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Abstract— We present a novel approach to optimize 

incremental scope-bounded checking of programs using a 

relational constraint solver. Given a program and its 

correctness specification, scope-bounded checking encodes 

control-flow and data-flow of bounded code segments into 

declarative formulas and uses constraint solvers to search for 

correctness violations. For non-trivial programs, the formulas 

are often complex and represent a heavy workload that can 

choke the solvers. To scale scope-bounded checking, our 

previous work introduced an incremental approach that uses 

the program’s control-flow as a basis of partitioning the 

program and generating several sub-formulas, which represent 

simpler problem instances for the underlying solvers. This 

paper introduces a new approach that uses the program’s data-

flow, specifically variable-definitions, as a basis for incremental 

checking. Experimental results show that the use of data-flow 

provides a significant reduction in the number of variables in 

the encoded formulas over the previous control-flow-based 

approach, thereby further improving scalability of scope-

bounded checking. 

Keywords- Scope-bounded checking, Alloy, first-order logic, 

SAT, lightweight formal method, computation graph, white-box 

testing, data-flow analysis 

I.  INTRODUCTION 

In software verification, scope-bounded checking [3, 7, 

9, 14, 16, 22] of programs has become an effective 

technique for finding subtle bugs. Given bounds (that are 

iteratively relaxed) on input size [3] and length of execution 

paths [14], a program and its correctness specifications are 

translated into a formula, which is solved using off-the-shelf 

solvers [12, 27, 30]. A solution to the formula usually 

represents a counterexample to the correctness specification. 

Previous work [9, 11, 20, 37] developed an approach 

based on the Alloy specification language (first-order logic 

based on sets and relations) and the Alloy Analyzer [19] for 

scope-bounded checking of Java programs. Given a 

procedure Proc in Java and its pre-condition Pre and post-

condition Post in Alloy, the approach solves the following 

formula [20, 37]: ( )Pre translate Proc Post∧ ∧ ¬ . Given 

bounds on loop unrolling (and recursion depth), the 

translate() function encodes both control-flow and data-

flow of the bounded code fragment into an Alloy formula. 

Using bounds on the number of objects of each class, the 

conjunction of translate(Proc) with Pre and ¬ Post is 

translated into a propositional formula and is solved by off-

the-shelf SAT solvers used by the Alloy Analyzer. A 

solution to this formula corresponds to an execution path in 

Proc that satisfies Pre but violates Post, i.e., a 

counterexample to the correctness property. 

The scalability and effectiveness of scope-bounded 

checking in bug finding critically depends on the 

capabilities of the underlying constraint solvers. The 

traditional approaches [9, 11, 20, 37] translate the bounded 

code segment of the whole program into one input formula. 

For non-trivial programs, the translated formulas can be 

quite complex and the solvers can fail to find a 

counterexample in a desired amount of time. When a solver 

times out, typically there is no information about the likely 

correctness of the program checked or the coverage of the 

analysis completed. 

Recently, we introduced an incremental approach based 

on the program’s control-flow to increase the efficiency and 

effectiveness of scope-bounded checking [33]. The key idea 

is to partition the set of executions of the bounded code 

fragment into a number of subsets and encode each subset 

into a sub-formula. We split the program into smaller sub-

programs, which are checked according to the correctness 

specification. Thus, the problem of scope-bounded checking 

for the given program reduces to several sub-problems, 

where each sub-problem requires the constraint solver to 

check a less complex formula. To illustrate, let Proc be split 

into sub-programs Sub1, …, Subn. Then, checking the 

formula ( )Pre translate Proc Post∧ ∧ ¬ is equivalent to 

checking the sub-formulas {Pre ∧ translate(Sub1) ∧ ¬ Post, 

……, Pre ∧ translate(Subn) ∧ ¬ Post}. 

The key insight of our incremental approach is a “sliding 

rule” that allows controlling the complexity of the sub-

formulas based on the capabilities of the underlying solvers. 

Our previous work [33] introduces  splitting strategies to 

embody the sliding rule. However, this work uses solely the 

program’s control-flow to define the strategies, and is 

therefore limited to the syntactical structure of the program 

and fails to exploit the program semantics. 

Since the complexity of the formulas comes from both 

the data-flow and the control-flow, we hypothesize that the 

use of data-flow in defining splitting strategies is likely to 

further reduce the workload of the constraint solvers. To 

evaluate the hypothesis, we introduce a splitting strategy 

based on variable-definitions. Specifically, we split the 



program based on different definitions of the same variable 

into sub-programs, which leads to a reduction in the number 

of variables in the resulting formulas. Experimental results 

show that use of variable-definitions effectively reduces 

variables in the formulas solved by the backend constraint 

solvers and significantly improves scalability. 

This paper makes the following contributions: 

• Incremental scope-bounded checking using data-

flow. To optimize incremental bounded-checking, 

we propose a splitting strategy based on data-flow, 

which separates different definitions of the same 

variable into different sub-programs. 

• Implementation. We implement our approach using 

the Forge framework [9] and KodKod model finder 

[35]. 

• Evaluation. We compare our data-flow-based 

incremental approach with the traditional approach 

that solves one formula (that represents the entire 

bounded computation segment) and with our 

previous incremental approach that uses only 

control-flow as a basis of splitting, as well as with an 

extreme version of the control-flow based approach, 

which separately checks each bounded path in the 

program, akin to symbolic execution. Experiments 

show that our data-flow-based incremental approach 

scales the best for complex data structures.  We also 

test the efficacy of our approach using a real world 

application. 

II. EXAMPLE 

This section presents a small example to illustrate our 

variable-definition-based program splitting algorithm. 

Suppose we want to check the contains() method of 

class IntList in Figure 1 (a): 

An object of IntList represents a singly-linked list. 

The header field points to the first node in the list. Objects 

of the inner class Entry represent list nodes. The value 

field represents the (primitive) integer data in a node. The 

next field points to the next node in the list. Figure 1 (b) 

shows an instance of IntList. 

Consider checking the method contains() of class 

IntList. Assume a bound of one loop unrolling on the 

execution length. Figure 2(a) shows the program and its 

computation graph [20] for this bound. 

Our program splitting strategy is variable-definition 

based. Given a variable in the computation graph, we split 

the graph into multiple sub-graphs such that each sub-graph 

has at most one definition that can reach the Exit 

statement. Definitions of this variable in each of the sub-

graphs are different. 

In Figure 2 (a), definitions of variable this and key are 

empty sets {}. Definitions of variable return are provided 

by statement set {4, 8, 11}, and definitions of variable e are 

provided by statement set {1, 5, 9}. All of these definitions 

can reach the Exit statement. 

Suppose we select definitions of variable e (which has 

the maximum number of definitions) to split the 

computation graph. We construct three sub-programs: 

Figure 2(b), 2(c), and 2(d). Each sub-program only contains 

one definition of variable e. 

III. BACKGROUND 

The goal of our computation graph splitting algorithm is 

to optimize traditional bounded exhaustive checking of 

programs using constraints in relational logic. Traditional 

approaches [9, 11, 20, 37] translate the whole bounded Java 

code segment into one relational logic formula. The 

conjunction of the code constraints and the negation of 

correctness specifications are passed to a relational logic 

constraint solver. Solutions are translated back to executions 

that violate the specification. 

The translation from Java to Alloy, initially presented in 

the JAlloy technique [20], is based on the relational view of 

a program heap. This is done in three steps: (1) encoding 

data, (2) encoding control-flow, and (3) encoding data-flow. 

Encoding data involves building a representation for 

classes, types, and variables in relational logic. Each class or 

type is represented as a set or a domain, which comprises of 

the universe of objects of this class or values of this type. 

Local variables and arguments are encoded as singleton sets. 

A field of a class is encoded as a binary, functional relation 

that maps from the class to the type of the field.  

Data-flow is encoded as relational operations on sets and 

relations. Within an expression in a Java statement, field 

 
(a) 

 
(b) 

Figure 1.  Class IntList (contains() method and an instance). 



deference is encoded as relational join, and an update to a 

field is encoded as relational override. For a branch 

statement, predicates on variables or expressions are 

encoded as corresponding formulas with relational 

expressions. Method calls are encoded as formulas that 

abstract behavior of the called methods. 

Given a program, encoding control-flow is based on the 

computation graph. Each edge (vi→vj) in the computation 

graph is represented as a boolean variable Ei,j, which has a 

value true when the corresponding edge is traversed. The 

control flow from one statement to the next sequential 

statement is viewed as a relational implication. For example, 

code segment {A; B; C;} is translated to ’EA,B⇒ EB,C’. 

Control flow splits at a branching statement—the two 

branch edges are viewed as a relational disjunction. For 

each branch edge, a relational formula is generated 

according to the predicate. The edge is considered traversed 

when there exists data that satisfies the relational formula 

for the edge.  

The conjunction of the formulas generated by encoding 

the data-flow and control-flow of a statement sequence 

yields the formula for a path and the disjunction of the 

formulas for all the paths yields the formula for the code 

segment under analysis. The Alloy formula of the code 

segment, pre-condition specification, and negation of the 

post-condition correctness specification are conjoined and 

passed to an engine such as Alloy Analyzer. Given an input 

scope (bound on the universe of atoms/instances of each 

type), the engine translates the given Alloy formula into a 

propositional satisfiability (SAT) formula and uses off-the-

shelf SAT technology to solve the formula. 

Forge is a recently proposed framework [8, 9] which 

builds on the JAlloy approach and includes features which 

combat the shortcomings of the previous technique. It uses a 

custom relational engine expressly built for the application 

and performs optimized translations from code to logic. The 

Forge framework takes in code and specifications in the 

Forge Intermediate Language (FIR), a "relational 

programming language" which provides constructs in Java 

that support data-flow and control-flow encoding. The 

framework also improves translation functions for 

appropriate mapping of expressions from the high level Java 

 
   
  public boolean  
  constains(int key) 
   { 
1 : Entry e = this.header; 
2 : if (e != null){ 
3 :  if (e.value == key){ 
4 :   return true; 
     } 
5 :  e = e.next; 
6 :  if (e != null){ 
7 :   if (e.value == key){ 
8 :    return true; 
      } 
9 :   e = e.next; 
     } 
10:  assume(e == null); 
    }  
11: return false; 
0 :}  

(a) 

 
  
  public boolean  
  sub1(int key) 
   { 
1 : Entry e = this.header; 
2 : if (e != null){ 
3’:  assume (e.value==key) 
4 :   return true; 
      
5 :   
6 :   
7 :   
8 :   
       
9 : 
      
10:  
    }  
11: return false; 
0 :}  

(b) 

 
   
  public boolean  
  sub2(int key) 
   { 
1 : Entry e = this.header; 
2’: assume (e != null); 
3”: assume !(e.value==key); 
4 :  
     
5 :  e = e.next; 
6 :  if (e != null){ 
7’:   assume(e.value==key); 
8 :   return true  
     } 
9 :   
      
10:   
      
11: return false; 
0 :}  

(c) 

 
   
  public boolean  
  sub3(int key) 
  { 
1 : Entry e = this.header; 
2’: assume(e != null); 
3”: assume !(e.value==key); 
4 :  
     
5 : e = e.next; 
6’: assume (e != null); 
7”: assume !(e.value==key); 
8 : 
      
9 : e = e.next; 
 
10: assume(e == null); 
     
11: return false; 
0 :}  

(d) 

 

Figure 2.  Splitting of program contains() based on definitions of variable e. Broken lines in sub-graph indicate edges removed constructing this 

sub-program during splitting. Gray nodes in a sub-graph denote that a branch statement in original program has been transformed into an assume 

statement. In the programs below the computation graphs, the corresponding statements are shown in Italic. Black nodes denote the statements 

removed during splitting. Subgraph (a) is program contains() and its computation graph after one-round unrolling. At exit, there are three 

definitions of variable e: Statement 1, 5, 9. Subgraph (b) is based on definition of variable e at statement 1. Subgraph (c) is based on definition of 

variable e at statement 5. Subgraph (d) is based on definition of variable e at statement 9. 



domain to relational logic domain and vice versa. While the 

JAlloy tool interfaced with the Alloy Analyzer for translation 

of the constraints to boolean logic, Forge employs the 

Kodkod model finder for faster translation. 

Our earlier work [33] proposed algorithms for splitting 

the computation graph into sub-graphs and solving them 

incrementally. Sub-graphs are constructed by transforming 

branch statements into assume statements. 

IV. ALGORITHM 

In our previous work, we developed a vertex-based sub-

graph analysis technique which preserves the behavioral 

semantics (w.r.t. to the given scope) of a program while 

splitting it into sub-programs. Given a vertex, we construct 

two sub-programs: one sub-program has all paths that go 

through the vertex and the other sub-program has all paths 

that bypass that vertex. Our vertex-based path partitioning 

guarantees behavioral equivalence and consistency between 

the original program and sub-programs. 

Definition. Given a vertex v in a computation graph cg, 

go-through-sub(v) is a sub-graph of cg that has and only has 

all paths that go through vertex v; and bypass-sub(v) is a 

sub-graph of cg that has and only has all paths that bypass 

vertex v. 

The implementation and correctness proofs for the go-

through-sub() and bypass-sub() functions have been 

discussed in our previous work [33].  

In our splitting technique, vertex selection is critical. We 

propose a set of heuristics for vertex selection. In Figure 3, 

we propose a generic framework of our sub-program 

analysis while a splitting strategy is implemented as a 

splitter. 

Given program p, we check it as following steps: 

1. Translate p into p’ where p’ represents the 

computation graph [20] of p, i.e., the loops in p 

are unrolled and method calls in-lined to generate 

p; 

2. Represent p’ as a graph CG = (V, E) where V is a 

set of vertices such that each statement in p’ has a 

corresponding vertex in V, and E is a set of edges 

such that each control-flow edge in p’ has a 

corresponding edge in E. For each edge e = (u, v), 

u=e.from, and v = e.to;  

3. Apply a splitting strategy (a Splitter) to split CG 

into sub-graphs CG1 CG2, …, and CGn 

4. Recursively split each sub-graph CGi if needed; 

5. With the given specifications and bounds on 

scope, translate each of them into a CNF formula; 

6. Sort formulas according to the number of clauses, 

variables, and primary variables;  

7. Call solver to solve these formulas sequentially 

until a solution is found or all formulas are solved. 

A. Variable-definition-based splitting strategy 

In the variable-definition-based splitting strategy, we 

select vertices defining values of a given variable to split a 

program. We separate variable definitions so that each sub-

program has at most one variable definition that can reach 

Exit statement. In different sub-graphs, definitions of the 

variable reaching Exit statement are different.  

Definition. Given a statement s in a program, reach-

definition(s) = {(var, Def)}, where Def is a set of statements 

such that for each statement d in Def, variable var is defined 

at statement d, and there is a control-flow path from d to s 

such that there is no other definition of variable var along 

that path. 

Given a program, its reaching definitions can be 

calculated by BFS (Breadth First Search) of its computation 

graph. 

Figure 4 shows our variable-definition-based splitter. 

Given a program represented by a computation graph cg, we 

split it as follows: 

1. Compute definitions reaching the Exit statement of 

cg. 

2. Select the variable v, which has the most number 

of definitions reaching the Exit statement. 

3. For each definition d of variable v, construct a sub-

graph cg.go-through(d). This sub-graph has all the 

paths that visit d. 

 
Figure 3.   Sub-program-based checking algorithm 



4. For each definition d and its go-through sub-graph 

sub, calculate definitions of variable v that can 

reach Exit statement. If there is another definition k 

for the same variable below d in sub, call 

sub.bypass-sub(k) to remove definition k. Repeat 

this process until d is the only definition of 

variable v in sub-graph sub.  

5. Call the bypass-sub function on every definition of 

variable v in the entire cg, to construct a sub-graph 

that has no definitions for the variable. 

Steps 4 and 5 yield smaller sub-graphs from the variable-

definition based splitting.  

Compared with whole program analysis, the overhead of 

Variable-Definition based sub-program analysis composes 

of three parts: 

• T1: Identify variable definition vertices that can 

reach Exit statement.  

• T2: Construct go-through and bypass sub-graphs for 

these definition vertices. Given a vertex, go-through 

and bypass sub-graph are constructed by 

transforming the branches statements into assume 

statements [33]. 

• T3: Split the computation graph according to 

selected variable definitions. 

Given a computation graph CG = (V, E), T1 can be 

achieved by BFS (Breadth First Search). So the time 

complexity is O(|V| + |E|). T2 can also be achieved by BFS, 

and its complexity is also O (|V| + |E|). T3 is the time on 

identifying variable definitions and branches can reach these 

definitions. Since variable definitions and the branch 

statements are subsets of V, T3 is not more than (|V|
2
). Since 

|E| is no more than O (|V|
2
), the summary of T1, T2, and T3 

is at most O (|V|
2
). 

B. Branch-based splitting strategy 

In the branch-based splitting strategy introduced in our 

earlier work [33], we use the number of branches as the 

heuristic measure of the complexity of checking. To 

effectively divide the analysis complexity of a program, we 

select a vertex such that the number of branch statements in 

each of the sub-programs is minimized. Figure 5 shows the 

branch-based splitting strategy.  

Given a program represented by a computation graph cg, 

we split it as follows: 

1. For each vertex v of cg, construct two sub-graphs: 

cg.go-through(v) and cg.bypass-sub(v). Count the 

number of branch nodes in each sub-graph and use 

the larger value as the split-complexity for the 

splitting based on the vertex v. 

2. Perform step 1 on all vertices and select the vertex 

that has the minimum split-complexity.  

3. Split cg based on the selected vertex. 

Compared with whole program analysis, the overhead of 

Branch-based sub-program analysis compose of three parts: 

1. T1: Calculate reachability. Given a vertex, go-

through and bypass sub-graph can be constructed 

by changing some branches statements reachable 

to the vertex into assume statements [33]. 

2. T2: Calculate number of branches for the each 

vertex-based splitting. 

3. T3: Split according to selected vertex. 

Given a computation graph CG = (V, E), T1 can be 

achieved by BFS (Breadth First Search). So the time 

complexity is O (|V| + |E|). T2 is the sum of branches can 

reach each vertex. Since branch statements reaching a vertex 

is a subset of V, T2 is not more than (|V|
2
). With the same 

reason, T3 is no more than (|V|). Since |E| is no more than O 

(|V|
2
), the summary of T1, T2, and T3 is at most O (|V|

2
). 

V. EXPERIMENTS  

We performed a set of experiments on methods of 

complex standard data structures to measure and compare 

the scalability of the sub-program-based incremental 

Figure 4. Variable-Definition based splitting algorithm 

 

Figure 5. Branch-based splitting algorithm 



analysis strategies with the traditional whole program 

analysis. We selected five methods from four standard data 

structure classes and compared the speedup and workload of 

the different splitting strategies. We also measured the 

performance of the strategies on a real world application, 

the KOA remote voting system. We piggybacked on the 

most recent version of the Forge tool-set [11] to implement 

our incremental approach. Since Forge performs modular 

verification of code, a method is verified as a standalone 

entity with respective pre and post-conditions, hence the 

terms “program” and “method” are used interchangeably 

meaning a module to be verified 

A. Experiment with standard data structure candidates 

The candidates chosen for evaluation were – contains 

method of Singular Linked List (LL), 

contains method of Binary Search Tree 

(BST), add method of Binary Search Tree, 

sort method of Directed Acyclic Graph 

(DAG) and insert method of Red Black Tree 

(RBT). DAG.sort() contained seeded faults and was 

used to compare the strategies based on the time to detect 

counter-examples. The other four methods were the correct 

versions and were used as candidates to measure the 

scalability of the techniques in searching the full state space. 

Though typical object oriented data structure methods are 

small in terms of the absolute number of lines of source 

code, on being unrolled based on the bounds, they produce 

large number of paths increasing the complexity of analysis. 

For instance, the RBT.insert() procedure contains 1829 

lines of code after 6 unrollings. 

We used the following metrics to measure the 

effectiveness of the splitting strategies: 

• The speed-up obtained by the splitting strategies in 

comparison with the traditional analysis was 

calculated as the ratio of the total solving time of the 

back-end SAT solver in the traditional technique to 

the corresponding times obtained from splitting.  

Speedup = Twhole-analysis/Tsub-program-analysis. 

• The size of the generated boolean formulas was 

measured in terms of the average number of 

variables across all the sub-formulas in the 

Conjunctive Normal Form (CNF). 

The input parameters which bound the size of the 

verification performed by Forge are the number of loop 

unrollings (the number of times loops in the code are to be 

unrolled and recursive calls inlined), the scope (maximum 

number of nodes in a list, tree or graph), and bit-width 

(number of bits used to represent an integer). We used a 

scope of 8 for LL.contains() and DAG.sort() 

methods, scope of 7 for BST.add() and a scope of 4 for 

RBT.insert(). The number of unrolls were increased 

from 1 onwards up till the scope value. We checked each 

method using the following four splitting strategies: 

• WHOLE- traditional method of checking of the 

entire computation graph;  

• BRANCH- branch-based splitting vertex selection;  

• VARDEF- variable definition based splitting vertex 

selection;  

• PATH- splitting the computation graph such that 

each sub-graph comprises of a single path. 

We ran the experiments on a Dual-Core 1.8GHz AMD 

Opteron processor with 2 GB RAM. Average values of 

three runs were recorded. The backend SAT solver used was 

MINISAT for all cases. 

As seen in the results shown in Figure 6, for all the 

methods, the splitting strategies provided considerable 

speed-ups in solving times with increase in the number of 

unrolls. The threshold at which the splitting strategies start 

showing benefit over traditional analysis decreases as the 

complexity of the data structure increases. For instance, for 

singly linked list, the speed-ups obtained remain below 1 

(perform worse than traditional analysis) for all strategies at 

1 and 2 unrolls, whereas for red-black tree the speed-up 

obtained is greater than 1 even at 1 unroll. 

VARDEF strategy consistently performs the best on all 

data structure methods. For example, in the BST.add() 

procedure, VARDEF strategy gives a 147X speedup with 

four unrollings while PATH and BRANCH strategies give 

only 60X and 2.7X speedups respectively. These results also 

show that VARDEF has better scalability. For example, in 

BST.contains(), when the unrolling increases from 1 to 

5, speedup provided by VARDEF strategy increases  10 

times, while the speedups of BRANCH and PATH 

strategies increase only by 3.5 and 2.8 times respectively.  

For the methods of Linked List, Binary Search 

Tree and Direct Acyclic Graph, checking every 

path individually performs better than the BRANCH based 

splitting of the computation graph into sub-graphs. For 

instance, in BST.add() method , for 4 unrolls , PATH 

strategy gives a 60X speed-up as compared to only 2.7X 

speed-up of BRANCH based splitting. But for the 

RBT.insert() method the PATH strategy chokes the tool 

and is unable to solve all the paths even for 1 unroll ( it 

solves around 11406 paths in 7 hours). This is the reason 

why this method in Figure 6 doesn’t have data for PATH 

strategy. The insert method comprises of 67 branches (of 

which 48 are conditional assignments) resulting in an 

exponential number of paths (approximately 14418000 

paths even for 1 loop unrolling). This indicates that the 

performance of the PATH strategy (representative of 

symbolic execution) is very sensitive to increase in the 

complexity of the data structure which in turn translates into 

both syntactic and semantic complexity of the methods and 

the respective specifications. 

For DAG.sort(), the speedup of VARDEF strategy is 

almost 540X. The reason for the high speed-up is that the 

fault is present in a short path. Since the sub-graphs are 



checked in the increasing order of complexity, the sub-graph with fault is checked early and the fault is detected very 

LL.contains()

3000

3500

4000

4500

5000

5500

6000

3 4 5 6 7 8
unrolling

V
a
ri

a
b

le
s
  

  
  

WHOLE

BRANCH

VARDEF

PATH

BST.contains()

6000

6500

7000

7500

8000

8500

1 2 3 4 5

unrolling

V
a
ri

a
b

le
s
  

  
  

WHOLE

BRANCH

VARDEF

PATH

BST.add()

4000

9000

14000

19000

24000

1 2 3 4

unrolling

V
a
ri

a
b

le
s
  
 

WHOLE

BRANCH

VARDEF

PATH

DAG.sort() (with faults)

30000

80000

130000

180000

230000

1 2 3 4 5

unrolling

V
a
ri

a
b

le
s
  
 

WHOLE

BRANCH

VARDEF

PATH

RBT.insert()

6000

506000

1006000

1506000

1 2 3

unrolling

V
a
ri

a
b

le
s
  

  
  

  

WHOLE

BRANCH

VARDEF

 

Figure 7. Average #variables of CNF formula per sub-program in Branch-

based and Variable-definition-based analysis and Whole program analysis. 
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Figure 6. Speedup of sub-program analysis with Branch-based,Variable-
definition-based and Path-based strategies. 



soon. Also, while the fault-detection time remains almost 

constant for the VARDEF strategy even with increase in the 

complexity (number of unrolls), the time taken by 

traditional analysis degrades. Thus, on the whole, there is an 

exponential increase in speed-up. The inference is that faults 

in short paths can be detected much faster by sub-program 

analysis as compared to the traditional whole program 

analysis. The time taken by sub-program analysis is also 

more resistant to increase in the size of the computation 

graphs and hence is more scalable than the traditional 

approach. 

The splitting strategies incur overhead due to the static 

analysis involved in splitting the computation graph into 

sub-graphs and repeated translation of each of the sub-

graphs, but yield smaller CNF formula per sub-graph which 

reduces the total solving time. We tabulate the constraint 

solving times since solving is the main bottleneck for SAT-

based approaches. While there is translation overhead that 

contributes to the overall cost of checking, solving remains 

the dominant factor in the total cost. Comparison of the total 

checking times of the approaches shows similar scalability 

trends, although the absolute values of the speed-ups 

obtained are smaller.  Note however that the maximum 

reduction in speedup is less than 23%, which happens in the 

case of RBT.insert(), with scope 3 and unrolling 3, 

where the speed-up in solving time is 43.296 while the 

speedup in total checking time (translation + solving) is 

33.41. 
To evaluate the effectiveness of the splitting strategies in 

reducing the size of the formulas, we also analyzed the 
number of variables in the CNF formula translated from 
specifications and sub-programs. Given a splitting strategy 
and a bound, we recorded the average number of variables in 
the CNF formulae translated from sub-programs. The results 
in the Figure 7 show that, with the increase in the number of 
loop unrollings, the number of variables in the formulas 
produced by the VARDEF strategy increases much slower 
than those of BRANCH, PATH and WHOLE program 
analysis. This indicates that VARDEF strategy can 
effectively combat state space explosion as the program 
scales up in size. 

B. Experiment with a sub-system in KOA system 

In order to evaluate the efficacy of the incremental 

approach on a full-fledged application with sufficient 

magnitude, a case-study was performed on the KOA Voting 

application. The Dutch Tally subsystem in KOA contains 

JML annotated methods, earlier checked using ESC/Java 

static checker and JMLForge [10]. It comprises of 8 main 

classes. We used 67 methods from these classes for our 

analysis and used a scope of 2, bit width of 3 and number of 

unrolling 1 (which were determined to be the minimum 

bounds required to detect counter-examples in these 

methods [10]).  Since there are 201 speed-up results in total, 

instead of tabulating all of them, we present below a 

summary of our analysis of the results. 

The splitting strategies did not result in speed-ups over 

the traditional technique on all methods. The methods 

wherein the whole program analysis performed better had 

very less lines of code (1.4 lines of code on an average). In 

such methods, there wasn’t much scope for dividing the 

computation graph into sub-graphs to optimize performance. 

Thus the overhead of the analysis for splitting the control 

flow graph overshadowed the benefit obtained by solving 

smaller sub-graphs. On the other hand, even a small increase 

in the complexity and size of the methods degraded the 

performance of the traditional analysis and it had the worst 

performance amongst the three approaches. For instance, for 

KiesKring.make(), a method with 6 lines of code, 

VARDEF strategy achieved 23X speedup versus the whole 

analysis.  

We would like to highlight that this case-study was 

conducted more in an exploratory fashion to study the 

applicability of the splitting strategies in a real-world 

domain. This is in line with our aim to come up with a 

sliding rule for the strategy to be used for checking a 

method based on different criteria. Incremental checking 

provides benefits to applications with significant semantic 

and syntactic complexity. We selected the KOA application 

to serve as a benchmark for comparison with earlier 

evaluations done using Forge.  We are also working on 

other applications such as the Intentional Naming System 

[11], comprising of complex data structures and methods.  

VI. RELATED WORK 

Our work is based on previous research that models a 

heap-manipulating procedures using Alloy and finds 

counterexamples using SAT. Jackson et al. [20] proposed an 

approach to model complex data structures with relations 

and encode control flow, data flow, and frame conditions 

into relational formulas. Vaziri et al. [37] optimized the 

translation to boolean formulas by using a special encoding 

of functional relations. Dennis et al. [9] provided explicit 

facilities to specify imperative code with first-order 

relational logic and used an optimized relational model 

finder [35] as the backend constraint solver. Our algorithm 

can reduce the workload to the backend constraint solver by 

splitting the computation graph that underlies all these prior 

approaches and dividing the procedure into smaller sub-

programs. 

Our previous work on incremental scope-bounded 

checking [33] used control-flow as the basis of a splitting 

strategy. Specifically, we use the number of branches as a 

heuristic to compute an analysis complexity metric of a 

program. We split a program into two sub-programs so that 

the number of branch statements in each of sub-programs is 

minimized. Evaluations with Java library procedures 

showed the strengths and weaknesses of the branch-based 



splitting strategy. On the positive side, it can effectively 

divide the workload to backend SAT solver and achieve a 

high speed-up over the traditional whole program analysis. 

For example, with 3 loop unrolling and 7 nodes, the speedup 

of checking add() of BinarySearchTree is 12.16X. 

However, on the negative side, it does not exhibit much 

scalability. For example, for the contains() method of 

BinarySearchTree, the speedup only increases from 

3.42X to 4.94X as the program size increases from 4 loop 

unrollings to 8 loop unrollings. 

DynAlloy [13] is a promising approach that builds on 

Alloy to directly support sequencing of operations. We 

believe our incremental approach can optimize DynAlloy’s 

solving too. 

Bounded exhaustive checking, e.g., using TestEra [21] or 

Korat [3] can check programs that manipulate complex data 

structures.  Testing, however, has a basic limitation that 

running a program against one input only checks the 

behavior for that input. In contrast, translating a code 

segment to a formula that is solved allows checking all 

(bounded) paths in that segment against all (bounded) 

inputs. 

The recent advances in constraint solving technology 

have led to a rebirth of symbolic execution [22, 23]. 

Guiding symbolic execution using concrete executions is 

rapidly gaining popularity as a means of scaling it up in 

several recent frameworks, most notably DART [15], CUTE 

[32], and EXE [4]. While DART and EXE focus on 

properties of primitives and arrays to check for security 

holes (e.g., buffer overflows), CUTE has explored the use of 

white-box testing using preconditions, similar to Korat [3]. 

While, in principle, the use of preconditions written as Java 

predicates allows symbolic execution to checks programs 

similar to the ones we have used for evaluation, a key 

property of such checking is that the number of calls to the 

constraint solver is not simply proportional to the number of 

bounded execution paths of interest, rather the number of 

calls is proportional to the product of the paths in the 

precondition that return true and the paths in the method 

under test.  The path-based approach we have used in our 

evaluation (Section 5) can be viewed an optimized form of 

symbolic execution, which minimizes the number of calls to 

the underlying constraint solver by encoding the pre-

condition as a single formula.  Indeed, our incremental 

approaches are motivated by our quest to find a sweet spot 

between checking all paths at once (traditional approach) 

and each path one-by-one (symbolic/concrete execution). 

Model checkers have traditionally focused on properties 

of control [17, 28].  Recent advances in software model 

checking [14, 38] have allowed checking properties of data.  

However, software model checkers typically require explicit 

checking of each execution path of the program under test. 

Slicing techniques [34] have been used to reduce 

workload of bounded verification. Dolby et al. [11] and 

Saturn [39] perform slicing at the logic representation level. 

Millett et al. [29] slice Promela programs for SPIN model 

checker [17]. Visser et al. [38] and Corbett et al. [4] prune 

the parts that are not related to temporal constraints and 

slice at the source code level. Since slicing is based on 

constraints, the effectiveness depends on the properties to be 

checked. Statements that do not manipulate any relations in 

properties will not be translated into the formula for 

checking. If constraints are so complex that all the relations 

show up, no statements will be pruned. Our program-

splitting algorithm can still reduce workload to backend 

constraint solvers because our path partitioning algorithm is 

independent of constraints to be checked. 

Sound static analyses, such as traditional shape analysis 

[25, 32] and recent variants [26], provide correctness 

guarantees for all inputs and all execution paths irrespective 

of a bound.  However, they typically require additional user 

input in the form of additional predicates or loop invariants, 

which are not required for scope-bounded checking, which 

provides an under-approximation of the program under test. 

VII. CONCLUSIONS 

Scalability is a key challenge for scope-bounded 

checking. For non-trivial programs, the formulas translated 

from control-flow and data-flow can be quite complex and 

the ensuing heavy workload can choke the solvers. Our 

previous work used control-flow as the basis for an 

incremental approach to scope-bounded checking by 

splitting program into smaller sub-programs and checking 

each sub-program separately, and demonstrated significant 

speed-ups over the traditional approach. This paper 

introduces the use of data-flow to optimize the incremental 

approach, specifically using a splitting strategy based on 

variable definitions. Experiments show that for programs 

with sufficient size and complexity, our use of variable 

definitions improves the scalability of the incremental 

approach; it effectively reduces the complexity of the 

ensuing formulas and provides more efficient analysis.  

In general, incremental checking of programs opens up 

the following avenues for future work. In ongoing work, we 

are exploring strategies for applying semantic and syntactic 

analysis based splitting algorithms in tandem such that 

customized splitting techniques could be used which strike a 

trade-off between reducing the complexity of the resulting 

constraints and minimizing the translation time overhead. 

Since sub-graphs produced by the splitting algorithms are 

syntactically and semantically independent of each other, 

we also propose to combine incremental and parallel 

algorithms to scale up scope bounded checking. For 

applications with complex pre and post condition 

specifications, slicing of specifications based on the control 

flow graph splitting and specification driven control flow 

graph slicing are two significant areas for future work. 
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