (observed: 10%).

Although the coordinates of the effort to find and fix the faults are non-comparable, we note

that the following relationship is suggestive. Collapsing the previous table yields an interesting

insight in Table 25-4 that seems counter to the common wisdom that says “once you have

found the problem, it is easy to fix it.” There is a significant number of “easy/moderate to find”

faults that require a relatively long time to fix.
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TABLE 25-4. Summary of find/fix

Find/fix effort ≤ 5 days ≥ 6 days

easy/moderate 72.5% 18.4%

difficult/very difficult 5.9% 3.2%

Faults

Table 25-5 shows the fault types of the MRs as ordered by their frequency in the survey

independent of any other factors. For the sake of brevity in the subsequent tables, we use the

fault type number to represent the fault types.

The first five fault types account for 60% of the faults. That “internal functionality” is the

leading fault by such a large margin is somewhat surprising; that “interface complexity” is such

a significant problem is not surprising at all. However, that the first five fault types are leading

faults is consistent with the nature of the evolution of the system. Adding significant amounts

of new functionality to a system easily accounts for problems with “internal functionality,”

“low-level logic,” and “external functionality.”

The fact that the system is a very large, complicated real-time system easily accounts for the

fact that there are problems with “interface complexity,” “unexpected dependencies” and

design/code complexity,” “change coordination,” and “concurrent work.”

C has well-known “language pitfalls” that account for the rank of that fault in the middle of

the set. Similarly, “race conditions” are a reasonably significant problem because of the lack of

suitable language facilities in C.

That “performance” faults are relatively insignificant is probably due to the fact that this is not

an early release of the system, and performance was always a significant concern of code

inspections.

Fault Frequency Adjusted by Effort

There are two interesting relationships to consider in the ordering of the various faults: the

effect that the difficulty in finding the faults has on the ordering and the effect that the difficulty

of fixing the faults has on the ordering. The purpose of weighting is to provide an adjustment

to the observed frequency by how easy or hard the faults are to find or to fix. From the

standpoint of “getting the most bang for the buck,” the frequency of a fault is a good prima

facie indicator of the importance of one fault relative to another. Table 25-5 shows the fault

types ordered by frequency.
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TABLE 25-5. Fault types ordered by frequency

Fault type Observed % Fault type description

5 25.0% internal functionality

10 11.4% interface complexity

20 8.0% unexpected dependencies

3 7.9% low-level logic

11 7.7% design/code complexity

22 5.8% other

9 4.9% change coordination

21 4.4% concurrent work

13 4.3% race conditions

6 3.6% external functionality

1 3.5% language pitfalls

12 3.3% error handling

7 2.4% primitives misused

17 2.1% dynamic data use

15 1.5% resource allocation

18 1.0% static data design

14 .9% performance

19 .7% unknown interactions

8 .6% primitives unsupported

2 .4% protocol

4 .3% CMS complexity

16 .3% dynamic data design

Table 25-6 is an attempt to capture the weighted difficulty of finding the various faults. The

weighting is done by multiplying the proportion of observed values for each fault with

multiplicative weights of 1, 2, 3, and 4 for each find category, respectively, and summing the

results.

Obviously it would have been better to have had some duration assigned to the effort to find

faults and then correlated the weighting with those durations, as we do subsequently in

weighting by effort to fix faults. The weights used are intended to be suggestive, not definitive.
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We experimented with several different weightings, and the results were pretty much the

same. Thus we used the simplest approach.

Better yet would have been effort data associated with each MR that could be used to get a

more realistic picture of actual difficulty. But this type of data is seldom available, and an

approximation is needed instead.

For example, if a fault was easy to find in 66% of the cases, moderate in 23%, difficult in 11%,

and very difficult in 0%, the weight is 145 = (66 * 1) + (23 * 2) + (11 * 3) + (0 * 4).

Table 25-6 shows the fault types weighted by difficulty to find, from easiest to most difficult.

TABLE 25-6. Determining the find weighting

Fault type Find proportion e/m/d/vd Weight Fault type description

4 100/0/0/0 100 CMS complexity

18 100/0/0/0 100 static data design

7 88/8/4/0 120 primitives misused

2 75/25/0/0 125 protocol

20 78/16/5/1 129 unexpected dependencies

21 70/23/2/4 130 concurrent work

3 73/22/5/0 132 low-level logic

22 82/12/2/5 132 other

5 74/19/6/1 134 internal functionality

6 67/31/3/0 139 external functionality

1 68/26/2/2 141 language pitfalls

10 66/23/11/0 145 interface complexity

9 65/20/12/2 149 change coordination

8 67/17/17/0 152 primitives unsupported

19 88/8/4/0 157 unknown interactions

16 67/0/33/0 157 dynamic data design

17 52/38/10/0 158 dynamic data use

15 47/47/7/0 162 resource allocation

12 55/30/12/3 163 error handling

11 55/29/16/1 165 code complexity

14 56/11/11/22 199 performance

13 12/67/21/0 209 race conditions
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Typically, performance faults and race conditions are very difficult to isolate and reproduce.

We would expect that “code complexity” and “error handling” faults also would be difficult to

find and reproduce. Not surprisingly, “language pitfalls” and “interface complexity” are

reasonably hard to detect.

In the Chi-Square analysis, “internal functionality,” “unexpected dependencies,” and “other”

tended to be easier to find than expected. “Code complexity” and “performance” tended to be

harder to find than expected. There tended to be more significant deviations where the

population was larger.

If we weight the proportions by multiplying the number of occurrences of each fault by its

weight from Table 25-5 and dividing by the total weighted number of occurrences, we get only

a slight change in the ordering of the faults, with “internal functionality,” “code complexity,”

and “race conditions” (faults 5, 11, and 13) changing slightly more than the rest of the faults.

Table 25-7 represents the results of weighting the difficulty of fixing the various faults by

factoring in the actual time needed to fix the faults. The multiplicative scheme uses the values

1, 3, 15, and 30 for the four average times in fixing a fault. The calculations are performed as

in the example of weighting the difficulty of finding the faults.

The weighting according to the difficulty in fixing the fault causes some interesting shifts in

the ordering. “Language pitfalls,” “low-level logic,” and “internal functionality” (faults 1, 3,

and 5) drop significantly in their relative importance. This coincides with one’s intuition about

these kinds of faults. “Design/code complexity,” “resource allocation,” and “unexpected

dependencies” (faults 11, 15, and 20) rise significantly in their relative importance; “interface

complexity,” “race conditions,” and “performance” (faults 10, 13, 14) also rise, but not

significantly so.

TABLE 25-7. Determining the fix weighting

Fault type Proportion e/m/d/vd Weight Fault type description

16 67/33/0/0 166 dynamic data design

4 67/33/0/0 166 CMS complexity

8 50/50/0/0 200 primitives unsupported

18 50/50/0/0 200 static data design

1 63/31/6/0 244 language pitfalls

3 59/37/3/1 245 low-level logic

2 25/75/0/0 250 protocol

17 38/48/14/0 392 dynamic data use

9 37/49/14/0 394 change coordination

5 27/59/14/0 414 internal functionality
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Fault type Proportion e/m/d/vd Weight Fault type description

22 40/43/12/5 496 other

7 46/37/8/8 497 primitives misused

10 17/57/26/1 608 interface complexity

21 25/43/30/2 661 concurrent work

6 22/50/22/6 682 external functionality

13 16/56/21/7 709 race conditions

12 21/52/18/9 717 error handling

19 29/43/14/14 785 unknown interactions

20 24/39/33/5 786 unexpected dependencies

11 22/39/27/12 904 design/code complexity

14 11/22/44/22 1397 performance

15 0/47/27/27 1356 resource allocation

Table 25-8 shows the top fix-weighted faults. According to our weighting schemes, these four

faults account for 55.2% of the effort expended to fix all the faults and 51% of the effort to

find them, but represent 52.1% of the faults by frequency count. Collectively, they are

somewhat harder to fix than rest of the faults and slightly easier to find. We again note that

although the two scales are not strictly comparable, the comparison is an interesting one

nonetheless.

TABLE 25-8. Faults weighted by fix difficulty

Fault type Weighted % Brief description

5 18.7% internal functionality

10 12.6% interface complexity

11 12.6% code complexity

20 11.3% unexpected dependencies

In the Chi-Square analysis, “language pitfalls” and “low-level logic” took fewer days to fix than

expected. “Interface complexity” and “internal functionality” took 1 to 6 days to fix more often

than expected, and “design/code complexity” and “unexpected dependencies” took longer to

fix (that is, 6 to over 30 days) than expected. These deviations reinforce our weighted

assessment of the effort to fix the faults.
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Underlying causes

In Table 25-9, we show the underlying causes of the MRs as ordered by their frequency in the

survey, independent of any other factors.

TABLE 25-9. Underlying causes of faults

Underlying causes Observed % Brief description

4 25.2% incomplete/omitted design

1 20.5% none given

7 17.8% lack of knowledge

5 9.8% ambiguous design

6 7.3% earlier incorrect fix

9 6.8% submitted under duress

2 5.4% incomplete/omitted requirements

10 4.1% other

3 2.0% ambiguous requirements

8 1.1% incorrect modification

The high proportion of “none given” as an underlying cause requires some explanation. One

of the reasons for this is that faults such as “language pitfalls,” “low-level logic,” “race

conditions,” and “change coordination” tend to be both the fault and the underlying cause

(7.8%—or 33% of the faults in the “none given” underlying cause category in Table 25-12

below). In addition, one could easily imagine that some of the faults, such as “interface

complexity” and “design/code complexity,” could also be considered both the fault and the

underlying cause (3.4%—or 16% of the faults in the “none given” underlying cause category

in Table 25-12). On the other hand, we were surprised that no cause was given for a substantial

part of the “internal functionality” faults (3.3%—or 16% of the faults in the “none given”

category in Table 25-12). One would expect there to be some underlying cause for that

particular fault.

Table 25-10 shows the relative difficulty in finding the faults associated with the underlying

causes. The resulting ordering is particularly nonintuitive: the MRs with no underlying cause

are the second most difficult to find; those submitted under duress are the most difficult to find.
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TABLE 25-10. Weighting of the underlying causes by find effort

Underlying causes Proportion Weight Brief description

8 91/9/0/0 109 incorrect modification

7 74/18/7/1 135 lack of knowledge

3 60/40/0/0 140 ambiguous requirements

5 66/27/7/0 141 ambiguous design

2 70/17/13/0 143 incomplete/omitted requirements

4 68/25/7/1 143 incomplete/omitted design

6 73/12/10/5 147 earlier incorrect fix

10 76/12/0/12 148 other

1 63/25/11/1 150 none given

9 50/46/4/0 158 submitted under duress

In the Chi-Square analysis of finding underlying causes, faults caused by “lack of knowledge”

tended to be easier to find than expected, whereas faults caused by “submitted under duress”

tended to be moderately hard to find more often than expected. This latter finding is interesting,

as we know very little about faults “submitted under duress.”

In Table 25-11, we weight the underlying causes by the effort to fix the faults represented by

the underlying causes. This yields a few shifts in the proportion of effort: “incomplete/omitted

design” increased significantly; “unclear requirements” and “incomplete/omitted

requirements” increased less significantly; “none” decreased significantly; and “unclear design”

and “other” decreased less significantly. However, the relative ordering of the various

underlying causes is unchanged.

TABLE 25-11. Weighting of the underlying causes by fix effort

Underlying causes Proportion Weight Brief description

10 37/42/12/10 340 other

1 43/43/12/2 412 none given

5 29/55/14/2 464 ambiguous design

7 30/50/17/3 525 lack of knowledge

6 34/45/17/4 544 earlier incorrect fix

9 18/57/25/0 564 submitted under duress

8 18/55/27/0 588 incorrect modification

4 23/50/22/5 653 incomplete/omitted design
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Underlying causes Proportion Weight Brief description

2 26/44/24/6 698 incomplete/omitted requirements

3 25/30/24/6 940 ambiguous requirements

The relative weighting of the effort to fix these kinds of underlying causes seems to coincide

with one’s intuition very nicely.

In the Chi-Square analysis of fixing underlying causes, faults caused by “none given” tended

to take less time to fix than expected, whereas faults caused by “incomplete/omitted design”

and “submitted under duress” tended to take more time to fix than expected.

In Table 25-12, we present the cross-tabulation of faults and their underlying causes. Faults

are represented by the rows, underlying causes by the columns. The numbers in the matrix

are the percentages of the total population of faults. Thus, 1.5% of the total faults were fault

1 with the underlying cause 1. The expected number of faults for fault 1 and underlying cause

1 can be computed by multiplying the total faults for each of those categories: 20.5% * 3.5%

= .7%. In this example, the actual number of faults was higher than expected.

TABLE 25-12. Cross-tabulating fault types and underlying causes

  1 2 3 4 5 6 7 8 9 10

  20.5% 5.4% 2.0% 25.2% 9.8% 7.3% 17.8% 1.1% 6.8% 4.1%

1 language

pitfalls

3.5% 1.5 .0 .0 .2 .1 .2 .8 .1 .5 .1

2 protocol .4% .0 .0 .1 .2 .0 .0 .1 .0 .0 .0

3 low-level

logic

7.9% 3.7 .3 .1 .6 .3 1.2 .7 .0 .6 .4

4 CMS

complexity

.3% .1 .0 .0 .0 .0 .1 .1 .0 .0 .0

5 internal

functionality

25.0% 3.3 1.3 .6 7.7 2.8 2.0 5.2 .3 1.2 .6

6 external

functionality

3.6% .7 .3 .1 .4 .5 .6 .7 .0 .3 .0

7 primitives

misused

2.4% .4 .0 .0 .5 .0 .1 .8 .0 .0 .6

8 primitives

unsupported

.6% .0 .2 .0 .1 .0 .1 .1 .0 .1 .0

9 change

coordination

4.9% 1.1 .0 .0 .8 1.0 .6 .8 .1 .3 .2
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  1 2 3 4 5 6 7 8 9 10

  20.5% 5.4% 2.0% 25.2% 9.8% 7.3% 17.8% 1.1% 6.8% 4.1%

10 interface

complexity

11.4% 2.1 .6 .2 4.1 1.4 1.1 1.4 .2 .0 .3

11 design/

code

complexity

7.7% 1.3 .0 .3 3.0 1.6 .2 1.0 .0 .0 .3

12 error

handling

3.3% .9 .3 .0 .8 .0 .1 .7 .0 .4 .1

13 race

conditions

4.3% 1.4 .2 .0 1.3 .5 .1 .3 .0 .4 .1

14

performance

.9% .2 .0 .1 .2 .0 .0 .3 .0 .0 .1

15 resource

allocation

1.5% .5 .0 .0 .3 .1 .0 .4 .1 .0 .1

16 dynamic

data design

.3% .0 .0 .0 .1 .0 .0 .1 .0 .1 .0

17 dynamic

data use

2.1% .7 .1 .0 .2 .1 .0 .6 .0 .4 .0

18 static data

design

1.0% .3 .1 .1 .2 .1 .0 .1 .0 .1 .0

19 unknown

interactions

.7% .0 .1 .1 .0 .2 .0 .2 .0 .1 .0

20 unexpected

dependencies

8.0% .5 .8 .3 2.7 .5 .1 1.4 .0 1.7 .0

21 concurrent

work

4.4% .6 .3 .0 1.2 .2 .4 .9 .2 .4 .2

22 other 5.8% 1.2 .8 .0 .6 .4 .4 1.1 .1 .2 1.0

For the sake of brevity, we consider only the most frequently occurring faults and their major

underlying causes. “Incomplete/omitted design” (cause 4) is the primary underlying cause in

all of these major faults. “Ambiguous design” (cause 5), “lack of knowledge” (cause 7), and

“none given” (cause 1) were also significant contributors to the presence of these faults.

476  C H A P T E R  T W E N T Y - F I V E



internal functionality (fault 5)

“incomplete/omitted design” (cause 4) was felt to have been the cause of 31% (that is,

7.7% / 25%) of the occurrences of this fault, a percentage higher than expected; “lack of

knowledge” (cause 7) was thought to have caused 21% of the occurrences of this fault,

higher than expected; and “none given” was listed as the third underlying cause,

representing 13% of the occurrences.

interface complexity (fault 10)

Again, “incomplete/omitted design” was seen to be the primary cause in the occurrence

of this fault (36%), higher than expected; “lack of knowledge” and “ambiguous design”

were seen as the second and third primary causes of this fault (13% and 12%,

respectively).

unexpected dependencies (fault 20)

Not surprisingly, “incomplete/omitted design” was felt to have been the primary cause of

this fault (in 34% of the cases); “submitted under duress” (cause 9) contributed to 21%

of the occurrences, a percentage higher than expected; and “lack of knowledge” was the

tertiary cause of this fault, representing 18% of the occurrences.

design/code complexity (fault 11)

Again, “incomplete/omitted design” was felt to have been the primary cause in 39% of

the occurrences of this fault, a percentage higher than expected; “ambiguous design” was

the second most frequent underlying cause of this fault, causing 21% of the faults (also a

higher percentage than expected); and “none given” was listed as the third underlying

cause, representing 17% of the occurrences.

Again, for the sake of brevity, we consider only the most frequently occurring underlying

causes and the faults to which they were most applicable.

incomplete/omitted design (cause 4)

As we noted previously, “internal functionality,” “interface complexity,” “code/design

complexity,” and “unexpected dependencies” were the major applicable faults (31%,

12%, 12%, and 11%, respectively), with the first three occurring with higher than

expected frequency.

none given (cause 1)

“low-level logic” (fault 3) was the leading fault, representing 18% of the occurrences (a

percentage higher than expected); “internal functionality” (fault 5) was the second major

fault, representing 16% of the occurrences (a percentage lower than expected); “interface

complexity” (fault 10) was the third leading fault, representing 10% of the occurrences;

and “language pitfalls” was the fourth leading fault, representing 8% of the occurrences

(a percentage higher than expected).

lack of knowledge (cause 7)

“internal functionality” was the leading fault, representing 29% of the occurrences (a

percentage higher than expected); “interface complexity” was next with 8% of the
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occurrences (a percentage lower than expected); “unexpected dependencies” was third

with 8% of the occurrences; and “other” (fault 22) was the fourth with 6%.

ambiguous design (cause 5)

“internal functionality” represented 29% of the occurrences; “code/design complexity”

(fault 11) was second fault, representing 16% of the occurrences (a percentage higher

than expected); “interface complexity” was third with 14%; and “change coordination”

(fault 9) was fourth, representing 10% of the occurrences (a percentage higher than 

expected).

Means of prevention

Table 25-13 shows the means of prevention of the MRs, as ordered by their occurrence

independent of any other factors. We note that the means selected may well reflect a particular

approach of the responder in selecting one means over another (for example, see the discussion

later in this section about formal versus informal means of prevention).

TABLE 25-13. Means of error prevention

Means of prevention Observed % Brief description

5 24.5% application walk-throughs

6 15.7% expert person/documentation

8 13.3% guideline enforcement

2 10.0% requirements/design templates

9 9.9% better test planning

1 8.8% formal requirements

3 7.2% formal interface specifications

10 6.9% other

4 2.2% training

7 1.5% design/code currency

It is interesting to note that the application-specific means of prevention (“application walk-

throughs”) is considered the most effective. This selection of application walk-throughs as the

most useful means of error prevention appears to confirm the observation of Curtis, Krasner,

and Iscoe [Curtis et al. 1988] that a thin spread of application knowledge is the most significant

problem in building large systems.

Further, it is worth noting that informal means of prevention rank higher than formal ones.

On the one hand, this may reflect the general bias in the United States against formal methods.

On the other hand, the informal means are a nontechnical solution to providing the
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information that may be supplied by formal representations (and which provide a more

technical solution with perhaps higher attendant adoption costs).

The level of effort to find the faults for which these are the means of prevention does not change

the order found in Table 25-13, with the exception of “requirements/design templates,” which

seems to apply to the easier-to-find faults, and “guideline enforcement,” which seems to apply

more to the harder-to-find faults.

In the Chi-Square analysis, the relationship between finding faults and preventing them is the

most independent of the relationships, reported here with p=.041. “Application walk-

throughs” applied to faults that were marginally easier to find than expected, whereas

“guideline enforcement” applied to faults that were less easy to find than expected.

In Table 25-14, the means of prevention is weighted by the effort to fix the associated faults.

TABLE 25-14. Means of prevention weighted by fix effort

Prevention Proportion Weight Brief description

8 38/52/7/3 389 guideline enforcement

9 35/52/12/1 401 better test planning

7 40/40/20/0 460 design/code currency

5 33/50/17/1 468 application walk-throughs

10 49/36/6/9 517 other

2 10/52/30/1 654 requirements/design templates

3 26/43/26/4 675 formal interface specifications

6 22/48/24/6 706 expert person/documentation

1 20/50/22/8 740 formal requirements

4 23/36/23/18 1016 training

It is interesting to note that the faults considered to be prevented by training are the hardest

to fix. The formal methods also apply to classes of faults that take a long time to fix.

Weighting the means of prevention by effort to fix their corresponding faults yields a few shifts

in proportion: “application walk-throughs,” “better test planning,” and “guideline

enforcement” decreased in proportion; “expert person/documentation” and “formal

requirements” increased in proportion; and “formal interface specifications” and “other” less

so. As a result, the ordering changes slightly to 5, 6, 2, 1, 8, 10, 3, 9, 4, 7: “expert person/

documentation” and " formal requirements” (numbers 6 and 1) are weighted significantly

higher; “requirements/design templates,” “formal interface specifications,” “training,” and

“other” (numbers 2, 3, 4, and 10) are less significantly higher; and “guideline enforcement”

and “better test planning” (numbers 8 and 9) are significantly lower.

W H E R E  D O  M O S T  S O F T W A R E  F L A W S  C O M E  F R O M ?  479



In the Chi-Square analysis, faults prevented by “application walk-throughs,” “guideline

enforcement,” and “other” tended to take fewer days to fix than expected, whereas faults

prevented by “formal requirements,” “requirements/design templates,” and “expert person/

documentation” took longer to fix than expected.

In Table 25-15, we present the cross-tabulation of faults and their means of prevention. Again,

the faults are represented by the rows, and the means of prevention are represented by the

columns. The data is analogous to the preceding cross-tabulation of faults and underlying

causes.

For the sake of brevity, we consider only the most frequently occurring faults and their major

means of prevention. “Application walk-throughs” were felt to be an effective means of

preventing these most significant faults. “Expert person/documentation,” “formal

requirements,” and “formal interface specifications” were also significant means of preventing

these faults.

internal functionality (fault 5)

“application walk-throughs” (prevention 5) were thought to be the most effective means

of prevention, applicable to 27% of the occurrences of this fault; “expert person/

documentation” (prevention 6) was felt to be the second most effective means, applicable

to 18% of the fault occurrences; and “requirements/design templates” were thought to be

applicable to 14% of the fault occurrences, a percentage higher than expected.

TABLE 25-15. Cross-tabulating faults and means of prevention

  1 2 3 4 5 6 7 8 9 10

  8.8% 10.0% 7.2% 2.2% 24.5% 15.7% 1.5% 13.3% 9.9% 6.9%

1 language

pitfalls

3.5% .0 .1 .1 .0 1.0 .3 .1 1.3 .4 .2

2 protocol .4% .1 .2 .0 .0 .1 .0 .0 .0 .0 .0

3 low-level

logic

7.9% .1 .0 .1 .2 2.3 .3 .2 3.2 .8 .7

4 CMS

complexity

.3% .0 .0 .0 .0 .0 .1 .0 .1 .1 .0

5 internal

functionality

25.0% 1.9 3.5 1.5 .4 6.6 4.4 .2 3.3 3.1 .1

6 external

functionality

3.6% .6 .3 .4 .0 .1 .7 .0 .5 .9 .1

7 primitives

misused

2.4% .1 .1 .2 .0 .8 .3 .0 .1 .2 .6
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  1 2 3 4 5 6 7 8 9 10

  8.8% 10.0% 7.2% 2.2% 24.5% 15.7% 1.5% 13.3% 9.9% 6.9%

8 primitives

unsupported

.6% .1 .0 .0 .0 .3 .0 .0 .0 .1 .1

9 change

coordination

4.9% .4 .9 .3 .4 .8 .3 .3 .3 .7 .5

10 interface

complexity

11.4% 2.1 .3 2.1 .0 3.0 1.7 .1 1.2 .7 .2

11 design/

code

complexity

7.7% .8 .5 .1 .4 2.2 2.4 .2 .3 .4 .4

12 error

handling

3.3% .2 .2 .3 .1 .6 .6 .0 .4 .5 .4

13 race

conditions

4.3% .8 .0 .4 .0 1.2 .4 .2 .4 .2 .7

14

performance

.9% .0 .0 .0 .2 .2 .3 .0 .0 .0 .2

15 resource

allocation

1.5% .1 .1 .1 .0 .3 .3 .0 .3 .3 .0

16 dynamic

data design

.3% .0 .0 .0 .0 .1 .0 .0 .1 .0 .1

17 dynamic

data use

2.1% .0 .0 .2 .0 .8 .5 .0 .5 .0 .1

18 static data

design

1.0% .1 .1 .0 .0 .2 .2 .0 .0 .3 .1

19 unknown

interactions

.7% .1 .0 .2 .0 .0 .2 .0 .0 .2 .0

20

unexpected

dependencies

8.0% .6 2.2 1.1 .1 2.3 .6 .0 .4 .6 .1

21 concurrent

work

4.4% .4 .7 .0 .2 1.2 1.1 .1 .3 .0 .4

22 other 5.8% .3 .8 .1 .2 .4 1.0 .1 .6 .4 1.9
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interface complexity (fault 10)

Again, “application walk-throughs” were considered to be the most effective, applicable

to 26% of the cases; “formal requirements” (prevention 1) and “formal interface

specifications” were felt to be equally effective, with each preventing 18% of the fault

occurrences (in both cases, a percentage higher than expected).

unexpected dependencies (fault 20)

“application walk-throughs” were felt to be the most effective means of preventing this

fault, applicable to 29% of the occurrences; “requirements/design templates” were

considered the second most effective and applicable to 28% of the fault occurrences (a

percentage higher than expected); and “formal interface specifications” were considered

applicable to 14% of the fault occurrences, a percentage higher than expected.

design/code complexity (fault 11)

“expert person/documentation” was felt to be the most effective means of preventing this

fault, applicable to 31% of the cases (higher than expected); “application walk-throughs”

were the second most effective means, applicable to 29% of the occurrences; and “formal

requirements” was third, applicable to 10% of the fault occurrences.

Again, for the sake of brevity, we consider only the most frequently occurring means of

prevention and the faults to which they were most applicable. Not surprisingly, these means

were most applicable to “internal functionality” and “interface complexity,” the most prevalent

faults. Counterintuitively, they are also strongly recommended as applicable to “low-level

logic.”

application walk-throughs (prevention 5)

“internal functionality” (fault 5) was considered as the primary target in 27% of the uses

of this means of prevention; “interface complexity” (fault 10) was felt to be the secondary

target, representing 12% of the uses of this means; and “low-level logic” (fault 3) and

“unexpected dependencies” (fault 20) were next with 9% each.

expert person/documentation (prevention 6)

Again, “internal functionality” is the dominant target for this means, representing 29% of

the possible applications; “design/code complexity” is the second most applicable target,

representing 15% of the possible applications (a percentage higher than expected); and

“interface complexity” represented 11% of the uses (higher than expected).

guideline enforcement (prevention 8)

“internal functionality” and “low-level logic” were the dominant targets for this means of

prevention, representing 25% and 24%, respectively (the latter being higher than

expected); “language pitfalls” (fault 1) was seen as the third most relevant fault,

representing 10% of the possible applications (higher than expected); and “interface

complexity” was the fourth with 9% of the possible applications of this means of 

prevention.
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Underlying causes and means of prevention

In Table 25-16, it is interesting to note that in the Chi-Square analysis there are lots of

deviations (that is, there is a wider variance between the actual values and the expected values

in correlating underlying causes and means of prevention). This indicates that there are strong

dependencies between the underlying causes and their means of prevention. Intuitively, this

type of relationship is just what we would expect.

TABLE 25-16. Cross-tabulating means of prevention and underlying causes

  1 2 3 4 5 6 7 8 9 10

  20.5% 5.4% 2.0% 25.2% 9.8% 7.3% 17.8% 1.1% 6.8% 4.1%

1 formal

requirements

8.8% .4 2.3 .9 3.5 .8 .3 .5 .1 .0 .0

2 reqs/design

templates

10.0% .4 1.7 .1 3.7 1.9 .1 .8 .0 1.3 .0

3 formal

interface

specs

7.2% .8 .3 .1 2.7 .8 .3 2.0 .0 .2 .0

4 training 2.2% .4 .0 .1 .7 .1 .3 .6 .0 .0 .0

5 application

walk-thrus

24.5% 7.5 .2 .3 7.3 3.1 1.8 3.1 .0 .5 .7

6 expert

person/doc

15.7% 1.5 .4 .4 3.5 1.8 1.0 5.8 .6 .3 .4

7 design/code

currency

1.5% .4 .0 .0 .6 .2 .1 .2 .0 .0 .0

8 guideline

enforcement

13.3% 4.0 .1 .0 .6 .2 1.6 2.5 .0 3.7 .6

9 better test

planning

9.90% 2.8 .2 .0 1.7 .8 1.6 1.9 .3 .2 .4

10 others 6.9% 2.3 .2 .1 .9 .1 .2 .4 .1 .6 2.0

We first summarize the means of prevention associated with the major underlying causes.

“Application walk-throughs,” “expert person/documentation,” and “guideline enforcement”

were considered important in addressing these major underlying causes.

incomplete/omitted design (cause 4)

“application walk-throughs” (prevention 5) was thought to be applicable to 28% of the

faults with this underlying cause (a percentage higher than expected); “requirements/

design templates” (prevention 2) and “expert person/documentation” (prevention 6) were
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next in importance with 14% each (the first being higher than expected); and “formal

requirements” (prevention 1) was felt to be applicable to 12% of the faults with this

underlying cause (a percentage higher than expected).

none given (cause 1)

Again, “application walk-throughs” was thought to be applicable to 37% of the faults with

these underlying causes; “guideline enforcement” (prevention 8), “better test planning”

(prevention 9), and “other” (prevention 10) were felt to be applicable to 19%, 14%, and

10% of the faults, respectively. In all four of these cases, the percentages were higher than

expected.

lack of knowledge (cause 7)

“expert person/documentation” was thought to be applicable to 32% of the faults with

this underlying cause, a percentage higher than expected; “application walk-throughs,”

“guideline enforcement,” and “formal interface specifications” were felt to be applicable

to 17%, 14%, and 11% of the faults with this underlying cause, respectively, though

“application walk-throughs” had a lower percentage than expected, whereas “formal

interface specifications” had a higher percentage than expected.

The following summarizes the major underlying causes addressed by the most frequently

considered means of prevention. “Lack of knowledge,” “none given,” “incomplete/omitted

design,” and “ambiguous design” were the major underlying causes for which these means of

prevention were considered important. It is somewhat non-intuitive that the “none given”

underlying cause category is so prominent as an appropriate target for these primary means of

prevention.

application walk-throughs (prevention 5)

“none given” (cause 1) and “incomplete/omitted design” (cause 4) were thought to be the

appropriate for this means of prevention for 31% and 30% of the cases, respectively

(higher than expected); “ambiguous design” (cause 5) and “lack of knowledge” (cause 7)

both were felt to apply to 13% of the cases (though the first was higher than expected and

the second lower).

expert person/documentation (prevention 6)

“lack of knowledge” was considered the major target for this means of prevention,

accounting for 37% of the cases (a higher than expected value); “incomplete/omitted

design” and “ambiguous design” were thought to be appropriate in 23% and 11% of the

cases, respectively; and “none given” was thought appropriate in 10% of the cases (lower

than expected).

guideline enforcement (prevention 8)

“none given” and “incorrect modification” were felt to be the most appropriate for this

means of prevention for 30% and 28% of the cases, respectively (both higher than

expected); “lack of knowledge” and “incorrect earlier fix” were appropriate in 19% and

12% of the cases, respectively (the latter was higher than expected).
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Interface Faults Versus Implementation Faults

The definition of an interface fault that we use here is that of Basili and Perricone [Basili and

Perricone 1984] and Perry and Evangelist [Perry and Evangelist 1985], [Perry and Evangelist

1987]: interface faults are “those that are associated with structures existing outside the

module’s local environment but which the module used.” Using this definition, we roughly

characterize “language pitfalls” (1), “low-level logic” (3), “internal functionality” (5), “design/

code complexity” (11), “performance” (14), and “other” (22) as implementation faults. The

remainder are considered interface faults. We say “roughly” because there are some cases

where the implementation categories may contain some interface problems; remember that

some of the “design/code complexity” faults were considered preventable by formal interface

specifications. Table 25-17 shows our interface versus implementation fault comparison.

TABLE 25-17. Interface/implementation fault comparison

 Interface Implementation

Frequency 49% 51%

Find weighted 50% 50%

Fix weighted 56% 44%

Interface faults occur with slightly less frequency than implementation faults, but require about

the same effort to find them and more effort to fix them.

Table 25-18 compares interface and implementation faults with respect to their underlying

causes. Underlying causes “other,” “ambiguous requirements,” “none given,” “earlier incorrect

fix,” and “ambiguous design” tended to be the underlying causes more for implementation

faults than for interface faults. Underlying causes “incomplete/omitted requirements,”

“incorrect modification,” and “submitted under duress” tended to be the causes more for

interface faults than for implementation faults.

Note that underlying causes that involved ambiguity tended to result more in implementation

faults than in interface faults, whereas underlying causes involving incompleteness or omission

of information tended to result more in interface faults than in implementation faults.

TABLE 25-18. Interface/implementation faults and underlying causes

  Interface Implementation

  49% 51%

1 none given 45.2% 54.8%

2 incomplete/omitted requirements 79.6% 20.4%

3 ambiguous requirements 44.5% 55.5%

4 incomplete/omitted design 50.8% 49.2%
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  Interface Implementation

  49% 51%

5 ambiguous design 47.0% 53.0%

6 earlier incorrect fix 45.1% 54.9%

7 lack of knowledge 49.2% 50.8%

8 incorrect modification 54.5% 45.5%

9 submitted under duress 63.1% 36.9%

10 other 39.1% 60.1%

Table 25-19 compares interface and implementation faults with respect to the means of

prevention. Not surprisingly, means 1 and 3 were more applicable to interface faults than to

implementation faults. Means of prevention 8, 4, and 6 were considered more applicable to

implementation faults than to interface faults.

TABLE 25-19. Interface/implementation faults and means of prevention

  Interface Implementation

  49% 51%

1 formal requirements 64.8% 35.2%

2 requirements/design templates 51.5% 48.5%

3 formal interface specifications 73.6% 26.4%

4 training 36.4% 63.6%

5 application walk-troughs 48.0% 52.0%

6 expert person/documentation 44.3% 55.7%

7 design/code currency 46.7% 53.3%

8 guideline enforcement 33.1% 66.9%

9 better test planning 48.0% 52.0%

10 others 49.3% 50.7%

What Should You Believe About These Results?
Designing empirical studies is just like designing software systems: it is impossible to create a

bug-free system, and we often make design mistakes and create systems with flaws and

weaknesses. The main question in both cases is: do the problems negate the usefulness of the

software systems or the empirical studies?
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There are three main questions we need to address in order to determine how good our study

is and whether you can justifiably use our results: 1) are we measuring the right things, 2) are

there other things that might be the explanations for what we see (i.e., did we do it right?),

and 3) what do our results apply to (i.e., what can we do with the results)?

Are We Measuring the Right Things?

We believe that we have a very strong argument to support our claim that we have addressed

the critical issues in understanding software development faults and their implications. We

address the fundamental issues in fault studies: the faults that occur, how hard it is to find and

fix them, their underlying causes, and how might we prevent them, detect them, or ameliorate

them. In addition, we addressed a question raised in response to the interface fault studies we

had done earlier: which are harder to find and/or fix, interface or implementation faults?

Strong support for this comes from the consistency and mutual support provided by the Chi-

Square analysis, in which there are very strong relationships between the faults detected, their

underlying causes, and their means of prevention. These strong relationships indicate a

consistent understanding of the various parts of the survey and their interrelationships.

There are, however, several weaknesses that need to be addressed. First, the fault categories

are poorly constructed. Second, the find and fix scales are not identical, with the fix scale being

much better than the find scale. Third, the line between interface and implementation faults

is not cleanly drawn.

The primary strength of the fault type list is that it was drawn up by the developers themselves,

not the researchers. The weakness is that the list is basically unstructured and too long. There

may be a tendency to pick the first thing that comes close rather than search the list

exhaustively to find the best match.

In a subsequent study [Leszak et al. 2000], [Leszak et al. 2002], we corrected the fault type

problem by partitioning the fault list into three categories: implementation, interface, and

external faults (which also solved the third weakness mentioned above). Under each of these

three fault categories were then between six and eight fault subcategories appropriate for each

fault category (see page 177 of [Leszak et al. 2002]).

The scales used for finding and fixing faults was again the choice of the software developers,

but had more serious consequences than poor structuring. The scale used for fixing faults is

intuitively one that can be used easily, as it is easy to remember if something took less than a

day, week, or month, which makes this measure much less likely to be misclassified. The scale

for finding a fault, on the other hand, was qualitative rather than quantitative and much more

likely to be subjective with individual variance (which we were not able to determine, because

of management restrictions). Our recommendation is to use the quantitative scale for effort in

terms of time for both scales. Indeed we did do that as well in subsequent studies [Leszak et

al. 2000], [Leszak et al. 2002].
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The separation of faults into interface and implementation faults was not a completely clean

one, as some of the fault categories counted as interface may have included some

implementation faults as well (and vice versa). So our distinction between the two is

approximate at best. As mentioned earlier, we later solved that problem by structuring the

separation of faults into implementation, interface, and external [Leszak et al. 2000], [Leszak

et al. 2002].

Did We Do It Right?

In both phases, approximately 68% of questionnaires were returned—that is, we have data

on about two-thirds of the MRs in both the overall survey and in the design/coding survey.

Given the circumstances under which the survey was taken, this level of response exceeded

our best expectations. Indeed, this factor of a large number of responses alone provides an

argument for having data that can be relied upon.

As we cannot give the hard numbers as part of our report, we have tried to indicate the level

of responses via the precision we used in discussing the results. Given the amount of data, we

could have easily justified using two decimal places in reporting the data instead of the one

decimal place we used for ease of understanding the data.

As with all surveys, there is the unanswerable question of how those who did not respond

would have affected the results. Fortunately, we know of no existent factors (such as reporting

only the hard or easy problems, receiving reports from only junior or senior programmers,

etc.) that would have skewed the results in any way [Basili and Hutchens 1983].

We mentioned earlier that there were significant constraints placed on the study by project

management: first, the study had to be completely nonintrusive; second, it had to be strictly

voluntary; and third, it had to be completely anonymous. Because of these management

mandates, we were unable to validate the results [Basili and Weiss 1984] and are unable to

assess the accuracy of the responses. Mitigating the lack of validation are two facts: first, the

questionnaire was created by the authors working with a group of developers; second, the

questionnaire was reviewed by an independent group of developers. Since the purpose of the

post-survey validation is understanding the level at which those surveyed understood the

survey properly, we believe that our pre-survey efforts provide a useful and valid alternative

because 1) we ensured that the survey was the language used by the developers themselves

by their participation in its development, and 2) we pretested the survey successfully with a

small group of developers, and no misunderstandings arose in the pretests.

The remaining problem is raised by the fact that there was a lapse time of up to a year between

closing the MR and filling out the survey. Thus, there is a possibility of information loss due

to the time lapse between solving the problem and describing it. However, having the person

who was in charge of the problem at time of closure is still much better than having someone

who had no involvement in the problem interpreting the MR for the survey. This lack of
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“freshness” could of course be resolved by making the fault survey part of the normal process

of closing an MR.

One remaining caveat: the overall proportions of the faults may be affected by the fact that

data is kept only during the testing phase of evolution. MRs for the entire process from the

receipt of the requirements to the release of the system would, of course, give a much more

accurate picture. We note, however, that this approach of keeping track of faults only once

testing has begun is pretty much standard for most software developments and therefore only

a very minor issue.

On the whole, we believe that the few problems with our empirical design are significantly

outweighed by the evidence supporting our claim that our data is valid and that there are no

other factors responsible for our results.

What Can You Do with the Results?

The main question for any empirical study is: “what do these results mean for me in the context

of my work as a software developer?” Part of that answer depends on how representative the

study is, and there are two different ways of answering that question.

The first way is to ask the question: “how representative is this release in the context of all the

releases for this system that has been studied?” If it is not representative of the system and its

various releases, then its general usefulness is not clear. In this case, we claim that it is

representative because the mix of fault fixes, new features, and improvements was the same

as for previous releases. For the first few releases after this one, however, there was an

increased emphasis on removing faults before the previous mix of corrective, adaptive, and

perfective changes was resumed.

Given a positive answer to the first question, then the second way to answer this question is

to ask: “how representative is this release of this system of other software systems?” With

respect to other large-scale, highly fault-tolerant, ultra-reliable real-time systems, this release

would represent this small class of systems in that it is built and evolved in the context of a

commonly used Unix Development Environment using a commonly used programming

language such as C. One would expect to see similar kinds of problems in such systems.

How relevant is it to the development of other types of software systems? We would claim that

it is highly relevant. Look at the top five fault types. There is nothing there that would lead

one to believe that the main problems were domain specific. Indeed the entire list of faults,

with a few exceptions, would be the kinds of things found in pretty much any software system

development, whatever the domain or size of the project. We would further claim that there

is nothing in the list of underlying causes that would preclude the vast variety of other types

of software developments. We would make a similar claim for the means of prevention. The

primary differences would be in the observed frequencies of the various faults, causes, and

means of preventions.
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The design of the study is certainly applicable, no matter what the size or domain of the

software system being developed. The data itself is also applicable if you find you have the

same frequently observed problems. There is an internal consistency to the data and their

interrelationships that supports this claim.

What Have We Learned?
The results of the two studies are summarized as follows:

• Problems with requirements, design, and coding accounted for 34% of the total MRs.

Requirements account for about 5% of the total MRs and, although not extremely

numerous, are particularly important because they have been found so late in the

development process, a period during which they are particularly expensive to fix.

• Testing large, complex real-time systems often requires elaborate test laboratories that are

themselves large, complex real-time systems. In the development of this release, testing-

related MRs accounted for 25% of the total MRs.

• The fact that 16% of the total MRs are “no problems” and the presence of a significant set

of design and coding faults such as “unexpected dependencies” and “interface and design/

code complexity” indicate that lack of system knowledge is a significant problem in the

development of this release.

• Of the design and coding faults, 78% took five days or less to fix; 22% took six or more

days to fix. We note that there is a certain overhead factor that is imposed on the fixing

of each fault that includes getting consensus, building the relevant pieces of the system,

and using the system test laboratory to validate the repairs. Unfortunately, we do not have

data on those overhead factors.

• Five fault categories account for 60% of the design and coding faults: internal

functionality, interface complexity, unexpected dependencies, low-level logic, and design/

code complexity. With the exception of “low-level logic,” this set of faults is what we

expect would be significant in evolving a large, complex real-time system.

• Weighting the fault categories by the effort to find and to fix them yielded results that

coincide with our intuition of which faults are easy and hard to find and fix.

• “Incomplete/omitted design,” “lack of knowledge,” and “none given” (which we interpret

to mean that sometimes we just make a mistake with no deeper, hidden underlying cause)

account for the underlying causes for 64% of design and coding faults. The weighting of

the effort to fix these underlying causes coincides very nicely with our intuition: faults

caused by requirements problems require the most effort to fix, whereas faults caused by

ambiguous design and lack of knowledge were among those that required the least effort

to fix.

• “Application walk-throughs,” “expert person/documentation,” “guideline enforcement,”

and “requirements/design templates” represent 64% of the suggested means of preventing
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design and coding faults. As application walk-throughs accounted for 25% of the

suggested means of prevention, we believe that this supports Curtis, Krasner, and Iscoe’s

claim [Curtis et al. 1988] that lack of application knowledge is a significant problem.

• Although informal means of prevention were preferred over formal means, it was the case

that informal means of prevention tended to be suggested for faults that required less effort

to fix and formal means tended to be suggested for faults that required more effort to fix.

• In Perry and Evangelist [Perry and Evangelist 1985], [Perry and Evangelist 1987], interface

faults were seen to be a significant portion of the entire set of faults (68%). However, there

was no weighting of these faults versus implementation faults. We found in this study that

interface faults were roughly 49% of the entire set of design and coding faults and that

they were harder to fix than the implementation faults (see the previous discussion). Not

surprisingly, formal requirements and formal interface specifications were suggested as

significant means of preventing interface faults.

The system reported here was developed and evolved using the current “best practice”

techniques and tools with well-qualified practitioners. Because of this fact, we feel that the

data point is generalizable to other large-scale real-time systems. With this in mind, we offer

the following recommendations to improve the current “best practice”:

• Obtain fault data throughout the entire development/evolution cycle (not just in the

testing cycle), and use it monitor the progress of the process.

• Incorporate the fault survey as an integral part of MR closure and gather the fault-related

information while it is fresh in the developer’s mind. This data provides the basis for

measurement-based process improvement where the current most frequent or most costly

faults are remedied.

• Incorporate the informal, people-intensive means of prevention into the current process

(such as application walk-throughs, expert person or documentation, guideline

enforcement, etc.). As our survey has shown, this will yield benefits for the majority of

the faults reported here.

• Introduce techniques and tools to increase the precision and completeness of

requirements, architecture, and design documents. This will yield benefits for those faults

that were generally harder to fix and will help to detect the requirements, architecture,

and design problems earlier in the life cycle.

We close with several lessons learned that may go a long way toward the improvement of

future system developments:

• The fastest way to product improvement as measured by reduced faults is to hire people

who are knowledgeable about the domain of the product. Remember, lack of knowledge

tended to dominate the underlying causes. The fastest way to increase the knowledge

needed to reduce faults is to hire knowledgeable people.
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• One of the least important ways to improve software developments is to use a “better”

programming language. We found relatively few problems that would have been solved

by the use of better programming languages.

• Techniques and tools that help to understand the system and the implications of change

should be emphasized in improving a development environment. Remember that

knowledge-intensive activities tended to dominate the means of prevention.
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