
Experiences Mining Open Source Release Histories

Jason Tsay
Institute for Software Research

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
jtsay@andrew.cmu.edu

Hyrum K. Wright Dewayne E. Perry
Empirical Software Engineering Laboratory

Department of Electrical and Computer
Engineering

The University of Texas at Austin
Austin, Texas, USA

hyrum_wright@mail.utexas.edu,
perry@mail.utexas.edu

ABSTRACT
Software releases form an important part of the life cycle of
a software project. Typically, each project produces releases
in its own way, using various methods of versioning, archiv-
ing, announcing and publishing the release. Understanding
the release history of a software project can shed light on the
project history, as well as the release process used by that
project, and how those processes change. However, many
factors make automating the retrieval of release history in-
formation difficult, such as the many sources of data, a lack
of relevant standards and a disparity of tools used to create
releases.

In spite of the large amount of raw data available, no at-
tempt has been made to create a release history database
of a large number of projects in the open source ecosys-
tem. This paper presents our experiences, including the
tools, techniques and pitfalls, in our early work to create
a software release history database which will be of use to
future researchers who want to study and model the release
engineering process in greater depth.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
release engineering, data mining

1. INTRODUCTION
Releases are an important part of a software project, and

are often the primary interaction an end-user has with the
software. Creating useful releases is important, but also dif-
ficult, which leads many software projects to create, record
and distribute release artifacts using a wide variety of meth-
ods and tools, which may evolve over time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSSP ’11 Honolulu, Hawaii USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The history of an open source project can often be defined
by the history of its releases, and a change in the release pro-
cess often mirrors a change in the project itself. As projects
grow and mature, their release processes change to reflect
the changing needs of their user base. In large part, the
process reflects the community [2]; by studying releases, re-
searchers can gain insights into not only the release process,
but also the history of an open source project itself.

The nature of open source software lends itself to data
mining and analysis. Even though comprehensive datasets
of open source projects exist [14, 7], they generally do not
include release history information. These datasets contain
source control, bug tracker, and mailing list statistics, but
not release information. Release information is usually much
more difficult to obtain, partly because it is not stored in
any standardized format between projects, or even within
projects. Additionally, as the release process changes, the
method of recording this data may also change.

Most studies of open source release process [4, 18, 10]
only examine a small number of projects, largely due to the
lack of usable and normalized aggregate release data for a
large number of projects. In planning a study of our own, we
realized a much wider survey was required, and embarked on
a project to survey and categorize the release histories of a
much broader collection of open source projects. This paper
presents our early experiences in collecting this data, the
pitfalls we encountered and our further plans to develop and
use this multi-project dataset to study the release process.

1.1 Release Engineering
Boardly speaking, Release engineering is the part of the

software engineering process during which the release arti-
fact(s) are produced. Many software organizations of suffi-
cient size have release engineers or release engineering teams.
Although the nomenclature may be common, the roles ful-
filled by these groups, as well as the artifacts produced, are
as varied as the groups themselves.

The artifacts created by release engineering may vary.
Traditionally they have included executables, installers, li-
braries or source code packages. Newer service-oriented-
software delivery paradigms have changed this model. In-
stead of publishing an artifact for end user consumption,
users may interact with the software in a hosted environ-
ment, which then changes the way this software is released.
These perspectives are not even discrete: artifacts and their
corresponding release processes may exist anywhere along
this continuum [15].

Whatever the artifact, the software must eventually be
released, and this release process should be treated as part
of the software development process. In traditional software
development methodologies, such as the spiral or waterfall
models, release engineering is usually considered part of the
deployment and maintenance phases [1, 11].

Organizationally, many proprietary and open source soft-
ware projects employ dedicated release teams which are tasked
with building the final shipping product, very literally “en-
gineering the release.” The handoff between development
and release teams may be a discrete step, or the separation
between the two contexts may be more nebulous. As is the
case with the types of artifacts produced, team composition
exists along a continuum, rather than discrete categories.

2. MOTIVATION
Release engineering is an often-neglected part of the soft-

ware development process, though an important part of the
software life cycle. The overarching goal of our research pro-
gram is to study the release engineering process and provide
insight into release processes, particularly their faults and
failures. In doing so, we aim to provide means to better de-
tect and prevent failures, as well as recover from them. Our
end goal being to significantly improve industrial release en-
gineering practices.

Although the authors have significant practical experience
with release engineering, our experience is limited to a small
number of organisations and projects. To accomplish our
research goals, we need a depth of understanding that only
comes from studying a wide variety of release processes. By
using a large number of open source projects, we ensure that
we have a substantial basis for our insights and proposals.
We can also apply the techniques learned from creating our
release history database to data collection in proprietary and
industrial systems.

2.1 Previous Work
In spite of the large corpus of open source data, no at-

tempt, as yet, has been made to collect a comprehensive
database of project release history. Fischer, et al. demon-
strated the ability to automate release history for a single
project [5], but for our research needs, we desire a generic
approach to collect and record release history from a wide
variety of projects. Due to its automated approach, the
above study also had no method of recording certain meta-
data about the release, such as the type of release (beta, re-
lease candidate, general availability, etc.) or the label (i.e.,
version number). Many projects record and use this infor-
mation in a variety of ways, and a comprehensive release
history dataset should contain it.

The Description of a Project (DOAP) [3] standard con-
tains facilities for recording and describing release informa-
tion, but has seen limited acceptance by the open source
community. Those projects that do publish DOAP informa-
tion rarely include historical information about the project’s
past releases. Additionally, although we initially targeted
open source projects, we want our framework to be exten-
sible to proprietary projects as well, and DOAP appears
unlikely to gain much traction in that domain.

This lack of standardization contributes another problem
in mining release histories: how does a release mining tool
automatically determine the metadata associated with a re-
lease? The approach used by Fischer et al. correlated ver-

Metric Notes
Topic Domain of the software
Maturity Measure of software stability and longevity
Size Measure of code size and developer activity
VCS Type of version control system

Table 1: Project selection criteria

sion control activity and bug tracker history, but this does
not reveal a large subset of external information about the
release. Additionally, their approach was tailored to the
Mozilla dataset they used, and is difficult to generalize across
a large number of projects.

3. DATA COLLECTION PROCESS
The steps for building our release history database were

three-fold. First, we selected the projects to initially tar-
get, using several criteria to get a broad picture of the open
source landscape. Second, we collected the actual data, us-
ing a framework of parsers and some manual inspection.
Third, we standardized and inserted the data into a database
for later use. This section describes our method.

3.1 Project selection
We began our survey by selecting a wide cross section of

open source projects and categorizing their current status
according to several criteria (see Table 1). As our goal is to
focus on release history data, and not do a comprehensive
analysis of open source projects in general, we made these
categorizations quite broad. In classifying projects, we took
a “common sense” approach, though our techniques were
quite subjective. Our aim was to create a release history
database, not study how to classify open source projects.

We observe that the type of a project influences its re-
lease process. Large open source operating system distribu-
tions, such as Ubuntu Linux or Fedora likely have different
release processes than stand alone projects or suites of de-
veloper tools. A relatively new project has different needs,
and hence different release processes, than an established
and mature software project. Choosing a wide cross-section
of open source project types and sizes allows us to create a
dataset useful for studying release processes generally, while
observing trends on a macro scale.

Due to the large number of open source projects and the
pitfalls associated with choosing a good dataset [8], we felt
it best to only focus on existing active open source projects.
These projects have demonstrated an ability to create mean-
ingful releases, and have also existed for sufficient time to
create meaningful histories. In the future, we may expand
our release history database to include failed projects, but
at present feel that our efforts are best focused on successful
projects. We leave failed projects to future work.

3.2 Data collected
In choosing which data to collect, both about projects and

their releases, we explicitly chose factors which we believe
have an impact on the release process, such as the age and
type of a project. We did not collect extensive data on the
projects themselves, as such information already exists in
the research community. Such information as issue tracker
statistics, mailing list information, and version control his-
tory is not directly pertinent to our study, and can be readily

Metric Notes
Date Date the release was published
Type The type of the release (e.g., stable or testing)
Label Release identifier, often a version number
Source Source of the foregoing information

Table 2: Release data collected

obtained elsewhere.
We characterized each project according to its maturity,

the type of project it is and the version control system (see
Table 1). This may appear like a small number of degrees of
freedom, but we plan to eventually cross reference our list of
projects with existing open source project information (such
as FLOSSmole) to take advantage of the work already done
by other researchers. For the project maturity, we had three
values (mature, adolescent, and young), while the other axes
contain a variety of values.

For each release, we collected the following data: the
project it belonged to, the date the release was published,
the type of release, the release label (version number) and
the source of the data (see Table 2). Even though this is
a small subset of possible data for each release, our initial
work focuses on the release histories of projects, not a com-
prehensive look at all information available for each release.
We have included sufficient information in our data collected
to allow us to easily find and record additional release infor-
mation, if desired.

3.3 Collection mechanism
We chose to store our data in an SQLite database [12],

with only two tables, one for the projects and one for the re-
leases, indexed by project. SQLite is a light-weight database
tool which allows our data be stored in a structured format,
but also transported to other SQL-based systems. SQLite
readily interfaces with a number of programming languages,
which enables us to import the data into other software for
more detailed analysis.

To simplify the data collection and aggregation, we cre-
ated a set of Python scripts to first collect and then record
the information. The information gathering scripts are spe-
cific to each project and are implemented as a set of Python
modules, which feed into a central module to normalize and
store the data.

Our scripts that collect the information follow a three-step
process of parsing information sources for data, formatting
and categorizing the data, and inserting the formatted re-
lease history into the database. Due to the lack of stan-
dardization in recording release information, the parsing and
formatting scripts are specific to each project.

3.3.1 Parsing information sources
The first step for a project is to find adequate informa-

tion sources for a project’s release history and then to parse
these sources. In general, we were interested in obtaining the
following information for each of a project’s releases: the re-
lease label, the corresponding release date, and any notes
regarding the release itself, like changelogs. These notes are
used later to help determine release types.

When we started looking for release history, we mostly
used changelogs and web pages as our primary sources of re-
lease history. These sources, while useful, also tend to wildly
vary in format, requiring different parsing mechanisms for

each project. We were able to follow a general pattern: by
using regular expressions to identify patterns such as HTML
tags, we looked for release labels and the corresponding re-
lease date. The release notes collected during this process
are also collected and aggregated for later use.

Eventually, we discovered some sources that were more
standardized, like mailing list archives, source code repos-
itories, and SourceForge download listings. The parsing
techniques for these sources needed to be a bit more sophis-
ticated. Relevant emails in the mailing list archives were
identified by using Python’s HTML modules to traverse the
archive, looking for email headers with certain keywords. By
using libraries to mine source code repositories, we were able
to automatically traverse code repositories and find artifacts
such as tags of older releases. Many projects upload all or
most of their releases to their hosting service, such as Source-
Forge, so scraping a project’s complete file listing web page
yields a fairly complete release history. These three sources
have the advantage of being fairly standardized, allowing
for the same script (with some tweaks) to be used across
multiple projects.

The drawback of this technique becomes apparent when
trying to obtain older release history information. Unfortu-
nately, the aforementioned sources are not always complete
in regards to release history. Code repositories, especially
if the project has moved from one type of repository to an-
other (such as CVS to Subversion), will often leave out early
releases. Sometimes, early releases were simply never stored
in the repository in the first place. Likewise, some projects
switch hosting services well into a project’s development,
and in the move to the new hosting provider, many projects
may neglect to upload their earlier releases. In some cases,
the “final” release is the only artifact uploaded to the host-
ing service, but we were interested in pre-release history as
well. For instance, if a release contains a serious bug or vul-
nerability, the resulting bugfix release will be the only one
uploaded.

3.3.2 Formatting and categorizing data
After parsing the data, the next step is to standardize

the data acquired and to determine the metadata, including
type, of every individual release. Primarily, the release dates
needed to be standardized for the database. Because version
numbering schemes vary across projects, there is little in the
way of formatting that can be done for the release labels.

One important step in the formatting process is to catego-
rize each of the releases in terms of what kind of release it is.
We decided early on that we would divide releases into three
categories: prerelease, feature, and bugfix. While prereleases
such as beta and release candidate releases are fairly easy to
identify due to their release labels, determining whether a
release is a feature or a bugfix is often surprisingly difficult.
To do so, we generally fell back on the release notes or the
version number associated with the release.

Some projects, such as Ubuntu, have a version numbering
scheme that makes it very easy to determine the purpose of
a release. Other projects, such as the Linux kernel, are also
very well-documented in terms of what the version number
actually means. These kinds of projects were very easy to
programmatically determine the types of their releases.

Many projects, however, especially smaller or less mature
projects, do not use a version numbering scheme that reflects
the type of release. Due to this lack of a consistent scheme,

manual analysis of the release notes was often required in
order to determine release type. This required a bit of sub-
jectivity in order to determine what exactly is or is not a
feature. These two issues make programmatically determin-
ing release types very difficult. One automated process used
to assist in determining release type was to look for certain
keywords in the release notes, but this process still required
a manual check afterwards to verify accuracy.

3.3.3 Database insertion
Due to the Python SQLite module, inserting the final data

into the database was an easy task. The database insertion
module proved to be the only module that we were able to
use across multiple projects, since the proper normalization
occurred in the previous step of the process.

Project release history recording mechanisms change over
time, but for mature projects, we anticipate the method of
recording various releases will remain stable. Thus, updat-
ing the release database for future project releases should be
possible with our existing scripting infrastructure.

4. LESSONS LEARNED
As we started our survey, some of the problems in recover-

ing the data became apparent, and we began to understand
why such a survey had not yet been attempted. In particu-
lar, the lack of standardization, as well as incomplete project
release information, was problematic.

4.1 Lack of standardization
In the course of doing our own data collection, one of the

reasons for the lack of release history information became
obvious: traditional project information such as bug and
source histories are stored in databases which are inherently
structured. The structure of these systems allows automated
tools to easily parse and store the information.

In contrast, release information is scattered across a wide
variety of sources, and largely varies between projects. Dur-
ing the course of our analysis, we found release history infor-
mation in mailing list archives, source code repository his-
tories and structures, web pages, or simply release artifact
listings. Even within the same project, older history and
newer history was frequently stored in separate locations.

As stated earlier, many projects do not use a standard
version numbering scheme. More specifically, many projects
do not label their releases in a way that facilitates in deter-
mining the purpose of the release. This makes it difficult
to determine programatically the type of a release, often
requiring manual and oftentimes subjective analysis.

One place in which release history information is stan-
dardized is project package management systems. Systems
such as RPM and the FreeBSD Ports system contain a large
number of software releases [16], but the majority of these
are focused on distributing the latest version of the soft-
ware, not maintaining a complete history of the upstream
software system. Additionally, the release presented through
these systems often has additional patches or modifications,
which do not faithfully reflect the upstream release artifact.

4.2 Incomplete histories
The fluid nature of open source development also adds

confusion. As projects fork and merge, such as gcc [6], it
becomes difficult to track the complete release history of
the project. In instances where no definitive source was

found, we were forced to make subjective decisions about
what artifacts are part of the true release history of a project.

Although many projects maintain a release history for
their more mature releases, oftentimes earlier releases are
not as well-documented. Often the only artifact that still
exists of older releases is the release label, important infor-
mation about the release itself such as the date or release
notes about the release are not documented. In some cases,
older releases are simply lost such as many of the older Linux
kernel releases [9]. In other cases, when a project moves to
a new code repository or to new hosting service, such as
SourceForge, earlier releases will often be excluded form the
migration.

Some projects also fail to completely document their pre-
releases, especially after the “official” release. For instance,
the Ubuntu wiki, although generally well-documented in
terms of release history, leaves out information for prere-
leases in certain releases, such as in the Ubuntu 6.06 (Dap-
per Drake) release schedule [13]. The “Flight” prereleases
have been left out of the release schedule, unlike in the more
recent releases. There are other cases in where a feature
release may have a serious vulnerability or bug, then the
resulting bugfix release is the only release well-documented.

4.3 Generalizability
The current work focuses on open source software, due

to the ease of gathering the initial data, but we hope the
techniques can be applied to proprietary software releases as
well. Doing so will provide a more balanced view of release
history and processes, helping to remove some of the biases
prevalent in current software engineering research [17].

We fear, though, that such a task will present several diffi-
culties. Proprietary can have many more non-technical influ-
ences that open source projects lack, such as marketing and
branding requirements. These influences may change the ex-
ternal label of a release, while internal (e.g., non-public) ver-
sioning may progress differently. While these issues are not
unique to proprietary software releases, these extra brand-
ing factors are more prevalent in that domain, and can make
automatically mining release history information very diffi-
cult.

For example, throughout its 25-year history Microsoft Win-
dows progressed through a series of version numbers, fol-
lowed by year-based labels, and then brand names, even-
tually returning to version numbers. The latest release of
Microsoft Windows is external version 7, but internally la-
beled version 6.1. Deciding which version label to use, and
then automatically retrieving these labels would be a diffi-
cult task for our release history miner.

The reclusive nature of proprietary software projects can
also make them difficult sources to pull data from. While
this problem is not necessarily new, it does make automatic
release history gathering difficult, because some, but not
all, of the information may be public. This leads to a subtle
data biasing problem, which is difficult to overcome. Even
defining what a is a“release”can be difficult, as artifacts may
span the continuum between automatically-generated daily
builds for internal use to semi-public prereleases intended for
a limited audience, to the final publicly-consumed release.

In general, our framework for sorting and categorizing re-
leases should be workable with proprietary systems, but we
fear that the actual data collection may prove infeasible.

5. CONCLUSION
Releases form an important part of the overall history

of a project, and represent the cumulative efforts of the
project developers. This information is simply too impor-
tant to overlook in developing a holistic view of an open
source project. However, no comprehensive release history
database yet exists in the research community, and while un-
dertaking the task to create one, we discovered the reasons
why this has not yet been attempted.

We conclude that programmatically creating a release his-
tory database from existing open source data is not trivial,
though with proper per-project tooling specialization, we
were able to accomplish it for a reasonable and useful num-
ber of projects. Furthermore, standardizing the tools and
methods by which projects create and record their releases
would make analyzing historical records much easier.

We have currently collected 1579 distinct releases from 22
different open source projects, though we have not yet ana-
lyzed our data completely, we expect that such a wide range
of releases is a good start toward better understanding the
release engineering process and how it can be improved. As
our dataset matures and becomes more comprehensive, we
anticipate releasing it, as well as the collection mechanism
to the research community for further use.

5.1 Future Work
This paper briefly outlines our experiences in collecting

data to create a release history database from open source
projects. This data has many possible uses, but our imme-
diate goal is to use it to learn where release process faults
and failures occur, and improve the ways used to predict,
prevent, and recover from these faults.

6. REFERENCES
[1] B. W. Boehm. A spiral model of software development

and enhancement. Computer, 21(5):61–72, 1988.

[2] M. Conway. How do committees invent? Datamation,
14(4):28–31, 1968.

[3] Description of a Project.
http://trac.usefulinc.com/doap.

[4] J. R. Erenkrantz. Release Management Within Open
Source Projects. In Proceedings of the ICSE 3rd
Workshop on Open Source Software Engineering, May
2003.

[5] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In ICSM ’03: Proceedings of the
International Conference on Software Maintenance,
page 23, Washington, DC, USA, 2003. IEEE
Computer Society.

[6] A Brief History of GCC.
http://gcc.gnu.org/wiki/History, 2008.

[7] J. Howison, M. Conklin, and K. Crowston.
FLOSSmole: A Collaborative Repository for FLOSS
Research Data and Analyses. International Journal of
Information Technology and Web Engineering,
1(3):17–26, 2006.

[8] J. Howison and K. Crowston. The perils and pitfalls of
mining SourceForge. Proceedings of the International
Workshop on Mining Software Repositories (MSR
2004), pages 7–11, 2004.

[9] Linux Kernel Version History: Consolidated list.
http://www.oldlinux.org/Linux.old/docs/

history/Master.html, 2002.

[10] M. Michlmayr. Quality Improvement in Volunteer
Free Software Projects: Exploring the Impact of
Release Management. In Proceedings of the First
International Conference on Open Source Systems,
pages 309–10, 2005.

[11] W. W. Royce. Managing the development of large
software systems: concepts and techniques. In
Proceedings of the 9th International Conference on
Software Engineering, pages 328–338. IEEE Computer
Society Press Los Alamitos, CA, USA, 1987.

[12] SQLite Home Page. http://sqlite.org/, 2010.

[13] DapperReleaseSchedule.
https://wiki.ubuntu.com/DapperReleaseSchedule,
2008.

[14] M. Van Antwerp and G. Madey. Advances in the
sourceforge research data archive (srda). In Fourth
International Conference on Open Source Systems,
IFIP 2.13 (WoPDaSD 2008), Milan, Italy, September
2008.

[15] A. van der Hoek, R. S. Hall, D. Heimbigner, and A. L.
Wolf. Software release management. ACM SIGSOFT
Software Engineering Notes, 22(6):159–175, 1997.

[16] A. van der Hoek, R. S. Hall, D. Heimbigner, and A. L.
Wolf. Software release management. SIGSOFT Softw.
Eng. Notes, 22(6):159–175, 1997.

[17] H. K. Wright, M. Kim, and D. E. Perry. Validity
Concerns in Software Engineering Research. In
Proceedings of the Workshop on the Future of Software
Engineering Research, November 2010.

[18] H. K. Wright and D. E. Perry. Subversion 1.5: A Case
Study in Open Source Release Mismanagement. In
Proceedings of the ICSE 2nd Emerging Trends in
FLOSS Research and Development Workshop, May
2009.

