
An Empirical Evaluation of Visualization

Techniques for Architectural Knowledge

Cristina Roda

Computing Systems Dept.

University of Castilla-La

Mancha

cristina.roda@alu.uclm.es

Elena Navarro

Computing Systems Dept.

University of Castilla-La

Mancha

elena.navarro@uclm.es

Carlos E. Cuesta

Dept. LSI2

Rey Juan Carlos University at

Madrid

carlos.cuesta@urjc.es

Dewayne E. Perry

Dept. of ECE

The University of Texas at

Austin

perry@ece.utexas.edu

Abstract — Recent research points out the necessity for
capturing and representing architectural design decisions as a
key element of Architectural Knowledge. Despite the variety of
tools that allow visualization of this type of knowledge, there
still remains a certain lack of maturity. We classify a set of
visualization techniques according to their representation
form. These techniques are analyzed considering their
strengths and weaknesses using an empirical evaluation. The
results of this evaluation suggest some ideas for future work
on visualization techniques that can improve the
representation of Architectural Knowledge.

Architectural Knowledge, Visualization techniques

I. INTRODUCTION

Software development has to deal with many
challenges, such as system complexity, non-functional
qualities, maintenance operations, distributed production,
frequent personnel changes, etc. [1]. Furthermore,
software companies with high maintenance costs are
increasingly demanding flexible, easy-to-maintain designs
[1].

Software Architecture (SA) is a valuable asset that
enables software companies to achieve a variety of goals
by representing and communicating the system structure
and behavior to all of a system’s stakeholders [2]. Until
recently, the primary focus of SA research has been on
Architecture Description Languages (ADLs) focusing on
the description of SA elements and form in the Perry-
Wolf model of SA [3]. Virtually no attention was paid to
the third element of their model – namely, rationale. In
the last 6 or so years, that has changed: the importance of
architectural design decisions (ADDs) and their
architectural design rationale (ADR) has been recognized
and become a significant research focus. ADDs and
ADRs are essential aspects in architectural knowledge
(AK), the modeling, managing, and sharing of which has
also become a significant research focus [2].

In this context, it should be highlighted that whenever
a design decision is explicitly recorded and documented,
new activities arise during the architecting process. This
AK information constitutes a new crosscutting view that
overlaps that information described by other views [1].

Therefore, the introduction and exploitation of
appropriate techniques for visualization become a
necessity that should allow the different stakeholders to
navigate throughout the different views of the system.

Currently, there are many visualization techniques
available to represent AK. As Kruchten, Capilla and
Dueñas [1] have pointed out, a very active research
agenda is being carried out that has produced a significant
number of approaches for representing and capturing
ADDs. For instance, several approaches use template lists
of attributes to describe and represent ADDs as relevant
entities. One of these approaches [4] emphasizes how
important is to classify different types of dependencies
between decisions as valuable, complementary
information for capturing useful traces. Another one of
these approaches [5] advocates using more flexible
approaches that employ obligatory and optional attributes
to capture architectural knowledge that can be customized
to specific organizations. Alternatively, other authors [4]
have proposed ontologies to formalize tacit knowledge
and make visible relationships between decisions and
other artifacts of the software life cycle. Finally, the field
of software product lines [1], has produced a lot of work
about specification, modeling, and automation of ADDs
that is used to describe and select a product line’s
common and variable elements.

Thus, a variety of different approaches have emerged
during the last years, although very little has have been
done to analyze their strengths and weaknesses so that
analysts have some useful guidance whenever they have
to make decisions about the best alternative for their
project. The purpose of this paper is to provide insight
into the strengths and weaknesses of these approaches in
visualizing AK.

This paper is structured as follows. We present
related work in section II and discuss our classification of
the visualization techniques used in this paper in section
III, along with the identification of which tools match
with each of these techniques. We then describe the case
study in section IV that we used in performing the
subsequent empirical evaluation we describe in section V.

Finally, we present our conclusions and our future work
in section VI.

II. RELATED WORKS
SHAring and Reuse of software architectural

Knowledge (SHARK) has become an emerging issue of
discussion and research, within software architecture
development area [6]. As Henttonen and Matinlassi state
[6], when software is developed in a multinational
company or in an open source community, the
stakeholders are often geographically distributed.
Furthermore, Grinter et al. have identified SA as one of
the primary mechanisms for organizing distributed
software development [7]. This is why SHARK has
become increasingly important: there is a significant need
for appropriate tool support that can store, reuse and share
architectural knowledge.

One of the key issues that arises whenever SHARK is
introduced in a software development process is the
selection of the best supporting tool. This is the question
that Henttonen and Matinlassi intend to answer in [6].
They present an evaluation framework for SHARK tools
that is used to evaluate three open source based solutions:
WebOfPatterns[8][9], Stylebase for Eclipse[10][11] and
PAKME[12]. These authors selected those tools because
they are not limited to a particular programming language
or platform. Henttonen and Matinlassi’s evaluation
framework for SHARK tools, proposes four points of
view to perform this evaluation: Problem the tool assists
in, Problem solver, Means of problem solving and
Maturity of the tool (Figure 1). Each one of these points
of view category is associated with a set of criteria, and
each criterion is related to some evaluation questions. The
evaluation of these tools revealed the strengths and
weaknesses of each tool. The authors also emphasized
that the target environment must be understood before
selecting a tool to be deployed in that organization.

Figure 1. Elements of SHARK tool evaluation [6]

Note that this evaluation framework does not include
any consideration for evaluating the representation of
information, i.e., it does not provide any analysis of the
visualization techniques that these tools provide.

Other authors, such as Tang et al. in[2], have also
proposed a framework for comparing architecture
knowledge management tools. This framework comprises
several criteria, which represent the context for the
comparison, having each one of them associated a
research question. Each question consists of a description
as well as AK activities of the architectural life-cycle that
describe the usage contexts for the criterion. For instance,
Types and Representation of AK is a criterion to
determine “What are the architectural knowledge types
and representations captured by a tool for general,
context, reasoning and design knowledge?”[2]. In this
way, Tang et al. propose a framework whose aim is to be
a solid guide to comparing AK tools, including the
majority of the features required by architecture life-cycle
activities. The list of criteria proposed is as follows: Types
and representation of architecture knowledge, Relations
between AK elements, Architectural analysis support,
Architectural synthesis support, Architectural evaluation
support, Architectural implementation support,
Architectural maintenance support, AK customization,
Integration with other tools and Collaborative
environments. As in [6], [46] does not include anything
for evaluating AK visualization.

Our goal in this paper is to provide a useful
framework for analyzing tools that support architectural
knowledge visualization to determine their strengths and
weaknesses with respect to their AK visualization
techniques.

III. VISUALIZATION TECHNIQUES FOR

KNOWLEDGE SYSTEMS

Several visualization techniques can be used while
capturing, representing or maintaining AK. We want to
emphasize that one of the assumptions of our research is
that the architectural knowledge is, per se, a
knowledgebase made up by ADDs and ADRs and their
corresponding relationships that can be used to
understand and reason about the software architecture of a
system. In this sense, it resembles an ontology [13], as
other authors have already noticed [14]. This has led us to
use as taxonomy of visualization techniques that proposed
by Katifori et al.[15] which distinguishes five different
representation types, depending on the information
presentation, interaction method, or functionality
supported. In the following subsections, each one of these
types is described along with the available tools that can
be classified according to such types.

This paper focuses on two-dimensional tools,
primarily because they are closer to those commonly used
by architects. Subsections A, B and C present AK
visualization tools, while subsections D and E present
ontological ones. We have included the latter subsections
because they present the information in a hierarchical
form, very similar to AK representations in AK tools.
Note that if AK tools are available for a particular
visualization technique, they are preferred; if AK tools are
not available, ontological ones are preferred

A. Indented list

According to this representation type, the AK is
represented by means of plain text that looks like tree
view, similar to Windows Explorer. The simplicity of this
textual representation makes this method not very popular
today to represent architectural knowledge. An AK
system that uses this visualization technique is PHI
(Procedural Hierarchy of Issues)[16], which extends the
IBIS system and presents an argumentation approach to
resolving issues, i.e. any design question, deliberated or
not. Some tools that support PHI methodology are [17]:
JANUS [18][17], HOS (Hyper-Object Substrate) [17],
and PHIDIAS (Procedural Hierarchy of Issues/Design
Intelligence Augmentation) [17]. However, these tools
currently do not have any support, hence some
ontological tools that offer a Windows Explorer tree view
are offered for consideration.

Protégé [19] is an ontology-editing and knowledge-
acquisition environment, where classes are represented as
nodes in an indented, retractable and expandable tree; and
instances are displayed in another window (see Figure 2).
KAON [20] is an open-source ontology management
environment for business applications, which includes a
complete tool suite for easy ontology management and
creation; and provides a framework for building
ontological applications. OntoRama [21] is a Java client
which allows users to browse a knowledge base
(ontology) structure in a hyperbolic layout. Finally,
OntoEdit [22] is an ontology editor which supports
methodology-based ontology construction.

Protégé is the tool selected to be evaluated in section
V because it is open-source available, and it was cited by
other authors in [23][15] using it in AK context.

Figure 2. Protégé 3.4.4

B. Wiki

As Farenhorst, Lago and van Vliet state in [24], a
wiki for capturing architectural knowledge can allow
designers and architects to collaborate and communicate
easily. Therefore, thanks to the capabilities of the wiki,
the information can be quickly updated, and stakeholders
can always know the current state of the project. Some
wiki tools for architectural knowledge visualization are:
C-ReCS (Collaborative Requirements Capture System)

[25], that supports collaboration while capturing ADDs;
PAKME (Process-based Architecture Knowledge
Management Environment) [26], which is a web-based
tool that supports collaboration for managing architectural
knowledge; ADDSS (Architecture Design Decision
Support System) [26] [27] (see Figure 3), a web-based
tool, as PAKME, that manages and documents ADDs;
and finally, Knowledge Architect [26] [27], which
provides mechanisms for capturing, managing and
sharing architectural knowledge, thanks to an
architectural knowledge server and repository.

In this case, ADDSS is the system selected to
perform the empirical evaluation presented in section V.
It is preferred over other Wiki tools because is the most
complete one and provides a query system that allows
architects easily to find information about requirements,
decisions and architectures stored in the tool.

Figure 3. ADDSS 2.0

C. Node-link and tree

A node-link and tree approach provides an
interconnected node representation, with a top-down or
left-right layout. This technique allows users to expand
and retract nodes and their sub-nodes, so that the
information detail level can be regulated. In the following,
tools corresponding to each category are presented.

QOC (Questions, Options, and Criteria) [28] is based
on a semi-formal notation to analyze the design space,
using three main elements: Questions (key design
subjects), Options (possible answers to the questions) and
Criteria (valuation on the options). SCRAM (SCenario
Requirements Analysis Method) [29] is a requirement
analysis method based-on scenarios. It has four
techniques for requirements capture and validation: use of
prototypes or concept demonstrators; scenarios; design
rationale; and whiteboard summary. Another tool is
SEURAT (Software Engineering Using RATionale) [30],
an Eclipse development environment plug-in utility that
captures and uses design rationale by linking its software
code. Sysiphus [30] [31] is also a rationale-based set of
tools that allows us to capture several system models for
system development activities, and that supports
rationale-based design decisions and links them with
system models, using graphs. DRIMER (Design
Recommendation and Intent Model Extended to
Reusability) [32] provides explicit capture of ADR during

the software development process. AREL (Architecture
Rationale and Element Linkage) [27] is based on UML to
assist architects in creating and documenting architectural
designs, focusing ADDs and ADRs. This tool captures
three types of architectural knowledge: design concerns;
design decisions; and design outcomes. These knowledge
entities are represented as standard UML entities and
linked for show their relations. IBIS (Issue-Based
Information System) [33] is an argument-based approach
for design rationale representation that consists of three
simple and basic concepts: Issues that need to be
addressed; Positions that answer such issues; and
Arguments which are composed by Pros (arguments in
favor) and Cons (arguments against) of a concrete
position. gIBIS (graphical IBIS) [34], IBIS successor, is
another AK visualization tool that uses color and a fast
relational database server to facilitate construction and
exploration of IBIS networks. Compendium [35][33] is an
open source tool that is implemented based-on IBIS and
supports gIBIS notations (see Figure 4).

Figure 4. Compendium

DRL (Design Representation Language) [36] allows
constructing decision graphs, which reflect the pros and
cons in evaluating alternatives with respect to the
objectives. ARCHIUM [27] is a Java extension that
provides traceability through a wide range of concepts
(such as requirements, decisions, architecture
descriptions, and implement artifacts) which are
maintained during the system life cycle. AK is presented
as a component view, where a dependency graph shows
ADDs and their relationships. Kruchten’s ADD Ontology
tool [30], as its name indicates, is based on the ontology
for Kruchten’s architectural design decisions. This tool
facilitates both exploration and detailed analysis of
decisions, thanks to four views [30][33]: decision and
relationship lists; decision structure visualization view;

decision chronology view; and decision impact view.
ODV (Ontology-Driven Visualization) [14] tool combines
the power of decision and relationship lists with decision
structure visualization view, introduced by Kruchten’s
ADD Ontology tool.

The last two-dimensional tool considered is presented
in [37]. Its authors propose the use of model
transformations as an executable representation of design
decisions. These transformations can be executed, and the
final result is a changed architecture. So, design decisions
only have to be captured as a transformation, and
architecture change is a cause of transformation
execution.

Among all the analyzed tools, Compendium tool was
selected to perform the empirical evaluation presented in
section V. It is preferred over the others because it
provides explicit support for rationale visualization of
ADDs, and it has the advantage of being simple and easy
to use.

D. Zoomable

This visualization technique is especially interesting
in the way it addresses hierarchical. It presents the nodes
in the lower levels of the hierarchy nested inside their
parents, with a size smaller than them. Thus, if we want to
know more about nodes, we have to zoom-in to the child
nodes, in order to expand them and make them the current
viewing level [15]. In addition, some ontology
visualization systems are briefly described, belonging to
this category, even though they are not specifically AK
visualization tools.

Figure 5. Jambalaya tab in Protégé 3.4.4

Grokker [38] is a graphical knowledge map, where
information is represented graphically. It uses a clustering
mechanism for presenting documents as a series of nested
Venn diagrams. Another system is Jambalaya [39], that is
an integration or plug-in of SHriMP (Simple Hierarchical
Multi-Perspective) [40] with Protégé ontology tool (see
Figure 5). SHriMP is a multi-perspective software
visualization environment, which combines single view
and multi-view techniques to support software
exploration. CropCircles [41][42] presents the class
hierarchies in ontologies as trees, so that circles represent

nodes and every child circle is nested inside its parent
circle.

In this case, Jambalaya is the selected tool because it
has more support than the others and it works within
Protégé, which was previously selected as well.

E. Space-filling

This category presents nodes in a hierarchical form,
using all the screen space, i.e. adjusts nodes to such
screens. It is not considered a very interesting technique
for two reasons:, its lack of clarity, and its complicated
connection to Software Architecture. Note that there are
not any specific AK visualization tools for this category,
so some ontological ones are presented.

Figure 6. SequoiaView 1.3

TreeMaps [43] is a tool to representing hierarchies or
trees that have weights or sizes on the leaf nodes, which
are rectangles whose area is proportional to some
attribute, such as node size. SequoiaView [44] is another
2D space-filling tool where the screen is subdivided such
that rectangles approach squares as closely as possible
(see Figure 6). The last tool is Information Slices [45] that
represents hierarchical structures using one or more semi-
circular discs, which represents multiple levels of the
hierarchy.

In this case, Information Slices is discarded because it
does not have enough support, i.e. there is no software
availability. With respect to the other two tools,
SequoiaView is selected because it has more support than
TreeMaps, it is freeware, and it provides a more efficient
file search and filtering mechanism.

IV. CASE STUDY

Our empirical evaluation uses architecture and AK
from a case study presented in [46] [47] related to the
financial control system. The People’s Bank of China
Guangzhou branch (PBC-GZ) is a central bank branch
which is responsible for the financial control and inter-
bank payments and liquidations of the financial centre
Guangzhou and its surroundings. One of its systems is the
Electronic Fund Transfer (EFT) that transfers and
liquidates high value payments between all the

specialized and commercial banks in the surroundings.
This system has to serve over ten million people in
southern China, and works as a gateway to connect all
local banks to the national payment network.

The design, development and test of the EFT system
took about two years, employing thirty designers and
developers. Its design was highly demanding as it was
necessary that this system had to be trustworthy, efficient
and secure, because it is the main core of the financial
system in the region. The main problem this system
presented was that its design was difficult to understand
for anyone outside the original development team, despite
the fact that its design was widely specified. For this
reason, it was decided to capture the architectural
knowledge, i.e. the ADDs and ADRs, so that anyone
could interpret the EFT system design.

The architectural knowledge of the EFT is used in the
following section by a set of selected architects to carry
out the evaluation of the different alternatives for
visualization. Therefore, in section V, a set of people,
previously selected, help us to analyze the strength and
weaknesses of the architectural knowledge visualization
tools, selected in the previous section, that illustrate the
ADDs and ADRs of the EFT system.

V. EMPIRICAL EVALUATION

We present multiple exploratory case studies [48] in
which each software architect must make changes to the
EFT architecture and in which he or she uses the various
different tools to aid in making those changes. After the
set of changes have been successfully completed, the
architect evaluates the usefulness of each of the
visualization tools.

A. Study Research Goal

The goal of this study is to evaluate which
visualization technique is the most effective in using
architectural knowledge in the process of making a set of
architectural changes (that is, in making and remaking
architectural decisions) to an existing SA using the
various visualization tools to represent the AK of the
existing SA.

Our null hypothesis if we were doing a controlled
experiment would be that there is no difference in the
effectiveness of the visualization tools – i.e., they would
all be equally effective. Our intuition, however, is that
Node-link and tree technique is the most effective in
representing architectural knowledge, given that its
graphical view provides more information than the other
techniques. While our exploratory case studies will
individually support that intuition, we will nevertheless
outline a global data analysis whose results clearly
support this conclusion.

B. Study Constructs

The independent variable in these case studies (i.e.,
the input) is the AK of the EFT architecture as

represented by the various visualization tools. The tools
have been extensively discussed in section III.

The dependent variable (i.e., the output as determined
by the various treatments – the architecture changes) is
the effectiveness of the various visualization tools in
response to the various treatments (described in the next
subsection). Effectiveness is determined by 1) usefulness
of the tool, 2) ease of tool use, 3) ease of learning how to
use the tool, and 4) satisfaction with tool. The
questionnaire presented in [49] has been used to
determine the effectiveness of the various visualization
tools in representing the EFT’s AK. For each one of the
visualization techniques, a questionnaire was created
using the e-learning platform Moodle that is available in
the University of Castilla-La Mancha for teaching
assistance. This platform allowed us to collect all the
results of the questionnaires for their later analysis.

C. Study Design

Each case study consisted of 1) performing several
tasks (each task is considered to be a treatment applied to
the EFT architecture) that are usually done by architects
while evolving a system, and 2) evaluating the
effectiveness of the various techniques using the
questionnaire in [49]. These tasks were related to the
modification of the architectural knowledge or the
software architecture of the EFT project described in
section IV .

The study group was made up by 15 students (three
women and twelve men) in the last course of the Degree
in Computing at the University of Castilla-La Mancha
whose ages were between 22 and 25. Each student carried
out the case study design performing the tasks and
effectiveness evaluation.

The exploratory case studies were carried out in the
context of practical session of the Advanced User
Interface Design class and so they were used to the terms
as (usability) effectiveness and visualization technique.
Each case study session lasted about two hours.

The information collected during the experiment was
analyzed using standard statistical measures and
techniques, as described in section F.

D. Study Treatments

The following is the background for the EFT software
architecture and the basic issues in creating that SA and
its associated AK:

 The selection of the system and software architecture
platform is one of the most fundamental architecture
issues. The architect must take into account that the
EFT system must provide fault-resilient support. So,
he/she has to wonder about what is the best system
that provides continuous processing with little chance
of failing. There are two possible choices for a
reliable machine: a fault-resilient system which has
always a system node standing by to take over if a

system node fails; or a fault-tolerant system which
has in-built backup processing modules. For the EFT
system, the architects selected a fault-resilient system
because it satisfied the reliability requirements of the
central bank, whereas a fault-tolerant system had a
high cost that made it an unattractive candidate.
However, the fault-resilient system entails a
disadvantage: other associated platform products are
required to maintain the 99.95% uptime. So, the
architect had to make another decision: what
recovery strategies were necessary to deploy by using
the platform environment.

 The architects also had to pay attention to network
reliability, because banking operations must be
carried out in a secure environment. For this issue
two options were considered: to introduce a frame-
relay link in the system; or to introduce another
frame-relay line as backup. The architects selected
the first option because it allowed dial-in from
member banks through the Public Switched
Telephone Network (PSTN), while the second option
is uneconomical and more risky because the backup
frame-relay line might fail as well.

 Another important aspect was power failure, given
that the EFT system had to provide a continuous
service. The architect has to answer the question
about what is the best form to provide secondary
power supply. Two alternatives were evaluated: an
uninterrupted power supply (UPS); or a power
generator. Given that the second alternative would
require a higher budget that could not be justified the
architects selected the UPS option.

 To handle natural disasters such as earthquakes or
fires which could damage the entire processing
centre, the architects had to select an adequate
mechanism: a remote site which could take over
processing; or manual procedures. Finally, the
architects selected manual procedures, because there
was not enough budget to allow for such first option.

Given that system design, two structures related to the
EFT system architectural knowledge were created in each
tool: one from the point of view of requirements, and the
other one from the point of view of architectural elements.
Given the system AK represented in the various
visualization techniques, the following tasks (treatments)
are to be applied in each case study:

 Task1 - The subjects were informed that the PBC-GZ
had needed to experience no monetary problems so
that EFT system had to be evolved to deploy the best
alternatives, no matter their costs were. For this
reason, the first change to be performed was to
change the Cost Effective Solution requirement for
The Best Solution.

 Task 2 - A new requirement was added: 24h
Monitoring that allows the system to be aware of any
warning due to problems of power supply, machine
failure, communication failure, and site failure. The

introduction of this new requirement affected all the
initial architecture rationales defined for the system.

 Task 3 – The last change is that ORACLE database is
to be replaced by MySQL because PBC-GZ is going
for open source software.

As can be observed, these three tasks led the study
group to navigate through the structures of architectural
knowledge, and modify what they considered more
appropriate, taking into account that the first two changes
affected the requirement-centered structure, and the last
one impacted architectural element-centered structure.

E. Implementation

A virtual machine was prepared that allowed each
subject to carry out his or her case study and that has a
Windows XP operating system, and all the selected
visualization tools. Then, this virtual machine was copied
in 15 PCs Dell™ Inspiron One 19. They are all-in-one
computers with built-in 19” touch screen and a CPU.

The multiple exploratory case studies were run in a
laboratory using the above described equipment with the
study group and it was carried out in three different
phases:

 First, an introduction to the experiment was provided,
describing its main aim, the case study to be used,
and the tasks to be performed.

 Second, a brief introduction of each one of the
selected tools was performed so that the subjects
acquired the necessary abilities for their
manipulation.

 Third, the study group carried out each one of the
described tasks (i.e., treatments) using the various

techniques and, as soon as they finished them they
were required to fill in the Effectiveness
questionnaire.

It is worth noting that at each phase, the subjects were
advised that the main aim of the experiment was to
evaluate the visualization technique and not the tool.

F. Analysis

The Effectiveness Questionnaire [49] chosen for our
study evaluates usability effectiveness based on four
usability factors: Usefulness, Ease of use, Ease of
learning and Satisfaction. As already noted, our empirical
evaluation was designed as a set of exploratory case
studies; therefore, our actual conclusions have to be
extracted as the results for each individual case study, and
each one of them presents results for these factors. As
also indicated, our intuition is that one visualization
technique (Node-link and tree) is much better than the
others. Our multiple case studies supports that intuition,
both individually and specifically for each one of the four
usability factors. The validity of this exploratory approach
is discussed in more detail in the next subsection.

To provide an initial global impression about the
results, we gather these individual case studies, providing
a pair of graphic depictions in the average case. In this
context, boxplots

1
 are used (Figure 7, Figure 9, Figure 8,

Figure 10) to show the Score-Visualization Technique
relation, related to each usability factor. As we can see,
the preference for Node-link and tree is clearly obvious.

1
 A boxplot graphically depicts numerical data through five-number

summaries (bottom-up): the smallest observation, lower quartile,

median, upper quartile, and largest observation. In addition, the average
has been also illustrated as a point in the middle of the boxplot.

Figure 7. Boxplots for Usefulness

Figure 8. Boxplots for Ease of learning

Figure 9. Boxplots for Ease of use

Figure 10. Boxplots for Satisfaction

However, these average results can be misleading: as
indicated, our experience is structured as multiple case
studies, and therefore it is the individual preference, rather
than the average results, what actually matters.

Our empirical survey was not designed as a controlled
experiment, and this means that the validity and statistical
significance of any “average” results has to be carefully
considered. Among many other details, our sample size is
comparatively small, and individuals were not randomly
selected; even worse, observations cannot be considered
independent, as the same population was used to evaluate
all five techniques: i.e., the same people gave an score for
every technique, and this excludes the possibility of doing
a standard analysis of variance.

Of course, this does not mean that we have to discard
an statistical analysis completely; more the contrary, our
conclusions about average values are stronger if they are
supported by a kind of analysis which takes into account
these specific issues.

Hence, we outline an statistical hypothesis test which
differs from the more usual approach in several aspects.
First, we are not considering a single technique, but five;
hence, the hypothesis test is made in pairs: scores in each
technique are compared to those in the remaining four.
Also, our observations were not independent; so instead
of considering individual scores we have to take their
differences – again, using the same pairs. Thus we have to
do 20 tests (falling down to 10); and these “pair tests”
have to be performed for the four usability factors.

Finally, our test cannot use the standard distribution as
usual, due to the sample size but we may use Student’s t-
distribution instead. In summary, our hypothesis test is
finally structured as a set of 40 t-tests, made in pairs.

Now our null hypothesis can be (again) that “all these
techniques are equally effective”. Applied to each one of
these tests, this means that every time that the hypothesis
is rejected, the difference between the two techniques in
the pair can be considered statistically significant. Once
we have established that, we are able to compare them
using the average, as we originally intended.

The results of our Student’s t-tests are included in four
pairing matrices (Table I-IV); every time that the p-value
is less than 0.01 the null hypothesis is rejected, and the
techniques in the pair must considered non-equivalent. A
quick review shows that most of the times the null
hypothesis is indeed rejected, and only a few conflicts
remain (these are marked by bold typeface).

Considering each one of the factors, we can see that
ease of use provides the clearer results. Namely, all scores
are considered significantly different, hence we can use
the average results to state that Node-link and tree is
perceived as the easiest-to-use technique. It is followed by
Indented list, Zoomable, Space-filling and Wiki, in this
order.

Satisfaction provides a similar result: all differences
are significant, and the order of preference is the same.
On usefulness, the analysis is not able to reject the null
hypothesis in the pair (Zoomable, Space-filling); but still
the rest of the differences make possible to choose Node-
link and tree as the most useful technique.

Finally, ease of learning is the more conflicting result
in our analysis, where the differences in three pairs cannot
be considered significant – but this is probably due to the
fact that this factor has the smallest sample size (not all of
the individuals completed this part of the survey). This
does not mean that Node-link and tree is not probably the
easiest-to-learn choice (the remaining pairs still suggest

P-value Wiki
Node-link &
Tree

Indented
List

Zoomable
Space-
filling

Wiki 0,000001 0,000000 0,000001 0,000001

Node-link &

Tree
0,000001 0,001067 0,000280 0,000214

Indented

List
0,000000 0,001067 0,000737 0,000134

Zoomable 0,000001 0,000280 0,000737 0,019256

Space-

filling
0,000001 0,000214 0,000134 0,019256

TABLE I. HYPOTHESIS TEST IN PAIRS FOR USEFULNESS

P-value Wiki
Node-link
& Tree

Indented
List

Zoomable
Space-
filling

Wiki 0,000000 0,000000 0,000000 0,000043

Node-link

& Tree
0,000000 0,000000 0,000000 0,000000

Indented

List
0,000000 0,000000 0,000074 0,000000

Zoomable 0,000000 0,000000 0,000074 0,000013

Space-

filling
0,000043 0,000000 0,000000 0,000013

TABLE II. HYPOTHESIS TEST IN PAIRS FOR EASE OF USE

P-value Wiki
Node-link &
Tree

Indented
List

Zoomable
Space-
filling

Wiki 0,000219 0,000096 0,000211 0,000314

Node-link &

Tree
0,000219 0,020503 0,003174 0,004385

Indented
List

0,000096 0,020503 0,030395 0,008950

Zoomable 0,000211 0,003174 0,030395 0,516762

Space-

filling
0,000314 0,004385 0,008950 0,516762

TABLE III. HYPOTHESIS TEST IN PAIRS FOR EASE OF
LEARNING

P-value Wiki
Node-link &
Tree

Indented
List

Zoomable
Space-
filling

Wiki 0,000006 0,000000 0,000037 0,000179

Node-link &

Tree
0,000006 0,001872 0,000068 0,000021

Indented
list

0,000000 0,001872 0,003598 0,000025

Zoomable 0,000037 0,000068 0,003598 0,002781

Space-

filling
0,000179 0,000021 0,000025 0,002781

TABLE IV. HYPOTHESIS TEST IN PAIRS FOR SATISFACTION

that) but the analysis cannot be conclusive.

As expected, Node-link and tree is considered better
than the other approaches in the survey. Our intuition was
correct: this technique has been the most effective for all
cases. User feedback reflects that it presents architectural
knowledge in a simple and clear way, so users can easily
navigate and explore the EFT system decision network.

G. Study Validity Issues

Construct validity is strong. Usability effectiveness
and its constituent measures are well understood by the
various subjects. Further, the use of a well described
architecture together with its AK represented in well
understood visualization techniques has strong construct
validity as well.

Internal validity suffers somewhat from the use of
students for each case study rather than practicing
software architect. Further studies would be needed with
practicing architects to see if their effectiveness
evaluations would match those of the students. The
underlying reasons for the current effectiveness
evaluations suggest that these studies would have results
congruent with our studies.

The strength of external validity lies in the use of a
realistic software architecture and its architecture
knowledge and in performing multiple studies. Its
weakness is analogous to that of internal validity in that
the multiple case studies are performed using students but
with our expectation of congruent results in further
studies with practicing architects we consider external
validity overall to be very good.

VI. CONCLUSIONS AND FURTHER WORK

As seen throughout this work, design decisions and
their rationales have to be well documented so that that
the system under development/maintenance can
efficiently and easily evolve. However, sometimes this
architectural knowledge is presented in an inappropriate
way that does not facilitate the architects’ task of system
evolution.

In this context, this paper describes five 2D
visualization techniques to support architectural
knowledge visualization and assesses them by means of
an empirical evaluation of the quality factor usability
effectiveness. This empirical study has allowed us to
observe which visualization technique is the most
effective one for representing and manipulating
architectural knowledge, in terms of four quality usability
effectiveness sub-factors: usefulness, ease of use, ease of
learning and satisfaction. Thus, Node-link and tree
technique has proved to be the most effective one for this
purpose, because its simplicity and clarity in visualizing
architectural knowledge as a comprehensible graph that is
easy to interpret and navigate, using simple and
understandable nodes.

Our future work will be focused on 3D visualization
techniques for capturing architectural knowledge and will
try to determine which category is the most appropriate
for this aim, as this work has been done with two-
dimensional ones. In addition, we will confirm our
current results with further studies with practicing
architects.

ACKNOWLEDGMENTS

We would like to thank Professor Antonio Alonso-
Ayuso, from the URJC DEIO, for his help with the
statistical analysis; and Professor Víctor López Jaquero,
for allowing us to use his Laboratory. This work has been
partially supported by grants (PEII09-0054-9581) from
the Junta de Comunidades de Castilla-La Mancha and
also by a grant (TIN2008-06596-C02-01) from the
Spanish Government.

REFERENCES

[1] P. Kruchten, R. Capilla, and J. C. Dueñas, "The decision view's role
in software architecture practice," The IEEE Computer Society, vol.
26, no. 2, pp. 36-42, 2009.

[2] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. A. Babar, "A
comparative study of architecture knowledge management tools,"
Journal of Systems and Software, 2009.

[3] D. E. Perry and A. L. Wolf, "Foundations for the Study of Software
Architecture," ACM Software Engineering Notes, vol. 17, no. 4, pp.
40-52, 1992.

[4] P. Kruchten, P. Lago, and H. van Vliet, "Building Up and
Reasoning about Architectural Knowledge," in 2nd Int'l Conf.
Quality of Software Architectures (QoSA 06), LNCS 4214, 2006,
pp. 43-58.

[5] R. Capilla, F. Nava, and J. C. Dueñas, "Modeling and Documenting
the Evolution of Architectural Design Decisions," in 2nd Workshop
Sharing and Reusing Architectural Knowledge Architecture,
Rationale, and Design Intent, 2007, p. 9.

[6] K. Henttonen and M. Matinlassi, "Open Source Based Tools for
Sharing and Reuse of Software Architectural Knowledge," in The
Joint Working IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture, Cambridge, UK,
2009.

[7] Rebecca E. Grinter, James D. Herbsleb, and Dewayne E. Perry,
"The geography of coordination," in ACM Press, 1999, pp. 306-
315.

[8] J. Dietrich and C. Elgar, "A formal description of design patterns
using OWL," in Proceedings of The Australian Software
Engineering Conference (ASWEC), 2005.

[9] J. Dietrich and C. Elgar, "Towards a web of patterns," in
Proceedings of Workshop on Semantic Web Enabled Software
Engineering (SWESE), 2005.

[10] K. Henttonen, "Stylebase for Eclipse. An Open Source Tool to
Support the Modelling of Quality Driven Software Architecture,"
VTT Technical Research Centre of Finland, Espoo, VTT Research
Note 2387, 2007.

[11] K. Henttonen and M. Matinlassi, "Contributing to Eclipse: A Case
Study," in Proceeding of 2007 Conference on Software
Engineering (SE2007), 2007.

[12] M. A. Babar and I. Gorton, "A Tool for Managing Software
Architecture Knowledge," in Proceedings of the Second Workshop
on Sharing and Reusing Architectural Knowledge (SHARK 2007),
2007.

[13] Thomas R. Gruber, "A translation approach to portable ontology
specifications," Knowledge Acquisition, vol. 5, no. 2, pp. 199-220,

1993.

[14] R. de Boer, P. Lago, A. Telea, and H. van Vliet, "Ontology-Driven
Visualization of Architectural Design Decisions," Proceedings of
the 8th Working IEEE/IFIP Conference on Software Architecture
(WICSA), pp. 43-52, 2009.

[15] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E.
Giannopoulou, "Ontology Visualization Methods-A Survey," ACM
Computing Surveys, vol. 39, no. 4, 2007, Article 10, 43 pages.

[16] R. J. McCall, "PHI: a conceptual foundation for design
hypermedia," Design Studies, vol. 12, no. 1, pp. 30-41, 1991.

[17] W. C. Regli, X. Hu, M. Atwood, and W. Sun, "A Survey of Design
Rationale Systems: Approaches, Representation, Capture and
Retrieval," Engineering with Computers, vol. 16, pp. 209-235,
2000.

[18] G. Fischer, R. McCall, and A. Morch, "JANUS: Integrating
Hypertext with a Knowledge-based Design Environment," in
Proceedings of Hypertext '89, Pittsburgh, Pennsylvania, 1989, pp.
105-117.

[19] N. F. Noy, R. W. Fergerson, and M. A. Musen, "The knowledge
model of Protégé-2000: Combining interoperability and
flexibility," in 2nd International Conference on Knowledge
Engineering and Knowledge Management (EKAW'2000), Juan-les-
Pins, France, 2000.

[20] KAON. [Online]. http://kaon.semanticweb.org/

[21] P. W. Eklund, N. Roberts, and S. P. Andgreen, "OntoRama:
Browsing and RDF ontology using a hyperbolic-style browser," in
1st International Symposium on CyberWorlds (CW2002), 2002, pp.
405-411, Theory and Practices, IEEE press.

[22] Y. Sure, J. Angele, and S. Staab, "OntoEdit: Guiding ontology
development by methodology and inferencing," in International
Conference on Ontologies, Databases and Applications of
Semantics (ODBASE'02), Irvine, 2002.

[23] A. Jansen, P. Avgeriou, and J. S. van der Ven, "Enriching software
architecture documentation," Journal of Systems and Software, vol.
82, no. 8, pp. 1232-1248, 2009.

[24] R. Farenhorst, P. Lago, and H. van Vliet, "Effective Tool Support
for Architectural Knowledge Sharing," in 1st European Conference
on Software Architecture, Madrid, Spain, 2007, pp. 123-138.

[25] M. Klein, "An Exception Handling Approach to Enhancing
Consistency, Completeness and Correctness in Collaborative
Requirements Capture," Journal of Concurrent Engineering
Research and Applications, pp. 73-80, 1997.

[26] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. A. Babar, "A
comparative study of architecture knowledge management tools," J.
Syst. Software, 2009.

[27] A. H. Dutoit, R. McCall, I. Mistrik, and B. Paech, Rationale
Management in Software Engineering.: Springer, 2006.

[28] A. MacLean, R. M. Young, V. M. Bellotti, and T. P. Moran,
"Questions, options, and criteria: elements of design space
analysis," Human-Computer Interaction, vol. 6, no. 3, pp. 201-250,
1991.

[29] A. G. Sutcliffe and M. Ryan, "Experience with SCRAM, a
SCenario Requirements Analysis Method," 3rd International
Conference on Requirements Engineering, CA: IEEE Computer
Society Press, pp. 164-171, 1998.

[30] L. Lee and P. Kruchten, "A Tool to Visualize Architectural Design
Decisions," QoSA 2008, LNCS 5281, pp. 43-54, 2008.

[31] B. Bruegge, A. H. Dutoit, and T. Wolf, "Sysiphus: Enabling
Informal Collaboration in Global Software Development," in 1st
International Conference on Global Software Engineering, Costao
do Santinho, Florianópolis, Brazil, 2006.

[32] F. Peña-Mora and S. Vadhavkar, "Augmenting Design Patterns
with Design Rationale," Artif. Intell. For Eng. Design, Analysis and
Manuf., vol. 11, no. 2, pp. 93-108, 1997.

[33] M. Shahin, P. Liang, and M. R. Khayyambashi, "Rationale

visualization of software architectural design decision using
Compendium," Proceedings of the 2010 ACM Symposium on
Applied Computing, 2010.

[34] J. Conklin and M. L. Begeman, "gIBIS: A Hypertext Tool for
Exploratory Policy Discussion," ACM Transactions on Office
Information Systems, vol. 6, no. 4, pp. 303-331, Octubre 1988.

[35] M. Shahin, P. Liang, and M. R. Khayyambashi, "Improving
understandability of architecture design through visualization of
architectural design decision," Proceedings of the 2010 ICSE
Workshop on Sharing and Reusing Architectural Knowledge, 2010.

[36] J. Lee, "Sibyl: A Qualitative Decision Management System,"
Cambridge, Mass. : Center for Coordination Science,
Massachusetts Institute of Technology, Sloan School of
Management, pp. 106-133, Enero 1990.

[37] M. Biehl and M. Törngren, "An executable design decision
representation using model transformations," 36th EUROMICRO
Conference on Software Engineering and Advanced Applications
(SEAA 2010), Septiembre 2010.

[38] W. Rivadeneira and B. B. Bederson, "A Study of Search Result
Clustering Interfaces: Comparing Textual and Zoomable
Interfaces," HCIL-2003-36, Tech. Rep., October 2003.

[39] M.-A. Storey et al., "Jambalaya: Interactive visualization to
enhance ontology authoring and knowledge acquisition in Protégé,"
in Workshop on Interactive Tools for Knowledge Capture (K-CAP
2001), Victoria, BC, Canada, 2001.

[40] J. Wu and M.-A. Storey, "A multi-perspective software
visualization environment," in Proceedings of the 2000 Conference
of the Centre for Advanced Studies on Collaborative Research,
2000.

[41] B. Parsia, T. Wang, and J. Goldbeck, "Visualizing Web ontologies
with cropCircles," in Proceedings of the 4th International Semantic
Web Conference, 2005, pp. 6-10.

[42] T. Wang and B. Parsia, "CropCircles: topology sensitive
visualization of owl class hierarchies," in Proceedings of the
International Semantic Web Conference (ISWC 06), 2006.

[43] B. Shneiderman, "Tree visualization with tree-maps: A 2-d space-
filling approach," ACM Trans. Graph., vol. 11, no. 1, pp. 92-99,
September 1992.

[44] The Computer science department Technische Universiteit
Eindhoven. (2002) SequoiaView. [Online].
http://www.win.tue.nl/sequoiaview/

[45] K. Andrews and H. Heidegger, "Information Slices: Visualising
and exploring large hierarchies using cascading, semi-circular
discs," in Proceedings of the IEEE Information Visualization
Symposium, Carolina, 1998, pp. 9-12.

[46] A. Tang, Y. Jin, and J. Han, "A rationale-based architecture model
for design traceability and reasoning," Journal of Systems and
Software, vol. 80, no. 6, pp. 918-934, 2007.

[47] A. Tang, Ph. D. A Rationale-based Model for Architecture Design
Reasoning, 2007.

[48] Robert K. Yin, Case Study Research: Design and Methods, Third
Edition, Applied Social Research Methods Series, Vol 5.: Sage
Publications, Inc.

[49] A.M. Lund. (2001) Questionnaire for User Interface Satisfaction.
[Online]. http://oldwww.acm.org/perlman/question.cgi?form=USE

http://kaon.semanticweb.org/
http://www.win.tue.nl/sequoiaview/
http://oldwww.acm.org/perlman/question.cgi?form=USE

