
Alloy Annotations for Efficient Incremental

Analysis via Domain Specific Solvers

Svetoslav Ganov

Electrical and Computer Engineering

University of Texas at Austin

svetoslavganov@mail.utexas.edu

Sarfraz Khurshid

Electrical and Computer Engineering

University of Texas at Austin

khurshid@ece.utexas.edu

Dewayne E. Perry

Electrical and Computer Engineering

University of Texas at Austin

perry@mail.utexas.edu

Abstract—Alloy is a declarative modelling language based
on first-order logic with sets and relations. Alloy formulas are
checked for satisfiability by the fully automatic Alloy Analyzer.
The analyzer, given an Alloy formula and a scope, i.e. a bound on
the universe of discourse, searches for an instance i.e. a valuation
to the sets and relations in the formula, such that it evaluates to
true. The analyzer translates the Alloy problem to a propositional
formula for which it searches a satisfying assignment via an off-
the-shelf propositional satisfiability (SAT) solver. The SAT solver
performs an exhaustive search and increasing the scope leads to
the combinatorial explosion problem.

We envision annotations, a meta-data facility used in impera-
tive languages, as a means of augmenting Alloy models to enable
more efficient analysis by specifying the priority, i.e. order of
solving, of a given constraint and the slover to be used. This
additional information would enable using the solutions to a
particular constraint as partial solutions to the next in case
constraint priority is specified and using a specific solver for
reasoning about a given constraint in case a constraint solver is
specified.

I. INTRODUCTION

The world today is so tightly integrated with computers that

life without them seems hard to imagine. We rely on computer

software to fly planes, manage bank transactions, communicate

etc. It has permeated our homes, offices, cars, etc. Software is

so deeply weaved into the fabric of our lives that assuring its

high quality is a task of paramount importance.

As processing power of computers increases [1], so does

the complexity of software they run [2]. To manage this

increasing complexity researchers have introduced various

techniques for verification, i.e. to check if we are building

the system right, and validation, i.e. are we building the

right system [3][4][5][6]. Some techniques rely on formal

specifications to describe structural properties [4][7] or define

runtime behaviour [8][9] of software systems. A benefit of

using formal specifications is they are amenable to automated

analysis which is faster, consistent, and less error prone.

Alloy [10] is a declarative modelling language based on

first-order logic with sets and relations. Alloy formulas are

checked for satisfiability by the fully automatic Alloy Ana-

lyzer. The analyzer, given an Alloy formula and a scope, i.e. a

bound on the universe of discourse, searches for an instance,

i.e. a valuation to the relations in the formula, such that it

evaluates to true. The analyzer translates the solved problem

to a propositional formula for which it searches a satisfying

assignment via an off-the-shelf SAT solver. The SAT solver

performs exhaustive search and increasing the scope leads to

a combinatorial explosion.

One key observation is that when an Alloy formula is

translated for the SAT solver, domain specific knowledge is

lost, thus an opportunity to take advantage of the problem

structure is not exploited. Domain specific solvers are designed

for tackling special classes of problems using special represen-

tations, and algorithms [11][12]. For example, representing a

string variable as an automaton is more compact than explicit

enumeration of all possible values and finding whether two

strings variables can be equal is faster by getting the intersec-

tion of two automatons than exploring the cross product all

possible values for the two variables.

Another key observation is that the author of an Alloy model

is familiar with the problem domain and problem structure.

Such knowledge can be utilized for more efficient solving by

dividing the problem into sub-problems and solving them in

order of dependence. For example, generating a sorted linked

list can be partitioned in two sub-problems, generating the

structure, and generating the data. Since one needs a structure

to generate the data, the structure sub-problem can be solved

first and its solution used for reasoning about the data sub-

problem.

However, to take advantage of the problem domain and its

structure, a mechanism for capturing that data in the model

is required. We envision annotations as an easy-to-use and

unobtrusive facility to perform this task. For example, initially

the author may add no annotations to the model and do that

incrementally as his or her knowledge of the problem domain

and structure grows.

We propose an annotation mechanism for Alloy. The anno-

tations allow the user to annotate a constraint and state which

solver to use for that constraint as well as to state a priority

for solving it. Prioritizing constraints allows leveraging an

incremental technique [13] for solving Alloy formulas, where

solution to a formula provides a partial solution to another

formula, which can then be solved more efficiently.

Embedding annotations in an Alloy model would allow

taking advantage of 1) incremental analysis that limits the

search space explored by the solver; 2) use of domain specific

solvers which are efficient for problems in their target domain.

This paper makes the following contributions:



1 module BinarySearchTree

2

3 sig Node {

4 left:lone Node,

5 right:lone Node,

6 parent:lone Node,

7 key:Int

8 }

9

10 sig BinarySearchTree {

11 root:lone Node,

12 size:Int

13 }

14

15 pred Acyclic(t:BinarySearchTree) {

16 all n:t.root.*(left+right) {

17 lone n.˜(left+right)

18 n !in n.ˆ(left+right)

19 no n.left & n.right

20 }

21 }

22

23 pred Parent(t:BinarySearchTree) {

24 all n,n’:t.root.*(left+right) |

25 n in n’.(left+right) => n’ = n.parent

26 no t.root.parent

27 }

28

29 pred Search(t:BinarySearchTree) {

30 all n:t.root.*(left+right) {

31 all n’:n.left.*(left+right) |

32 int n’.key < int n.key

33 all n’:n.right.*(left+right) |

34 int n.key < int n’.key

35 }

36 }

37

38 pred Size(t:BinarySearchTree) {

39 int t.size = #(t.root.*(left+right))

40 }

41

42 pred BinarySearchTree(t:BinarySearchTree) {

43 Acyclic[t] && Parent[t] && Search[t] && Size[t]

44 }

45

46 run BinarySearchTree exactly 1 BinarySearchTree,

47 exactly 3 Node

Fig. 1. Alloy model of a binary search tree

• Annotations for Alloy We envision annotations to incor-

porate meta-data into an Alloy model to guide the solving

process. Annotations are a commonly used mechanism in

imperative languages; we introduce them for a declarative

language.

• Dedicated solver support for Alloy We envision support

for a dedicated constrint solvers in the Alloy analyzer,

thus allowing a constrain to be annotated with the solver

to be used for its analysis.

II. BACKGROUND - BINARY SEARCH TREE EXAMPLE

According to its definition a binary search tree is a node-

based data structure where: 1) each node has at most two

children–left and right–whose parent is the given node; 2) the

left sub-tree rooted at a given node contains keys less than the

key of that node; 3) the right sub-tree rooted at a given node

contains keys greater than the key of that node; and 4) the left

and right sub-trees are also binary search trees; In Figure 1 is

depicted the Alloy model for a binary search tree.

First, we declare the entities contained in the model. A node

(line 3) has: 1) at most one left child (line 4); 2) at most one

Fig. 2. Binary search tree instance

right child (line 5); 3) at most one parent (line 6); and 4) a

key (line 7); A binary tree (line 10) has: 1) at most one node

as its root (line 11); and 2) a size (line 12);

Once we have declared the elements of our model we

specify the relationships between them to reflect the key

properties of the modelled data structure. A binary search tree

is Acyclic (line 15), which is for every node reachable from

the root performing zero or more traversals (line 16): 1) at

most one node is visited following the left and right relations

in reverse direction (line 17); 2) a node cannot be reached

by following one or more times the left and right relations

beginning from that node (line 18); and 3) the left and right

nodes are disjoint (line 19);

The nodes in the binary search tree have a Parent prop-

erty (line 23), which is: 1) every node reachable from the

root performing zero or more traversals is the parent of its

left and right children (line 24-25); and 2) the root has no

parent (line 26);

A binary search tree contains data satisfying the Search

(line 29) property, which is for every node reachable from

the root performing zero or more traversals (line 30): 1) every

descendant reached by following the left and right relations of

its left child zero or more times has a lesser key (line 31-32);

and 2) every descendant reached by following the left and right

relations of its right child zero or more times has a greater

key (line 33-34);

A binary search tree has a Size property (line 38) which

is the cardinality of the nodes reached from its root by

performing zero or more traversals of the left and right

relations (line 39).

In order for a data structure to be a BinarySearchTree

(line 42) it has to satisfy the Acyclic, Parent, Search, and Size

predicates (line 43).

Once we have created a declarative model of a binary search

tree we request from the Alloy Analyzer to create one for

us by specifying the bounds on the atoms, i.e. elements for

each signature, we have defined (line 46). Upon running this

command the analyzer tries to find valuations to the relations

such that the predicate declaring a binary search tree evaluates

to true which is there exists an instance that satisfies the



1 module BinarySearchTree

2

3 sig Node {

4 left:lone Node,

5 right:lone Node,

6 parent:lone Node,

7 key:Int

8 }

9

10 sig BinarySearchTree {

11 root:lone Node,

12 size:Int

13 }

14

15 @predicate(priority=4, solver=SAT)

16 pred Acyclic(t:BinarySearchTree) {

17 all n:t.root.*(left+right) {

18 lone n.˜(left+right)

19 n !in n.ˆ(left+right)

20 no n.left & n.right

21 }

22 }

23

24 @predicate(priority=3, solver=SAT)

25 pred Parent(t:BinarySearchTree) {

26 all n,n’:t.root.*(left+right) |

27 n in n’.(left+right) => n’ = n.parent

28 no t.root.parent

29 }

30

31 @predicate(priority=2, solver=INTEGER)

32 pred Search(t:BinarySearchTree) {

33 all n:t.root.*(left+right) {

34 all n’:n.left.*(left+right) |

35 int n’.key < int n.key

36 all n’:n.right.*(left+right) |

37 int n.key < int n’.key

38 }

39 }

40

41 @predicate(priority=1, solver=EVALUATOR)

42 pred Size(t:BinarySearchTree) {

43 int t.size = #(t.root.*(left+right))

44 }

45

46 pred BinaryTree(t:BinarySearchTree) {

47 Acyclic[t] && Parent[t] && Search[t] && Size[t]

48 }

49

50 run BinarySearchTree exactly 1 BinarySearchTree,

51 exactly 3 Node

Fig. 3. Annotated alloy model of a binary search tree

declared model. If the analysis finds an instance that satisfies

all constraints it is visualized.

In Figure 2 is shown an instance (there may be more

that one such) which satisfies all constrains in the model on

Figure 1 and more precisely the BinarySearchTree predicate.

The atoms, i.e. instances of the Node and BinarySearchTree

signatures, are represented as nodes and relations between

them as arrows. The top left side shows the cardinality of

the relations.

III. OUR APPROACH

The Alloy Analyzer performs an exhaustive search within

a given scope and not finding a solution only guarantees that

no such exists in that scope but one may be found for larger

scopes. However, the combinatorial nature of the propositional

formula to which an Alloy model is translated limits the scope

for which an analysis can be performed within a reasonable

amount of time. Hence, increasing analysis speed would

enable reaching larger scopes, thus increasing confidence in

the obtained results. Also reaching larger scopes is beneficial

for tools that utilize Alloy models for test generation [14].

We believe that the analysis performed by the Alloy Ana-

lyzer does not exploit an opportunity to take advantage of the

problem domain and structure. We propose annotation support

in Alloy.

Using annotations the author can embed knowledge in terms

of domain and structure into an Alloy model. This information

can be used for both partitioning the problem and choosing a

solver in each step of the performed incremental analysis.

Annotations are an excellent facility to embed domain and

structural knowledge because: 1) they can be placed on the

statements to which they apply; 2) they do not alter the model

and can be optionally ignored by the analysis engine; 3) they

are a popular means of embedding meta-data; and 4) they can

be added incrementally as the domain and problem knowledge

grow; In Figure 3 is presented an annotated version of the

binary search tree model we have presented in Section II.

We propose one annotation–@predicate (line 15)–with two

attributes–priority and solver. The @predicate annotation can

be applied only at the predicate level and defines how this

predicate relates to the entire problem. In particular, the

priority attribute is a clue to the analysis engine about the

order of solving the predicates in the model. The higher the

priority the earlier the predicate is to be solved. For example,

the priority of the Acyclic (line 16) predicate is three and is

higher than the priority of the Search (line 32) predicate which

is two, therefore the Acyclic predicate will be solved first and

its solution will be used as a partial solution for reasoning

about the Search one.

The solver attribute specifies which solver to be used for

reasoning about the annotated predicate. Potential values for

that attribute could be SAT, INTEGER, STRING, etc. SAT

instructs the analysis engine to use a SAT solver, INTEGER

implies integer constraint solver, STRING request a dedicated

string constraint solver, etc.

Having defined the annotation facilities, let us see how they

would apply to the binary search tree model on Figure 3.

By running the command (line 50) we are requesting from

the analysis engine to find an instance which satisfies the

BinaryTree predicate (line 46). Note that the latter is a con-

junction of four predicates, namely Acyclic (line 16), Parent

(line 25), Search (line 32), and Size (line 42). Examining the

annotations on each of these predicates suggests that the

order of solving them is: Acyclic → Parent → Search → Size.

Hence, the model will be analyzed in four steps where the

solution of each step will be used as a partial solution for

the next one. Further, a specific solver will be used for the

analysis of each sequential step.

IV. RELATED WORK

This paper proposes annotations for Alloy models. These

annotation can be used to guide solving of Alloy constraints

using a variety of dedicated constraint solvers. To our knowl-

edge, this is the first paper to present annotations for Alloy.



The most closely related work to this paper is a recent

paper [15], co-authored by the second author. It introduces

mixed constraints, which are written using a combination of

a declarative language, namely Alloy, and an imperative lan-

guage, namely Java. Further, it supports annotating def-use sets

of variables to factilitate solving of mixed constraints using

different solvers, where each solver is designed for constraints

written using one particular paradigm. Mixed constraints offer

a complementary approach to this paper. A key design goal of

mixed constraints is to facilitate writing of constraints using

a combination of declarative and imperative programming

paradigms and solving them, whereas this paper proposes an

approach for solving of models written purely in Alloy and

hence does not require the user to learn a new notation to

benefit from efficient solving.

Incremental solving for Alloy models, where a solution

to one formula is fed as a partial solution to efficiently

solve another formula, was introduced in Uzuncaova’s doctoral

work [13], [16], [17], which also applied it in the context of

test input generation for product lines. Their work did not

support annotations, rather used a heuristic def-use analysis

to prioritize constraints written in Alloy. For product lines,

the structure of a product line was leveraged for incremental

solving.

An example of extending the Alloy syntax to describe

dynamic properties of systems via actions is presented in [18].

The actions enable specifying dynamic properties of execution

traces as dynamic logic specifications. Our technique is similar

to this work with respect to extending the Alloy syntax with

new semantic features. While this work focuses on adding

constructs for specifying dynamic behavior, our approach

focuses on embedding meta-data in a standard Alloy model.

An approach of scope-bounded checking is explored in

[19]. The key idea is to reason about a program correctness

by dividing the problem into sub-problems for different code

paths. Each sub-problem is analyzed via the Alloy Analyzer.

We, on the other hand, propose an annotation facility that

enables incremental analysis into the Alloy Analyzer and use

multiple domain specific solvers.

V. CONCLUSION

We have proposed annotations for Alloy to embed meta-

data that can be used for specifying the order of analyzing

the constraints in a model and specifying a domain specific

solver to be used for a given constraint enabling more efficient

incremental analysis.

Annotations are a commonly used facility in imperative

languages and adopting such in a declarative language, namely

Alloy, would not impose a steep learning curve to model

authors while giving them finer grained control over the

analysis process.

VI. ACKNOWLEDGEMENTS

This work was funded in part by the National Science

Foundation under Grant Nos. IIS-0438967 and CCF-0828251,

and CCF-0845628, and AFOSR grant FA9550-09-1-0351.

REFERENCES

[1] K. Robert W., “The impact of moore’s law,” vol. 20-3, pp. 25–27, 2006.
[2] D. L. Dvorak, “Nasa study on flight software complexity,” in Technical

Report, NASA Office of Chief Engineer Technical Excellence Program,
2009.

[3] P. Gluck and G. Holzmann, “Using spin model checking for flight
software verification,” in Aerospace Conference Proceedings, 2002.

IEEE, vol. 1, 2002, pp. 1–105 – 1–113 vol.1.
[4] M. Popovic, V. Kovacevic, and I. Velikic, “A formal software verification

concept based on automated theorem proving and reverse engineering,”
in Engineering of Computer-Based Systems, 2002. Proceedings. Ninth

Annual IEEE International Conference and Workshop on the, 2002, pp.
59 –66.

[5] D. Lettnin, M. Winterholer, A. Braun, J. Gerlach, J. Ruf, T. Kropf,
and W. Rosenstiel, “Coverage driven verification applied to embedded
software,” in VLSI, 2007. ISVLSI ’07. IEEE Computer Society Annual

Symposium on, 2007, pp. 159 –164.
[6] T. T. Chen and W. H. Hsieh, “Uncovering the main research themes

of software validation,” in Computational Intelligence and Software

Engineering (CiSE), 2010 International Conference on, 2010, pp. 1 –6.
[7] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated

techniques for formal software verification,” Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol. 27, no. 7,
pp. 1165 –1178, 2008.

[8] A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid, “Korat: A tool
for generating structurally complex test inputs,” in Software Engineering,
2007. ICSE 2007. 29th International Conference on, May 2007, pp. 771
–774.

[9] L. Clarke, “A system to generate test data and symbolically execute
programs,” Software Engineering, IEEE Transactions on, vol. SE-2,
no. 3, pp. 215 – 222, 1976.

[10] (2011, Mar.) Alloy analyzer 4. [Online]. Available:
http://alloy.mit.edu/alloy4/

[11] A. Christensen, A. Mller, and M. Schwartzbach, “Precise analysis of
string expressions,” in Static Analysis, ser. Lecture Notes in Computer
Science, R. Cousot, Ed. Springer Berlin / Heidelberg, 2003, vol. 2694,
pp. 1076–1076.

[12] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst,
“Hampi: a solver for string constraints,” in Proceedings of the eighteenth

international symposium on Software testing and analysis, ser. ISSTA
’09. New York, NY, USA: ACM, 2009, pp. 105–116.

[13] E. Uzuncaova, “Ecient specication-based testing using incremental tech-
niques,” in Dissertation, 2008.

[14] D. Marinov and S. Khurshid, “Testera: A novel framework for automated
testing of java programs,” Automated Software Engineering, Interna-

tional Conference on, vol. 0, p. 22, 2001.
[15] S. A. Khalek, V. Priyadarshini, and S. Khurshid, “Mixed constraints for

test input generation,” (Submitted for publication at ASE 2011).
[16] E. Uzuncaova and S. Khurshid, “Constraint prioritization for efficient

analysis of declarative models,” in FM, 2008, pp. 310–325.
[17] E. Uzuncaova, S. Khurshid, and D. S. Batory, “Incremental test gener-

ation for software product lines,” IEEE Trans. Software Eng., vol. 36,
no. 3, pp. 309–322, 2010.

[18] M. F. Frias, J. P. Galeotti, C. G. López Pombo, and N. M. Aguirre,
“Dynalloy: upgrading alloy with actions,” in Proceedings of the 27th

international conference on Software engineering, ser. ICSE ’05.
New York, NY, USA: ACM, 2005, pp. 442–451. [Online]. Available:
http://doi.acm.org/10.1145/1062455.1062535

[19] D. Shao, S. Khurshid, and D. Perry, “An incremental approach to scope-
bounded checking using a lightweight formal method,” in FM 2009:

Formal Methods, ser. Lecture Notes in Computer Science, A. Cavalcanti
and D. Dams, Eds. Springer Berlin / Heidelberg, 2009, vol. 5850, pp.
757–772.


