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ABSTRACT 

The Bootstrapped Learning (BL) project is an attempt to create software agents (e-students) that are 
instructable by human teachers through natural instruction methods [Oblinger, 2006]. In this paper, we 
present an introduction to BL and three years of case studies investigating the use of human subjects in 
evaluating e-students. In our studies we investigate human teachers’ expectations of e-students and important 
differences between human and software learners, including the greater semantic understanding of humans, 
the eidetic memory of e-students, and the importance of various study parameters including timing issues and 
lesson complexity to human performance. 
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1. INTRODUCTION 

Bootstrapped Learning (BL) is a DARPA program aiming to create software agents that human instructors 
teach rather than program [Oblinger, 2006]. Creating a domain-independent learning agent (i.e., e-student) 
can be viewed as providing a more intelligent, natural user interface for underlying machine learning 
algorithms. Computational agents with this interface could be trained by domain experts who are not 
necessarily skilled programmers; this is especially valuable for systems that benefit from being “field-
trainable”, or specializable to a particular need by end users at a faster rate than is usually supported by a 
traditional software development lifecycle. 

From an HCI perspective, we address two important issues: determining which instruction methods are 
most important for supporting human instruction of e-students, and developing human benchmarks for 
evaluating an e-student’s success at learning. Our group has investigated these issues through a series of 
exploratory case studies. 

In this paper, we begin by providing an overview of the BL research program as context for our 
evaluation work. We then present our findings from an initial study investigating how human teachers 
attempt to instruct e- students. Finally, we present two case studies where we explore using human students 
to generate benchmarks for experimental evaluation of e-students. We omit details of the domain of the final 
two case studies, as the testing domain must be kept hidden from those creating the e-students until after e-
student evaluation. 



 
2. RELATED WORK 

Bootstrapped learning provides the context for this HCI research. Specifically, we investigate how humans 
teach and learn and then apply those findings to understand how humans can teach machines in a natural 
way. 

2.1 Bootstrapped Learning Overview 

The goal of the Bootstrapped Learning program is to build an e-student that can be taught by a human 
instructor in the same ways that humans instruct one another. As BL provides natural ways for a human to 
impart knowledge to a software learner, it does not require programming expertise; human instruction of e-
students will make it possible to delegate tasks to computers that cannot be easily delegated today and will 
enable users to rapidly modify deployed systems. 

BL differs from other kinds of machine learning (ML) in several ways. Current ML is primarily a 
modeling tool; it is used to build models when we know something, but not everything, about some target 
problem. Current ML is a process of discovery, and requires induction over large datasets over which to 
induce its models. There is no guarantee that target knowledge will be discovered. 

BL allows users to impart the target knowledge in a more direct fashion; however, because it involves 
“natural” ways to impart knowledge, it does not require programming expertise. BL supports conceptual 
bootstrapping; it leads to meaningful intermediary levels of learned concepts. E-students learn laddered-
curricula in which lessons build on previous lessons, whereas in current ML, learning is generally from 
unstructured data. Like its human counterpart, an e-student assumes all necessary knowledge is possessed by 
the instructor, and its goal is to learn using the “same” instruction methods used between humans. 

Two teams have been working in parallel to explore this new learning paradigm. Our team, the 
Curriculum Team, is developing BLADE (Bootstrapped Learning Analysis and Curriculum Development 
Environment). This research includes developing a framework to support BL, a set of laddered curricula 
across a variety of domains as testing vehicles for the e-student, and an evaluation of the e-student on both 
hidden and known domains. A separate Learning Team is developing an e-student incorporating several 
learning strategies [C. Morrison and D. Bryce and I. Fasel and A. Rebguns, 2009]. 

BLADE includes three agents, whose interactions and relationships are shown in Figure 1. A teacher 
agent serves as a proxy for an eventual human teacher, instructing and testing the e-student. The student 
agent is the embodiment of the e-student, typically employing a number of learning algorithms. The world 
agent serves as a proxy for a domain simulator. Over the first three phases of the BL program the Curriculum 
Team has developed a set of laddered curricula in a variety of complex domains including Blocksworld 
[Berland and Perry, 2009], unmanned aerial vehicles (UAV), diagnosis tasks for an international space 
station (ISS), armored task force maneuvers (ATF), planning robotic arm movements, and a hidden domain. 

BLADE uses IL (InterLingua) and ITL (InteracTion Language) [Curtis, 2009], developed specifically for 
BL, to pass messages between agents in the BLADE framework. For evaluation purposes an automated 
teacher agent is used to ease scaling and reproducibility. Part of our research is to explore how to best 
incorporate a human teacher. In a parallel effort we are developing a tool to support human-/e-student 
instructional interactions, in part informed by the evaluations described in this paper. 

We expect the eventual outcome of our research to have impact in two useful ways. First, we will 
demonstrate that instructable computing is a valid and successful means of providing learning to an e-student. 
Second, the system we develop will provide the tools for other groups to pursue research in Bootstrapped 
Learning. These groups will be able to access our framework and supporting materials, including our BL 
curricula, our associated research papers and documents, and our software for supporting human 
benchmarking. Access to these resources will allow other researchers to experiment with the development of 
their own e-students, and explore UI designs and techniques for human instructors to interact with e-students. 
This living repository will help catalyze future work in BL just as the Irvine Repository [Frank and Asuncion, 
2010] drove machine learning in the 1980s, and as DARPA’s MUC competitions [Grishman and Sundheim, 
1996] inspired research in corpus-based approaches to natural language processing. 



 
Figure 1: The BLADE Framework 

2.2 Human Learning and Teaching 

Like its human counterpart, an e-student assumes its instructor possesses all relevant capabilities, and its goal 
is to learn using the same instruction methods used between humans. As part of the Evaluation Team, we are 
not allowed access to e-student implementation details to ensure our benchmarks are unbiased. We know that 
the learners are designed to be domain-independent, and that they are specialized to particular Natural 
Instruction Methods (NIMs) rather than particular problem domains. 

The area of computer tutoring can be seen as an inverse problem to what we are investigating. In 
particular, the area of teachable agents bears some surface similarity to BL. In this field, human students 
teach learning agents in order to improve their own understanding of concepts (“Learning by Teaching”). 
One example is the “Betty’s Brain” system [Davis et al., 2003]. However, in these systems the importance is 
placed on how well the human instructor learns, not on the capabilities of the learning agent. 

2.3 Human Case Studies 

Our human studies use well known techniques from behavioral research, as covered in standard texts such as 
[Rosenthal and Rosnow, 1991] and [Yin, 2008]. In particular, since little was known about what factors 
would be critical, our empirical approach is that of exploratory case studies. An exploratory case study is the 
best approach when little is understood about the subject under study [Yin, 2008]. The intent is to build a 
deeper understanding of the phenomena in question and to formulate the beginnings of a corresponding 
theory that can be tested, revised, and expanded with further empirical studies. 

3. PHASE I STUDY: BLOCKSWORLD 

The Curriculum Team performed an initial case study to explore what approaches a human teacher (HT) 
would take in teaching a particular curriculum to an e-student, what assumptions a teacher would make about 
a student, and how these assumptions would work in the context of an e-student [Berland and Perry, 2009]. 
The HTs were asked to consider teaching to the level of a bright two year old. The domain for this study was 
the Blocksworld simulated environment created by Cycorp, Inc. This environment consisted of a “claw”, or 
crane-like device which the e-student could control to manipulate “square blocks” and “long blocks”. 

In this case study, each of five human teachers first attempted to teach an e-student to construct a stack of 
three blocks and then to build a simple “doorway” out of blocks in this environment. The target was a simple 
structure of two stacks of blocks topped with a lintel. We used a Wizard of Oz (WOz) [Dahlback et al., 1993] 
style methodology, where the teachers’ natural-language instructions were translated into precise terms (IL) 
for the e-student by a human interpreter.  



We compared the methods of the human teachers in terms of type of curriculum taught, teaching time, 
andhow well the e-student performed. We also gathered information from the teachers about their difficulties 
in the experience and their models of the e-student before and after their teaching session. 
All five teachers successfully instructed the student to make a doorway, and more importantly, we gained 
important insight into how humans attempt to instruct e-students. Some of our observations are listed in 
Table 1. 

Table 1: Phase I Observations{TC "1 Phase I Observations" \f t} 
 
Description Impact 

All HTs ended up using a bottom-up approach 
to teaching (possibly due to capabilities of the 
e-student). Some HTs initially used a top-down 
approach but became frustrated and reverted to 
a bottom up approach 

All BL curricula to date have been authored 
using a bottom-up structure. In the Phase II 
and Phase III evaluations with human learners 
(rather than e-students), we have found that 
human subjects often prefer a top-down 
instructional method. It is an open question as 
to how an e-student might learn with a 
different lesson structure. 

All the HTs overestimated what the e-student 
knew and could do, assuming knowledge of 
primitives such as “choose a block” or “look 
for a clear space.” 

We believe the domain-independent e-student 
needs a minimal level of injected knowledge 
to support “basic human competencies”. This 
can be achieved through the use of 
background knowledge which can be injected 
or built into an e-student. 

Many of the HTs employed repetition and 
mnemonics when teaching. 

Instructional interfaces should support natural 
human methods for teaching, including 
support for informalities. The Curriculum 
Team is currently exploring this issue. 

The HTs differed in their assumptions 
regarding the linguistic capabilities of the e-
student. 

Instructional interfaces should mask the 
linguistic limitations of an e-student and/or a 
teacher should have a way to query an e-
student’s capabilities and understanding. 

 
A human teacher teaches differently depending on the target audience [Dahlback et al., 1993]. Phase I 

was designed to gain insight into how a human teacher would instruct an e-student. Later phases use a 
standardized curriculum and are more focused on how well the students (human and electronic) learn the 
curriculum. Incidental benefits from Phase I included a test of the e-student instruction language and a 
greater understanding of the learning performance of an early version of the e-students. 

4. PHASES II AND III: HUMAN COMPARISON STUDIES 

In these case studies, the goals were to define and refine requirements, problem solving strategies, and 
evaluation methodologies for e-students by evaluating a version of the e-student curriculum with human 
students. We aimed to produce lessons and tests on which human students who scored less than 20% in pre-
test could score at least 75-80% in post-test, indicating that learning occurred. 

We performed two studies, one in Summer 2009 and one in Summer 2010, which we respectively refer to 
as “Phase II” and “Phase III”. Our overarching goal was to mimic the e-student context as closely as possible 
in the human studies, as the eventual goal is to directly compare e-student learning with human-student 
learning on “identical” curricula in controlled experiments. 



In all studies, the basic procedure was as follows: 
 
• Introduction and background material presentation 
• Pre-test 
• Curriculum lessons with web-based quizzes 
• Post-test 

 

4.1 Natural Instruction Methods 

We presented the curriculum to students via three different “Natural Instruction Methods” (NIMs): teaching 
by telling, teaching by example, and teaching by feedback. Respectively, these consisted of utterances 
emitted by a teacher, examples performed by a teacher in a domain simulator, and instructions for a student 
to apply techniques in a simulator with teacher feedback. We abbreviate these lesson types as T, E, and F. In 
Phase II, we gave each human student all three lesson types, with the option to skip. In Phase III, we tested 
some students with all three NIMs, and other groups with only one or two NIMs. We also allowed a small 
group of students to ask questions about the curriculum. We refer to the students who received all three 
instruction types as the “baseline”. 

4.2 Evolution of Testing Procedure 

As these studies were exploratory, over their course we evolved the details of our testing procedure 
significantly. At the beginning of Phase II, we began with a direct analog of the relationship between an 
automated teacher and an e-student. Since we were concerned with evaluating the curriculum and not the 
subjects, a major concern was preventing a human teacher from unconsciously providing extra-curricular 
information to the student through facial expressions, gestures, tone, etc. 

In this design there was one teacher, one student, and one observer per session. The teacher fed each line 
of curriculum to the student one-at-a-time through an electronic messaging interface. For the E lessons, a 
view of the teacher’s domain simulator was duplicated on a monitor visible to the student. For the F lessons, 
a view of the student’s domain simulator was duplicated on a monitor visible to the teacher, and the teacher 
provided feedback through the messaging interface. This teaching method was time-consuming, error-prone, 
and there was no protocol allowing the teacher to report errors or redo instructions. We quickly transitioned 
to a “self-paced” version of the curriculum. 

In this version, instead of a human teacher feeding every line of curriculum to the student and 
demonstrating simulator usage manually, we formatted the curriculum as PowerPoint slides with instructions 
and accompanying figures. For the feedback/practice lessons, we provided the student with instructions on 
procedures to try in the simulator and what the outcome should look like if the procedure was performed 
correctly; we called this the “choose-your-own-adventure” style. This eliminated complexities in our lab 
setup, reduced concerns about students learning from extra-curricular cues, and allowed us to run several 
students in parallel. We began running two subjects at once in Phase II, and with some additional automation 
we were able to run six subjects at once in Phase III. For more details on our testing procedure see [Grant et 
al., 2011]. 

4.2.1 Quantitative Results 
In these results we focus on a few aspects of our study that are interesting from an HCI perspective. In all 
results we exclude students that passed the pretest. When we discuss a “post-test score” in the following 
analysis, we mean the fraction correct out of five randomly-chosen post-test scenarios. When we discuss a 
realtime post-test, we mean that human students were tested in a domain simulator that automatically 
advanced through states in realtime. In non-realtime post-tests, the students advanced states manually 
(though there was still an overall time limit). 
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Figure 2: Baseline Plot Test Means 

 
We can compare three groups of baseline subjects: p2.non-realtime, p3.realtime, and p3.non-realtime, 

denoting students from Phases II and III with and without realtime post-tests, as indicated. These groups 
contained 28, 12, and 19 subjects respectively. All baseline subjects completed the study in under four hours. 
Because we increased the difficulty and complexity of the curriculum in Phase III, subjects generally took 
longer and scored lower than the Phase II subjects (Figure 2). A major revelation in Phase III was the impact 
of real-time testing on subject post-test scores. We discuss this more in Section 4.2.2. 

In Figure 3(a), we show the length of study by NIM-set given. We can see that subjects tended to take less 
time when given the T NIM, and more time when given the F NIM. In general, the T lessons were shorter 
than the F lessons, and the F lessons also required subjects to interact with the simulator and encouraged 
subjects to repeat if necessary. 
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 Figure 3(a) Study 
Time by NIM Set           Figure 3(b) Post Test Mean by NIM Set 

In Figure 3(b), we show mean post-test score by NIM-set. The double-NIM subjects seemed to do almost 
as well as those given the full set of NIMs. The subjects given the F NIM seemed to do the best of the 
restricted sets; in fact, all subjects in the F-only group had a perfect post-test score. There are several reasons 
why this might be the case. This NIM is somewhat a combination of “by feedback” and “by telling”; in the 
self-paced “by feedback” lessons, if a subject doesn’t follow the correct procedure, the subject is given a “by 



telling” description of what should have been done. This is also the only NIM where subjects get any practice 
with the simulator before the post-test. 

We also tried allowing subjects of the lowest performing NIM sets (T and E) to ask questions about the 
curriculum through a restricted interface. Counter to our expectations, it was very difficult to get subjects to 
ask anything. Finally, by choosing subjects who knew us and who were majoring in relatively non-technical 
fields, we got a few questions. Even then, the questions were relatively basic questions about definitions, 
such as a misunderstanding about the meaning of “absolute value”. Since these subjects did not end up 
differing very much from the standard groups, we did not separate them in our results. 

4.2.2Qualitative Results 
Creating the context and protocols needed to understand and rigorously evaluate the goals of the 
Bootstrapped Learning project using human teachers and students has been challenging. We offer the 
following lessons we have learned in our exploration of this design and empirical space. 

Human and electronic students differ in fundamental ways that make it difficult to create analogous 
contexts without providing one side with undue advantages over the other. First, e-students have perfect 
memory of all lesson material they have seen. We compensate for this in human testing by allowing subjects 
to take notes and review lessons if desired. Human students also have a harder time interpreting formal 
language or concepts expressed in other “unnatural” ways. Because of this, we were forced to produce a 
more natural version of the e-student curriculum for the human students, introducing possible confounding 
factors into our comparison. 

On the other hand, human students have a greater understanding of the semantics of words and have the 
ability to gain domain knowledge outside the formal channel of the curriculum, such as through voice 
intonation or gestures inadvertently expressed by a human teacher. We addressed the issue of “leaky” 
semantics by being careful that our choice of terms didn’t leak unintentional knowledge and by going 
through several preliminary iterations of the curriculum. Interestingly, increased semantic understanding was 
also occasionally detrimental to human subjects, when the knowledge leaked by terms was misleading. The 
innovation of the self-paced curriculum was critical for addressing the problem of extra-curricular knowledge 
transfer. 

Increased automation of lesson structures was essential for the greater curriculum complexity and greater 
number of subjects and groups needed for Phase III. For example, we automated the generation of curriculum 
and test configurations and the subsequent storing of results and grading. 

The issue of decreased scores with realtime testing in Phase III was unexpected. We hypothesize it was 
because of 1) subject boredom and 2) the issue of training vs. education. When testing subjects with realtime 
simulators, subjects learned that there were states where nothing occurred and would lose focus; we had to be 
vigilant for the appearance of web-capable smartphones during this time. Additionally, since stricter time- 
limits were placed on individual tasks (though the time for all tasks together was actually greater), we believe 
this may be issue of training (skill gained through repetitive practice) rather than education (knowledge 
gained through learning). Results on models of human task-performance such as the Human Model Processor 
[Card et al., 1986] and GOMS [John and Kieras, 1996] may be relevant here. We do not know whether this 
will be an issue for e-students. 
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