
Optimizing Incremental Scope-bounded Checking with Data-flow Analysis

Danhua Shao Divya Gopinath Sarfraz Khurshid Dewayne E. Perry

Electrical and Computer Engineering Department

The University of Texas at Austin

Austin, TX 78712, USA

{dshao, dgopinath, khurshid, perry}@ece.utexas.edu

Abstract— We present a novel approach to optimize

incremental scope-bounded checking of programs using a

relational constraint solver. Given a program and its

correctness specification, scope-bounded checking encodes

control-flow and data-flow of bounded code segments into

declarative formulas and uses constraint solvers to search for

correctness violations. For non-trivial programs, the formulas

are often complex and represent a heavy workload that can

choke the solvers. To scale scope-bounded checking, our

previous work introduced an incremental approach that uses

the program’s control-flow as a basis of partitioning the

program and generating several sub-formulas, which represent

simpler problem instances for the underlying solvers. This

paper introduces a new approach that uses the program’s data-

flow, specifically variable-definitions, as a basis for incremental

checking. Experimental results show that the use of data-flow

provides a significant reduction in the number of variables in

the encoded formulas over the previous control-flow-based

approach, thereby further improving scalability of scope-

bounded checking.

Keywords- Scope-bounded checking, Alloy, first-order logic,

SAT, lightweight formal method, computation graph, white-box

testing, data-flow analysis

I. INTRODUCTION

In software verification, scope-bounded checking [3, 7,

9, 14, 16, 22] of programs has become an effective

technique for finding subtle bugs. Given bounds (that are

iteratively relaxed) on input size [3] and length of execution

paths [14], a program and its correctness specifications are

translated into a formula, which is solved using off-the-shelf

solvers [12, 27, 30]. A solution to the formula usually

represents a counterexample to the correctness specification.

Previous work [9, 11, 20, 37] developed an approach

based on the Alloy specification language (first-order logic

based on sets and relations) and the Alloy Analyzer [19] for

scope-bounded checking of Java programs. Given a

procedure Proc in Java and its pre-condition Pre and post-

condition Post in Alloy, the approach solves the following

formula [20, 37]: ()Pre translate Proc Post∧ ∧ ¬ . Given

bounds on loop unrolling (and recursion depth), the

translate() function encodes both control-flow and data-

flow of the bounded code fragment into an Alloy formula.

Using bounds on the number of objects of each class, the

conjunction of translate(Proc) with Pre and ¬ Post is

translated into a propositional formula and is solved by off-

the-shelf SAT solvers used by the Alloy Analyzer. A

solution to this formula corresponds to an execution path in

Proc that satisfies Pre but violates Post, i.e., a

counterexample to the correctness property.

The scalability and effectiveness of scope-bounded

checking in bug finding critically depends on the

capabilities of the underlying constraint solvers. The

traditional approaches [9, 11, 20, 37] translate the bounded

code segment of the whole program into one input formula.

For non-trivial programs, the translated formulas can be

quite complex and the solvers can fail to find a

counterexample in a desired amount of time. When a solver

times out, typically there is no information about the likely

correctness of the program checked or the coverage of the

analysis completed.

Recently, we introduced an incremental approach based

on the program’s control-flow to increase the efficiency and

effectiveness of scope-bounded checking [33]. The key idea

is to partition the set of executions of the bounded code

fragment into a number of subsets and encode each subset

into a sub-formula. We split the program into smaller sub-

programs, which are checked according to the correctness

specification. Thus, the problem of scope-bounded checking

for the given program reduces to several sub-problems,

where each sub-problem requires the constraint solver to

check a less complex formula. To illustrate, let Proc be split

into sub-programs Sub1, …, Subn. Then, checking the

formula ()Pre translate Proc Post∧ ∧ ¬ is equivalent to

checking the sub-formulas {Pre ∧ translate(Sub1) ∧ ¬ Post,

……, Pre ∧ translate(Subn) ∧ ¬ Post}.

The key insight of our incremental approach is a “sliding

rule” that allows controlling the complexity of the sub-

formulas based on the capabilities of the underlying solvers.

Our previous work [33] introduces splitting strategies to

embody the sliding rule. However, this work uses solely the

program’s control-flow to define the strategies, and is

therefore limited to the syntactical structure of the program

and fails to exploit the program semantics.

Since the complexity of the formulas comes from both

the data-flow and the control-flow, we hypothesize that the

use of data-flow in defining splitting strategies is likely to

further reduce the workload of the constraint solvers. To

evaluate the hypothesis, we introduce a splitting strategy

based on variable-definitions. Specifically, we split the

program based on different definitions of the same variable

into sub-programs, which leads to a reduction in the number

of variables in the resulting formulas. Experimental results

show that use of variable-definitions effectively reduces

variables in the formulas solved by the backend constraint

solvers and significantly improves scalability.

This paper makes the following contributions:

• Incremental scope-bounded checking using data-

flow. To optimize incremental bounded-checking,

we propose a splitting strategy based on data-flow,

which separates different definitions of the same

variable into different sub-programs.

• Implementation. We implement our approach using

the Forge framework [9] and KodKod model finder

[35].

• Evaluation. We compare our data-flow-based

incremental approach with the traditional approach

that solves one formula (that represents the entire

bounded computation segment) and with our

previous incremental approach that uses only

control-flow as a basis of splitting, as well as with an

extreme version of the control-flow based approach,

which separately checks each bounded path in the

program, akin to symbolic execution. Experiments

show that our data-flow-based incremental approach

scales the best for complex data structures. We also

test the efficacy of our approach using a real world

application.

II. EXAMPLE

This section presents a small example to illustrate our

variable-definition-based program splitting algorithm.

Suppose we want to check the contains() method of

class IntList in Figure 1 (a):

An object of IntList represents a singly-linked list.

The header field points to the first node in the list. Objects

of the inner class Entry represent list nodes. The value

field represents the (primitive) integer data in a node. The

next field points to the next node in the list. Figure 1 (b)

shows an instance of IntList.

Consider checking the method contains() of class

IntList. Assume a bound of one loop unrolling on the

execution length. Figure 2(a) shows the program and its

computation graph [20] for this bound.

Our program splitting strategy is variable-definition

based. Given a variable in the computation graph, we split

the graph into multiple sub-graphs such that each sub-graph

has at most one definition that can reach the Exit

statement. Definitions of this variable in each of the sub-

graphs are different.

In Figure 2 (a), definitions of variable this and key are

empty sets {}. Definitions of variable return are provided

by statement set {4, 8, 11}, and definitions of variable e are

provided by statement set {1, 5, 9}. All of these definitions

can reach the Exit statement.

Suppose we select definitions of variable e (which has

the maximum number of definitions) to split the

computation graph. We construct three sub-programs:

Figure 2(b), 2(c), and 2(d). Each sub-program only contains

one definition of variable e.

III. BACKGROUND

The goal of our computation graph splitting algorithm is

to optimize traditional bounded exhaustive checking of

programs using constraints in relational logic. Traditional

approaches [9, 11, 20, 37] translate the whole bounded Java

code segment into one relational logic formula. The

conjunction of the code constraints and the negation of

correctness specifications are passed to a relational logic

constraint solver. Solutions are translated back to executions

that violate the specification.

The translation from Java to Alloy, initially presented in

the JAlloy technique [20], is based on the relational view of

a program heap. This is done in three steps: (1) encoding

data, (2) encoding control-flow, and (3) encoding data-flow.

Encoding data involves building a representation for

classes, types, and variables in relational logic. Each class or

type is represented as a set or a domain, which comprises of

the universe of objects of this class or values of this type.

Local variables and arguments are encoded as singleton sets.

A field of a class is encoded as a binary, functional relation

that maps from the class to the type of the field.

Data-flow is encoded as relational operations on sets and

relations. Within an expression in a Java statement, field

(a)

(b)

Figure 1. Class IntList (contains() method and an instance).

deference is encoded as relational join, and an update to a

field is encoded as relational override. For a branch

statement, predicates on variables or expressions are

encoded as corresponding formulas with relational

expressions. Method calls are encoded as formulas that

abstract behavior of the called methods.

Given a program, encoding control-flow is based on the

computation graph. Each edge (vi→vj) in the computation

graph is represented as a boolean variable Ei,j, which has a

value true when the corresponding edge is traversed. The

control flow from one statement to the next sequential

statement is viewed as a relational implication. For example,

code segment {A; B; C;} is translated to ’EA,B⇒ EB,C’.

Control flow splits at a branching statement—the two

branch edges are viewed as a relational disjunction. For

each branch edge, a relational formula is generated

according to the predicate. The edge is considered traversed

when there exists data that satisfies the relational formula

for the edge.

The conjunction of the formulas generated by encoding

the data-flow and control-flow of a statement sequence

yields the formula for a path and the disjunction of the

formulas for all the paths yields the formula for the code

segment under analysis. The Alloy formula of the code

segment, pre-condition specification, and negation of the

post-condition correctness specification are conjoined and

passed to an engine such as Alloy Analyzer. Given an input

scope (bound on the universe of atoms/instances of each

type), the engine translates the given Alloy formula into a

propositional satisfiability (SAT) formula and uses off-the-

shelf SAT technology to solve the formula.

Forge is a recently proposed framework [8, 9] which

builds on the JAlloy approach and includes features which

combat the shortcomings of the previous technique. It uses a

custom relational engine expressly built for the application

and performs optimized translations from code to logic. The

Forge framework takes in code and specifications in the

Forge Intermediate Language (FIR), a "relational

programming language" which provides constructs in Java

that support data-flow and control-flow encoding. The

framework also improves translation functions for

appropriate mapping of expressions from the high level Java

 public boolean
 constains(int key)
 {
1 : Entry e = this.header;
2 : if (e != null){
3 : if (e.value == key){
4 : return true;
 }
5 : e = e.next;
6 : if (e != null){
7 : if (e.value == key){
8 : return true;
 }
9 : e = e.next;
 }
10: assume(e == null);
 }
11: return false;
0 :}

(a)

 public boolean
 sub1(int key)
 {
1 : Entry e = this.header;
2 : if (e != null){
3’: assume (e.value==key)
4 : return true;

5 :
6 :
7 :
8 :

9 :

10:
 }
11: return false;
0 :}

(b)

 public boolean
 sub2(int key)
 {
1 : Entry e = this.header;
2’: assume (e != null);
3”: assume !(e.value==key);
4 :

5 : e = e.next;
6 : if (e != null){
7’: assume(e.value==key);
8 : return true
 }
9 :

10:

11: return false;
0 :}

(c)

 public boolean
 sub3(int key)
 {
1 : Entry e = this.header;
2’: assume(e != null);
3”: assume !(e.value==key);
4 :

5 : e = e.next;
6’: assume (e != null);
7”: assume !(e.value==key);
8 :

9 : e = e.next;

10: assume(e == null);

11: return false;
0 :}

(d)

Figure 2. Splitting of program contains() based on definitions of variable e. Broken lines in sub-graph indicate edges removed constructing this

sub-program during splitting. Gray nodes in a sub-graph denote that a branch statement in original program has been transformed into an assume

statement. In the programs below the computation graphs, the corresponding statements are shown in Italic. Black nodes denote the statements

removed during splitting. Subgraph (a) is program contains() and its computation graph after one-round unrolling. At exit, there are three

definitions of variable e: Statement 1, 5, 9. Subgraph (b) is based on definition of variable e at statement 1. Subgraph (c) is based on definition of

variable e at statement 5. Subgraph (d) is based on definition of variable e at statement 9.

domain to relational logic domain and vice versa. While the

JAlloy tool interfaced with the Alloy Analyzer for translation

of the constraints to boolean logic, Forge employs the

Kodkod model finder for faster translation.

Our earlier work [33] proposed algorithms for splitting

the computation graph into sub-graphs and solving them

incrementally. Sub-graphs are constructed by transforming

branch statements into assume statements.

IV. ALGORITHM

In our previous work, we developed a vertex-based sub-

graph analysis technique which preserves the behavioral

semantics (w.r.t. to the given scope) of a program while

splitting it into sub-programs. Given a vertex, we construct

two sub-programs: one sub-program has all paths that go

through the vertex and the other sub-program has all paths

that bypass that vertex. Our vertex-based path partitioning

guarantees behavioral equivalence and consistency between

the original program and sub-programs.

Definition. Given a vertex v in a computation graph cg,

go-through-sub(v) is a sub-graph of cg that has and only has

all paths that go through vertex v; and bypass-sub(v) is a

sub-graph of cg that has and only has all paths that bypass

vertex v.

The implementation and correctness proofs for the go-

through-sub() and bypass-sub() functions have been

discussed in our previous work [33].

In our splitting technique, vertex selection is critical. We

propose a set of heuristics for vertex selection. In Figure 3,

we propose a generic framework of our sub-program

analysis while a splitting strategy is implemented as a

splitter.

Given program p, we check it as following steps:

1. Translate p into p’ where p’ represents the

computation graph [20] of p, i.e., the loops in p

are unrolled and method calls in-lined to generate

p;

2. Represent p’ as a graph CG = (V, E) where V is a

set of vertices such that each statement in p’ has a

corresponding vertex in V, and E is a set of edges

such that each control-flow edge in p’ has a

corresponding edge in E. For each edge e = (u, v),

u=e.from, and v = e.to;

3. Apply a splitting strategy (a Splitter) to split CG

into sub-graphs CG1 CG2, …, and CGn

4. Recursively split each sub-graph CGi if needed;

5. With the given specifications and bounds on

scope, translate each of them into a CNF formula;

6. Sort formulas according to the number of clauses,

variables, and primary variables;

7. Call solver to solve these formulas sequentially

until a solution is found or all formulas are solved.

A. Variable-definition-based splitting strategy

In the variable-definition-based splitting strategy, we

select vertices defining values of a given variable to split a

program. We separate variable definitions so that each sub-

program has at most one variable definition that can reach

Exit statement. In different sub-graphs, definitions of the

variable reaching Exit statement are different.

Definition. Given a statement s in a program, reach-

definition(s) = {(var, Def)}, where Def is a set of statements

such that for each statement d in Def, variable var is defined

at statement d, and there is a control-flow path from d to s

such that there is no other definition of variable var along

that path.

Given a program, its reaching definitions can be

calculated by BFS (Breadth First Search) of its computation

graph.

Figure 4 shows our variable-definition-based splitter.

Given a program represented by a computation graph cg, we

split it as follows:

1. Compute definitions reaching the Exit statement of

cg.

2. Select the variable v, which has the most number

of definitions reaching the Exit statement.

3. For each definition d of variable v, construct a sub-

graph cg.go-through(d). This sub-graph has all the

paths that visit d.

Figure 3. Sub-program-based checking algorithm

4. For each definition d and its go-through sub-graph

sub, calculate definitions of variable v that can

reach Exit statement. If there is another definition k

for the same variable below d in sub, call

sub.bypass-sub(k) to remove definition k. Repeat

this process until d is the only definition of

variable v in sub-graph sub.

5. Call the bypass-sub function on every definition of

variable v in the entire cg, to construct a sub-graph

that has no definitions for the variable.

Steps 4 and 5 yield smaller sub-graphs from the variable-

definition based splitting.

Compared with whole program analysis, the overhead of

Variable-Definition based sub-program analysis composes

of three parts:

• T1: Identify variable definition vertices that can

reach Exit statement.

• T2: Construct go-through and bypass sub-graphs for

these definition vertices. Given a vertex, go-through

and bypass sub-graph are constructed by

transforming the branches statements into assume

statements [33].

• T3: Split the computation graph according to

selected variable definitions.

Given a computation graph CG = (V, E), T1 can be

achieved by BFS (Breadth First Search). So the time

complexity is O(|V| + |E|). T2 can also be achieved by BFS,

and its complexity is also O (|V| + |E|). T3 is the time on

identifying variable definitions and branches can reach these

definitions. Since variable definitions and the branch

statements are subsets of V, T3 is not more than (|V|
2
). Since

|E| is no more than O (|V|
2
), the summary of T1, T2, and T3

is at most O (|V|
2
).

B. Branch-based splitting strategy

In the branch-based splitting strategy introduced in our

earlier work [33], we use the number of branches as the

heuristic measure of the complexity of checking. To

effectively divide the analysis complexity of a program, we

select a vertex such that the number of branch statements in

each of the sub-programs is minimized. Figure 5 shows the

branch-based splitting strategy.

Given a program represented by a computation graph cg,

we split it as follows:

1. For each vertex v of cg, construct two sub-graphs:

cg.go-through(v) and cg.bypass-sub(v). Count the

number of branch nodes in each sub-graph and use

the larger value as the split-complexity for the

splitting based on the vertex v.

2. Perform step 1 on all vertices and select the vertex

that has the minimum split-complexity.

3. Split cg based on the selected vertex.

Compared with whole program analysis, the overhead of

Branch-based sub-program analysis compose of three parts:

1. T1: Calculate reachability. Given a vertex, go-

through and bypass sub-graph can be constructed

by changing some branches statements reachable

to the vertex into assume statements [33].

2. T2: Calculate number of branches for the each

vertex-based splitting.

3. T3: Split according to selected vertex.

Given a computation graph CG = (V, E), T1 can be

achieved by BFS (Breadth First Search). So the time

complexity is O (|V| + |E|). T2 is the sum of branches can

reach each vertex. Since branch statements reaching a vertex

is a subset of V, T2 is not more than (|V|
2
). With the same

reason, T3 is no more than (|V|). Since |E| is no more than O

(|V|
2
), the summary of T1, T2, and T3 is at most O (|V|

2
).

V. EXPERIMENTS

We performed a set of experiments on methods of

complex standard data structures to measure and compare

the scalability of the sub-program-based incremental

Figure 4. Variable-Definition based splitting algorithm

Figure 5. Branch-based splitting algorithm

analysis strategies with the traditional whole program

analysis. We selected five methods from four standard data

structure classes and compared the speedup and workload of

the different splitting strategies. We also measured the

performance of the strategies on a real world application,

the KOA remote voting system. We piggybacked on the

most recent version of the Forge tool-set [11] to implement

our incremental approach. Since Forge performs modular

verification of code, a method is verified as a standalone

entity with respective pre and post-conditions, hence the

terms “program” and “method” are used interchangeably

meaning a module to be verified

A. Experiment with standard data structure candidates

The candidates chosen for evaluation were – contains

method of Singular Linked List (LL),

contains method of Binary Search Tree

(BST), add method of Binary Search Tree,

sort method of Directed Acyclic Graph

(DAG) and insert method of Red Black Tree

(RBT). DAG.sort() contained seeded faults and was

used to compare the strategies based on the time to detect

counter-examples. The other four methods were the correct

versions and were used as candidates to measure the

scalability of the techniques in searching the full state space.

Though typical object oriented data structure methods are

small in terms of the absolute number of lines of source

code, on being unrolled based on the bounds, they produce

large number of paths increasing the complexity of analysis.

For instance, the RBT.insert() procedure contains 1829

lines of code after 6 unrollings.

We used the following metrics to measure the

effectiveness of the splitting strategies:

• The speed-up obtained by the splitting strategies in

comparison with the traditional analysis was

calculated as the ratio of the total solving time of the

back-end SAT solver in the traditional technique to

the corresponding times obtained from splitting.

Speedup = Twhole-analysis/Tsub-program-analysis.

• The size of the generated boolean formulas was

measured in terms of the average number of

variables across all the sub-formulas in the

Conjunctive Normal Form (CNF).

The input parameters which bound the size of the

verification performed by Forge are the number of loop

unrollings (the number of times loops in the code are to be

unrolled and recursive calls inlined), the scope (maximum

number of nodes in a list, tree or graph), and bit-width

(number of bits used to represent an integer). We used a

scope of 8 for LL.contains() and DAG.sort()

methods, scope of 7 for BST.add() and a scope of 4 for

RBT.insert(). The number of unrolls were increased

from 1 onwards up till the scope value. We checked each

method using the following four splitting strategies:

• WHOLE- traditional method of checking of the

entire computation graph;

• BRANCH- branch-based splitting vertex selection;

• VARDEF- variable definition based splitting vertex

selection;

• PATH- splitting the computation graph such that

each sub-graph comprises of a single path.

We ran the experiments on a Dual-Core 1.8GHz AMD

Opteron processor with 2 GB RAM. Average values of

three runs were recorded. The backend SAT solver used was

MINISAT for all cases.

As seen in the results shown in Figure 6, for all the

methods, the splitting strategies provided considerable

speed-ups in solving times with increase in the number of

unrolls. The threshold at which the splitting strategies start

showing benefit over traditional analysis decreases as the

complexity of the data structure increases. For instance, for

singly linked list, the speed-ups obtained remain below 1

(perform worse than traditional analysis) for all strategies at

1 and 2 unrolls, whereas for red-black tree the speed-up

obtained is greater than 1 even at 1 unroll.

VARDEF strategy consistently performs the best on all

data structure methods. For example, in the BST.add()

procedure, VARDEF strategy gives a 147X speedup with

four unrollings while PATH and BRANCH strategies give

only 60X and 2.7X speedups respectively. These results also

show that VARDEF has better scalability. For example, in

BST.contains(), when the unrolling increases from 1 to

5, speedup provided by VARDEF strategy increases 10

times, while the speedups of BRANCH and PATH

strategies increase only by 3.5 and 2.8 times respectively.

For the methods of Linked List, Binary Search

Tree and Direct Acyclic Graph, checking every

path individually performs better than the BRANCH based

splitting of the computation graph into sub-graphs. For

instance, in BST.add() method , for 4 unrolls , PATH

strategy gives a 60X speed-up as compared to only 2.7X

speed-up of BRANCH based splitting. But for the

RBT.insert() method the PATH strategy chokes the tool

and is unable to solve all the paths even for 1 unroll (it

solves around 11406 paths in 7 hours). This is the reason

why this method in Figure 6 doesn’t have data for PATH

strategy. The insert method comprises of 67 branches (of

which 48 are conditional assignments) resulting in an

exponential number of paths (approximately 14418000

paths even for 1 loop unrolling). This indicates that the

performance of the PATH strategy (representative of

symbolic execution) is very sensitive to increase in the

complexity of the data structure which in turn translates into

both syntactic and semantic complexity of the methods and

the respective specifications.

For DAG.sort(), the speedup of VARDEF strategy is

almost 540X. The reason for the high speed-up is that the

fault is present in a short path. Since the sub-graphs are

checked in the increasing order of complexity, the sub-graph with fault is checked early and the fault is detected very

LL.contains()

3000

3500

4000

4500

5000

5500

6000

3 4 5 6 7 8
unrolling

V
a
ri

a
b

le
s

WHOLE

BRANCH

VARDEF

PATH

BST.contains()

6000

6500

7000

7500

8000

8500

1 2 3 4 5

unrolling

V
a
ri

a
b

le
s

WHOLE

BRANCH

VARDEF

PATH

BST.add()

4000

9000

14000

19000

24000

1 2 3 4

unrolling

V
a
ri

a
b

le
s

WHOLE

BRANCH

VARDEF

PATH

DAG.sort() (with faults)

30000

80000

130000

180000

230000

1 2 3 4 5

unrolling

V
a
ri

a
b

le
s

WHOLE

BRANCH

VARDEF

PATH

RBT.insert()

6000

506000

1006000

1506000

1 2 3

unrolling

V
a
ri

a
b

le
s

WHOLE

BRANCH

VARDEF

Figure 7. Average #variables of CNF formula per sub-program in Branch-

based and Variable-definition-based analysis and Whole program analysis.

LL.contains()

0

5

10

15

20

25

30

35

40

45

3 4 5 6 7 8unrolling

s
p

e
e
d

u
p

PATH

BRANCH

VARDEF

WHOLE

BST.contains()

0

1

2

3

4

5

6

7

8

1 2 3 4 5

unrolling

s
p

e
e
d

u
p

PATH

BRANCH

VARDEF

WHOLE

BST.add()

0

20

40

60

80

100

120

140

160

1 2 3 4

unrolling

s
p

e
e
d

u
p

PATH

BRANCH

VARDEF

WHOLE

DAG.sort() (with faults)

0

100

200

300

400

500

600

1 2 3 4 5

unrolling

s
p

e
e
d

u
p

PATH

BRANCH

VARDEF

WHOLE

RBT.insert()

0

5

10

15

20

25

30

35

1 2 3
unrolling

s
p

e
e
d

u
p

BRANCH

VARDEF

WHOLE

Figure 6. Speedup of sub-program analysis with Branch-based,Variable-
definition-based and Path-based strategies.

soon. Also, while the fault-detection time remains almost

constant for the VARDEF strategy even with increase in the

complexity (number of unrolls), the time taken by

traditional analysis degrades. Thus, on the whole, there is an

exponential increase in speed-up. The inference is that faults

in short paths can be detected much faster by sub-program

analysis as compared to the traditional whole program

analysis. The time taken by sub-program analysis is also

more resistant to increase in the size of the computation

graphs and hence is more scalable than the traditional

approach.

The splitting strategies incur overhead due to the static

analysis involved in splitting the computation graph into

sub-graphs and repeated translation of each of the sub-

graphs, but yield smaller CNF formula per sub-graph which

reduces the total solving time. We tabulate the constraint

solving times since solving is the main bottleneck for SAT-

based approaches. While there is translation overhead that

contributes to the overall cost of checking, solving remains

the dominant factor in the total cost. Comparison of the total

checking times of the approaches shows similar scalability

trends, although the absolute values of the speed-ups

obtained are smaller. Note however that the maximum

reduction in speedup is less than 23%, which happens in the

case of RBT.insert(), with scope 3 and unrolling 3,

where the speed-up in solving time is 43.296 while the

speedup in total checking time (translation + solving) is

33.41.
To evaluate the effectiveness of the splitting strategies in

reducing the size of the formulas, we also analyzed the
number of variables in the CNF formula translated from
specifications and sub-programs. Given a splitting strategy
and a bound, we recorded the average number of variables in
the CNF formulae translated from sub-programs. The results
in the Figure 7 show that, with the increase in the number of
loop unrollings, the number of variables in the formulas
produced by the VARDEF strategy increases much slower
than those of BRANCH, PATH and WHOLE program
analysis. This indicates that VARDEF strategy can
effectively combat state space explosion as the program
scales up in size.

B. Experiment with a sub-system in KOA system

In order to evaluate the efficacy of the incremental

approach on a full-fledged application with sufficient

magnitude, a case-study was performed on the KOA Voting

application. The Dutch Tally subsystem in KOA contains

JML annotated methods, earlier checked using ESC/Java

static checker and JMLForge [10]. It comprises of 8 main

classes. We used 67 methods from these classes for our

analysis and used a scope of 2, bit width of 3 and number of

unrolling 1 (which were determined to be the minimum

bounds required to detect counter-examples in these

methods [10]). Since there are 201 speed-up results in total,

instead of tabulating all of them, we present below a

summary of our analysis of the results.

The splitting strategies did not result in speed-ups over

the traditional technique on all methods. The methods

wherein the whole program analysis performed better had

very less lines of code (1.4 lines of code on an average). In

such methods, there wasn’t much scope for dividing the

computation graph into sub-graphs to optimize performance.

Thus the overhead of the analysis for splitting the control

flow graph overshadowed the benefit obtained by solving

smaller sub-graphs. On the other hand, even a small increase

in the complexity and size of the methods degraded the

performance of the traditional analysis and it had the worst

performance amongst the three approaches. For instance, for

KiesKring.make(), a method with 6 lines of code,

VARDEF strategy achieved 23X speedup versus the whole

analysis.

We would like to highlight that this case-study was

conducted more in an exploratory fashion to study the

applicability of the splitting strategies in a real-world

domain. This is in line with our aim to come up with a

sliding rule for the strategy to be used for checking a

method based on different criteria. Incremental checking

provides benefits to applications with significant semantic

and syntactic complexity. We selected the KOA application

to serve as a benchmark for comparison with earlier

evaluations done using Forge. We are also working on

other applications such as the Intentional Naming System

[11], comprising of complex data structures and methods.

VI. RELATED WORK

Our work is based on previous research that models a

heap-manipulating procedures using Alloy and finds

counterexamples using SAT. Jackson et al. [20] proposed an

approach to model complex data structures with relations

and encode control flow, data flow, and frame conditions

into relational formulas. Vaziri et al. [37] optimized the

translation to boolean formulas by using a special encoding

of functional relations. Dennis et al. [9] provided explicit

facilities to specify imperative code with first-order

relational logic and used an optimized relational model

finder [35] as the backend constraint solver. Our algorithm

can reduce the workload to the backend constraint solver by

splitting the computation graph that underlies all these prior

approaches and dividing the procedure into smaller sub-

programs.

Our previous work on incremental scope-bounded

checking [33] used control-flow as the basis of a splitting

strategy. Specifically, we use the number of branches as a

heuristic to compute an analysis complexity metric of a

program. We split a program into two sub-programs so that

the number of branch statements in each of sub-programs is

minimized. Evaluations with Java library procedures

showed the strengths and weaknesses of the branch-based

splitting strategy. On the positive side, it can effectively

divide the workload to backend SAT solver and achieve a

high speed-up over the traditional whole program analysis.

For example, with 3 loop unrolling and 7 nodes, the speedup

of checking add() of BinarySearchTree is 12.16X.

However, on the negative side, it does not exhibit much

scalability. For example, for the contains() method of

BinarySearchTree, the speedup only increases from

3.42X to 4.94X as the program size increases from 4 loop

unrollings to 8 loop unrollings.

DynAlloy [13] is a promising approach that builds on

Alloy to directly support sequencing of operations. We

believe our incremental approach can optimize DynAlloy’s

solving too.

Bounded exhaustive checking, e.g., using TestEra [21] or

Korat [3] can check programs that manipulate complex data

structures. Testing, however, has a basic limitation that

running a program against one input only checks the

behavior for that input. In contrast, translating a code

segment to a formula that is solved allows checking all

(bounded) paths in that segment against all (bounded)

inputs.

The recent advances in constraint solving technology

have led to a rebirth of symbolic execution [22, 23].

Guiding symbolic execution using concrete executions is

rapidly gaining popularity as a means of scaling it up in

several recent frameworks, most notably DART [15], CUTE

[32], and EXE [4]. While DART and EXE focus on

properties of primitives and arrays to check for security

holes (e.g., buffer overflows), CUTE has explored the use of

white-box testing using preconditions, similar to Korat [3].

While, in principle, the use of preconditions written as Java

predicates allows symbolic execution to checks programs

similar to the ones we have used for evaluation, a key

property of such checking is that the number of calls to the

constraint solver is not simply proportional to the number of

bounded execution paths of interest, rather the number of

calls is proportional to the product of the paths in the

precondition that return true and the paths in the method

under test. The path-based approach we have used in our

evaluation (Section 5) can be viewed an optimized form of

symbolic execution, which minimizes the number of calls to

the underlying constraint solver by encoding the pre-

condition as a single formula. Indeed, our incremental

approaches are motivated by our quest to find a sweet spot

between checking all paths at once (traditional approach)

and each path one-by-one (symbolic/concrete execution).

Model checkers have traditionally focused on properties

of control [17, 28]. Recent advances in software model

checking [14, 38] have allowed checking properties of data.

However, software model checkers typically require explicit

checking of each execution path of the program under test.

Slicing techniques [34] have been used to reduce

workload of bounded verification. Dolby et al. [11] and

Saturn [39] perform slicing at the logic representation level.

Millett et al. [29] slice Promela programs for SPIN model

checker [17]. Visser et al. [38] and Corbett et al. [4] prune

the parts that are not related to temporal constraints and

slice at the source code level. Since slicing is based on

constraints, the effectiveness depends on the properties to be

checked. Statements that do not manipulate any relations in

properties will not be translated into the formula for

checking. If constraints are so complex that all the relations

show up, no statements will be pruned. Our program-

splitting algorithm can still reduce workload to backend

constraint solvers because our path partitioning algorithm is

independent of constraints to be checked.

Sound static analyses, such as traditional shape analysis

[25, 32] and recent variants [26], provide correctness

guarantees for all inputs and all execution paths irrespective

of a bound. However, they typically require additional user

input in the form of additional predicates or loop invariants,

which are not required for scope-bounded checking, which

provides an under-approximation of the program under test.

VII. CONCLUSIONS

Scalability is a key challenge for scope-bounded

checking. For non-trivial programs, the formulas translated

from control-flow and data-flow can be quite complex and

the ensuing heavy workload can choke the solvers. Our

previous work used control-flow as the basis for an

incremental approach to scope-bounded checking by

splitting program into smaller sub-programs and checking

each sub-program separately, and demonstrated significant

speed-ups over the traditional approach. This paper

introduces the use of data-flow to optimize the incremental

approach, specifically using a splitting strategy based on

variable definitions. Experiments show that for programs

with sufficient size and complexity, our use of variable

definitions improves the scalability of the incremental

approach; it effectively reduces the complexity of the

ensuing formulas and provides more efficient analysis.

In general, incremental checking of programs opens up

the following avenues for future work. In ongoing work, we

are exploring strategies for applying semantic and syntactic

analysis based splitting algorithms in tandem such that

customized splitting techniques could be used which strike a

trade-off between reducing the complexity of the resulting

constraints and minimizing the translation time overhead.

Since sub-graphs produced by the splitting algorithms are

syntactically and semantically independent of each other,

we also propose to combine incremental and parallel

algorithms to scale up scope bounded checking. For

applications with complex pre and post condition

specifications, slicing of specifications based on the control

flow graph splitting and specification driven control flow

graph slicing are two significant areas for future work.

REFERENCES

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The
design and implementation of an intentional naming system. In Proc.
of 17th ACM Symposium on Operating Systems (SOSP), Kiawah
Island, December 1999.

[2] C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-
Order Formulas by Incremental Translation to SAT. In Proc. of 14th

International Conference on Computer-Aided Verification (CAV),
2002.

[3] C. Boyapati, S. Khurshid and D. Marinov. Korat: Automated Testing
Based on Java Predicates. In Proc. of ACM/SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), 2002.

[4] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE:
Automatically Generating Inputs of Death. In Proc. of the 13th ACM
Conference on Computer and Communications Security(CCS), 2006

[5] Y. Cheon, G.T. Leavens. A simple and practical approach to unit
testing: The JML and JUnit way. In Proc. of the 16th European

Conference on Object-Oriented Programming(ECOOP), 231-255,
2002.

[6] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu,
Robby, and H. Zheng. Bandera: extracting finite-state models from
Java source code. In Proc. of International Conference on Software
Engineering (ICSE), 2000.

[7] P. Darga, and C. Boyapati. Efficient software model checking of data
structure properties. In Proc. of International Conference on Object-

Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2006.

[8] Gregory D. Dennis. Relational Framework for Bounded Program
Verification, Ph.D. Thesis, Massachusetts Institute of Technology,
September 2009.

[9] G. Dennis, F. S. H. Chang, and D. Jackson. Modular verification of
code with SAT. In Proc. of International Symposium on Software
Testing and Analysis (ISSTA), 2006.

[10] G. Dennis, K. Yessenov, and D. Jackson. Bounded Verification of
Voting Software. Second IFIP Working Conference on Verified
Software: Theories, Tools, and Experiments (VSTTE), 2008

[11] J. Dolby, M. Vaziri, and F. Tip. Finding Bugs Efficiently with a SAT
Solver. In Proc. of the 6th joint meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2007

[12] N. Eén, and N. Sörensson. An extensible SAT solver. In Proc. of the

6th International Conference on Theory and Applications of
Satisfiability Testing(SAT), 2003

[13] M. F. Frias, J. P. Galeotti, C. G. López Pombo, and N. M. Aguirre.
DynAlloy: upgrading alloy with actions. In Proc. of International
Conference on Software Engineering (ICSE), 2005.

[14] P. Godefroid. Model Checking for Programming Languages using
VeriSoft. In Proc.of ACM Symposium on Principles of Programming
Languages (POPL), 1997.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated

random testing. In Proc. of ACM SIGPLAN conference on
Programming language design and implementation (PLDI), 2005.

[16] C. Heitmeyer, J. James Kirby, B. Labaw, M. Archer, and R.
Bharadwaj. Using abstraction and model checking to detect safety
violations in requirements specifications. IEEE Transactions on
Software Engineering. Vol. 24, No. 11, 927-948, 1998.

[17] G. J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, 2004.

[18] D. Jackson. Automating first-order relational logic. In Proc. of the
International Symposium on Foundations of Software Engineering
(FSE), 2000.

[19] D. Jackson. Software Abstractions: logic, language, and analysis.
MIT Press, Cambridge, MA, 2006.

[20] D. Jackson, and M. Vaziri. Finding bugs with a constraint solver. In
Proc. of the International Symposium on Software Testing and
Analysis (ISSTA), 2000.

[21] S. Khurshid and D. Marinov. TestEra: Specification-based Testing of
Java Programs Using SAT. Automated Software Engineering Journal,
Vol.11, No. 4. October 2004.

[22] S. Khurshid, C. Pasareanu and W. Visser. Generalized Symbolic
Execution for Model Checking and Testing. In Proc. of the 9th

International Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS), 2003.

[23] J. C. King. Symbolic execution and program testing. Communications
of the ACM, Volume 19, Issue 7, July 1976.

[24] J. Kiniry, A. Morkan, D. Cochran, F. Fairmichael, P. Chalin, M.
Oostdijk, and E. Hubbers. The KOA remote voting system: A
summary of work to date. Proc.of Trustworthy Global Computing
(TGC), 2006

[25] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA
implementation secrets. In Proc. of 5th International Conference on
Implementation and Application of Automata, 2000.

[26] V. Kuncak. “Modular Data Structure Verification,” Ph.D. thesis,
EECS Department, Massachusetts Institute of Technology, 2007.

[27] M. Leonardo and N. Bjørner. Z3: An Efficient SMT Solver. In Proc.
of Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2008.

[28] K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[29] L. I. Millett, and T. Teitelbaum. Slicing Promela and its applications
to model checking. In Proc. of the 4th International SPIN Workshop,
1998.

[30] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In Proc. of 39th Design
Automation Conference (DAC), 2001

[31] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-
valued logic. ACM Transactions on Programming Languages and
Systems (TOPLAS), Volume 24, Issue 3: 217 – 298, 2002

[32] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing
engine for C. In Proc. of the 10th European software engineering

conference held jointly with 13th ACM SIGSOFT international

symposium on Foundations of software engineering (ESEC/FSE),
2005.

[33] D. Shao, S. Khurshid, and D. E. Perry. An incremental approach to
scope-bounded checking using a lightweight formal method. The 16th
International Symposium on Formal Methods (FM), 2009.

[34] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages 3(3), 121-189. 1995.

[35] E. Torlak and D. Jackson. Kodkod: A Relational Model Finder. In
Proc.of International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS), 2007.

[36] E. Uzuncaova and S. Khurshid. Program Slicing for Declarative
Specifications. 14th ACM SIGSOFT Symposium on Foundations of

Software Engineering (FSE) Poster Paper. Portland, OR. November
2006.

[37] M. Vaziri, and D. Jackson. Checking properties of heap-manipulating
procedures with a constraint solver. In Proc. of the International

Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2003.

[38] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model
checking programs. In Proc. of International Conference on
Automated Software Engineering (ASE), 2000

[39] Y. Xie, and A. Aiken. Saturn: A scalable framework for error
detection using boolean satisfiability. ACM Transactions on

Programming Languages and Systems (TOPLAS), Vol. 29, Issue 3,
2007.

