Evolution-Centered Architectural Design Decisions Management

Meiru Che, Dewayne E. Perry
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX 78705
United States
meiruche @utexas.edu, perry @mail.utexas.edu

Abstract: Software architecture is considered as a set of architectural design decisions. Managing the evolution
of architectural design decisions helps to maintain consistency between requirements and the deployed system,
and is also necessary for reducing architectural knowledge evaporation. In this paper, we propose a UML meta-
model based on the Triple View Model from our previous research work. The UML metamodel incorporates
evolution-centered characteristics to manage architectural design decision evolution. It helps to capture and trace
the evolution of architectural design decisions explicitly, and reduces the evaporation of architectural knowledge
that results from decisions evolution. We conduct a case study to illustrate the effectiveness of the metamodel.

Key—Words: Architectural design decisions, architectural knowledge evolution, design knowledge management

1 Introduction

Software architecture plays a foundational role in
achieving system functional and non-functional re-
quirements. The architecting process provides a high-
level framework to support designing, developing,
testing, and maintaining software systems after de-
ployment. The traditional concept of software ar-
chitecture focuses on components and connectors, as
Perry/Wolf proposed in [18]. Perry and Wolf consid-
ered the selection of elements and their form to be ar-
chitectural design decisions, and the justification for
these decisions to be found in the rationale. It was
not until 2004, with Bosch’s paper [3] at the European
Workshop on Software Architecture, that software ar-
chitecture has finally come to be considered as a set
of architectural design decisions (ADDs). This spe-
cific focus on architectural design decisions led to a
broader focus on architectural knowledge [16].

Since architectural knowledge representation and
knowledge evaporation have major influence on com-
plexity and cost of system evolution, communication
among stakeholders, and software architecture reuse,
effectively capturing and representing ADDs can help
to organize architectural knowledge and reduce its
evaporation, thus providing a better control on many
fundamental architectural drift and erosion problems
[18] in the software life cycle. A number of models
and tools to capture, manage, and share ADDs have
been proposed in the recent years [4], [14], [21]. In
the research of architectural knowledge management,
managing the evolution of ADDs is one of the most

critical aspects requiring more attention in research
and industry [17]. However, the existing models do
not support architecture evolution very well [5].

In order to address this need, we propose a UML
metamodel based on our Triple View Model (TVM)
[6] that is developed for managing ADDs documen-
tation. The core idea of this UML metamodel is to
ensure that the evolution of ADDs in the software ar-
chitecting process can be captured and tracked prop-
erly, thus the evolutionary architectural knowledge
can be shared by all the stakeholders without evap-
oration. Several evolution-centered characteristics are
incorporated into the metamodel, which enable us to
achieve this goal. We subsequently illustrate a case
study to validate our UML metamodel.

We make the following three contributions:

1) The UML metamodel - A fine-grained def-
inition for the TVM [6], which designs each ADD
category in the TVM as a UML class with multiple
attributes to describe the ADD information;

2) Evolution-centered characteristics - The
evolutionary characteristics in the UML Metamodel,
which help to capture architectural knowledge for
managing the evolution of ADDs in a software archi-
tecting process;

3) An illustrative case study - A brief validation
for the UML metamodel using an industrial project.
The results demonstrate the effectiveness of the meta-
model on managing ADDs evolution.

2 Triple View Model

In order to capture the complete architectural de-
sign decisions set, we have proposed the Triple View
Model to clarify the notions of ADDs, and to cover
the key features in the architecting process [6].

2.1 Framework

The TVM is defined by three views: the element view,
the constraint view, and the intent view. This is anal-
ogous to Perry/Wolf model’s elements, form, and ra-
tionale but with expanded content and specific repre-
sentations [18]. Each view in the TVM is a subset of
ADDs, and the three views constitute an entire ADDs
set. Specifically, the three views mean three differ-
ent aspects when creating an architecture, i.e., “what”,
“how”, and “why”, as shown in Figure 1. The three
aspects aim to cover design decisions on “what” el-
ements should be selected in an architecture, “how”
these elements combine and interact with each other,
and “why” a certain decision is made.

What,~ AN

Element
View

N A

// B \\

i AN
Architectural N ,,Why

How - Design Decisions —
4 N\ /

\
/

\
\

[Constraint \“’ (Intent |
‘ View | | View

.\\ o Y N //,/

Figure 1: Triple View Model Framework

The detailed contents of each view in the TVM
are illustrated in Figure 2.

In the element view, the ADDs describe “what”
elements should be selected in an architecting pro-
cess. We define computation elements, data elements,
and connector elements in this view. Computation ele-
ments represent processes, services, and interfaces in
a software system. Data elements indicate data ac-
cessed by computation elements. Both computation
elements and data elements are regarded as compo-
nents in software architecture, and connector elements
are (at minimum) communication channels (that is,
mechanisms to capture interactions) between those
components in the architecture. Note that the ADDs
in the element view consist of traditional architecture
concepts, which are mainly represented by compo-
nents and connectors.

In the constraint view, the ADDs are defined as
behavior, properties, and relationships. They describe
constraints on system operations and are typically de-
rived from requirement specifications. Specifically,
behavior illustrates what a system should do and what

it should not do in general. It specifies prescriptions
and proscriptions based on requirement specifications,
and influences the design decisions in the element
view. Properties are defined as constraints on a sin-
gle element in the element view, and relationships are
constraints on interactions and configurations among
different elements.

The ADDs in the intent view are composed of
rationale and best-practices in the architecting pro-
cess. Rationale, which includes alternatives, moti-
vations, trade-offs, justifications and reasons, is gen-
erated when analyzing and justifying every decision
that is made. Best-practices are styles and patterns
we choose for system architecture and design. The
architectural decisions in the intent view mainly ex-
ist as tacit knowledge [20], and we need to docu-
ment them during the decision making process, so
that stakeholders can clearly understand these tacit ar-
chitectural knowledge during the architecting process.
What’s more, the consistent communication among
different stakeholders effectively decreases architec-
tural knowledge evaporation.

2.2 Scenario-Based Approach to ADDs
Management

The TVM is the foundation of ADDs documentation
and evolution. In the SceMethod [6], we aim to obtain
and specify the element view, the constraint view, and
the intent view through end-user scenarios represented
by Message Sequence Charts (MSCs). Figure 3 illus-
trates the SceMethod process.

Requirement
Elicitation

End-user
Scenarios
/ Evolve / Refine

Architectural Design
Decisions

(

Figure 3: The SceMethod Process

For the sake of brevity, we will not discuss the
detailed process for the SceMethod that is proposed
in [6]. The derived ADDs results by applying the
SceMethod are as follows:

For the element view:

Computation Elements = {Agent Instances}

Data Elements = {Interaction Messages}

Connector Elements = {Channels between Agents}

For the constraint view:

Behavior = {Prescriptions; Proscriptions}

Prescriptions = { Positive Scenarios}

uses and

acce {2
Computation Elements }—# Data Elements ‘

Properties

impact on K :
connects connects Behavior impact on
A
Connector Elements }7 Relationships
Element View Constraint View
impact on impact on impact on
. t A4
impact on
Rationale I p > Best-Practices
‘ Alternatives H Motivations ” Trade-offs H Justifications H Reasons ‘ Architectural || Architectural Design

Intent View

Styles Patterns Patterns

Figure 2: Triple View Model for Architectural Design Decisions

Proscriptions = {Negative Scenarios; Exceptions}

Properties = {Receive; Issue; Check}

Relationships = {Event Traces by Path Expressions}

For the intent view:

Rationale = {Answers or Solutions to The Intent-
Related Questions}

Best-Practices = {Architectural Styles; Architectural
Patterns; Design Patterns}

3 Evolution-Centered UML Meta-
model

3.1 Metamodel

Based on the previous research work where we fo-
cused on managing the documentation and evolution
of ADDs, we develop a UML metamodel of our Triple
View Model. The UML metamodel provides more de-
tailed evolution-centered characteristics which enable
us to manage the evolution of architectural knowl-
edge.

Figure 4, 5, and 6 illustrate the UML metamodel.
In Figure 4, we can see that computation elements,
data elements and connector elements in the element
view are specified as classes where each of them has
a bounch of attributes to describe its information. Be-
havior and Relationship classes describe the ADDs in
the constraint view, and the architectural decisions for
the “properties” of each element are merged into the
corresponding element class as attributes. In Figure 5
and 6, the ADDs on “Rationale” and “Best-Practices”
are described as specific classes that extended the gen-
eral Rationale and Best-Practices class.

3.2 Evolution-Centered Characteristics

The metamodel aims to manage the evolution of ar-
chitectural design decisions. It has the following
evolution-centered characteristics that enable us to

Connector_Element Computation_Element
- name : string - name : string
- description : string - description : string
- source_Element : Computation_Element - receive_Constraint : Data_Element
- target_Element : Computation_Element connects |. issue_Constraint : Data_Element
- check_Constraint : string - check_Constraint : string
- creation_Date : timeStamp - creation_Date : timeStamp
- version : double = 0 - version : double = 0
- evolve_From : double (version_Number) = 0 - evolve_From : double (version_Number) = 0

Element accesses
impact) Data_Element

Behavior \ - name:string

- description : string

- receive_Constraint : Computation_Element
- issue_Constraint : Computation_Element
> - check_Constraint : string

- creation_Date : timeStamp
Ralationship - version : double = 0
- pathDescription : string
 ————

- evolve_From : double (version_Number) = 0

- description : string
- classification : bool

Figure 4: Metamodel for the Element and the Con-
straint View

Best_Practices
S

Architectural_Style Architectural_Pattern Design_Pattern
- name : string - name : string - name : string
- description : string - description : string - description : string
- creation_Date : timeStamp - creation_Date : timeStamp - creation_Date : timeStamp
- version : double = 0 - version : double = 0 - version : double = 0
- evolve_From : double = 0 - evolve_From : double = 0 - evolve_From : double = 0

Figure 5: Metamodel for Best-Practices

Alternative Justification
- name : string - target : Element/Best_Practice
- description : string - description : string
= pros : string - related_Version : double (version_Number) = 0
- cons : string
- target : Element/Best_Practice
D e P e (version_Number) = 0 A] _Trade_OH
Ralionale] - description : string
- target : Element/Best_Practice
- related_Version : double (version_Number) = 0
Motivation Reason

- description : string
- target : Element/Best_Practice - description : string
- related_Version : double (version_Number) = 0 - related_Version : double (version_Number) = 0

~ target : Element/Best_Practice

Figure 6: Metamodel for Rationale

make ADDs evolution explicitly, so that all the stake-
holders can share architectural knowledge, specifi-
cally, decreasing the evaporation of the evolutionary
knowledge in the software architecting process.

3.2.1 Evolution-Related Attributes

We define several evolution-related attributes to de-
scribe the ADDs classes in the metamodel. We use
creation_Date to record the specific time stamp when
a certain ADD is made. Version is used to specify a
version number assigned to each ADD, which helps to
manage multiple copies of a certain ADD during the
evolutionary process. Moreover, we aim to record the
evolution history by an attribute called evolve_From.
When a new ADD is made that is evolved from an ex-
isting one, the evolve_From attribute is used to indicate
the version of the previous ADD based on which the
newly ADD is evolving. Another evolution-related at-
tribute we propose is the related_Version for the Ra-
tionale classes, which is used to specify the version
number of an ADD the rationale describes.

3.2.2 Traceable Evolution Chain

Besides the aforementioned evolution-related at-
tributes, the UML metamodel provides a complete
evolution chain for every ADD’s evolutionary change,
which enable us to keep tracking the evolution his-
tory of the ADDs set. Specifically, the evolve_From
attribute provides a bridge to establish the evolution
chain for ADDs. Through the evolution chain, the
architect and other stakeholders are able to trace the
changing information of a certain ADD, and they can
share consistent architectural knowledge. Addition-
ally, a traceable evolution chain keeps all the evolution
history explicitly and hence significantly reducing the
evaporation of the evolutionary architectural knowl-
edge during the software development process.

3.2.3 Version-Specific Rationale

We can see that in all the rationale classes we have
an attribute called related_Version, which is used to
record the specific version number of an element or a
best-practice that a rationale describes. The version-
specific rationale classes provide us multiple ways of
managing the evolutionary knowledge of ADDs by
either tracking the rationale for a target ADD for its
multiple versions or tracking the rationale for a cer-
tain version of an ADD. Thus, the tacit knowledge can
be obtained according to the specific requirement on
ADDs evolution.

4 Case Study

We select the same industrial project as we did for
the TVM to illustrate how the UML metamodel works

on managing the evolution of ADDs. It is an indus-
trial project provided by the Italian electrical com-
pany ENEL [1], and provides us a real industrial en-
vironment for making architectural design decisions
and managing decisions’ evolution. In this project, a
power plant monitoring system is to be established to
improve power plant efficiency, to reduce operation
and maintenance costs, and to avoid forced outages.
The main requirements of the power plant monitoring
system are gathered from [8], [9].

From the results of the previous case study on the
TVM and the SceMethod [6], we obtain the following
ADDs in three different views, which are shown in
Table 1, 2, and 3.

Table 1: The Element View Results

Sensor Manager
FaultDetection Engine
Alarm Manager
UpdateDB Manager
UserlInteraction Manager
QueryDB Manager
Sensor Information

Fault Information

Alarm Information
Alarm Diagnosis

Fault Diagnosis

User Request

Query Answer

Sensor Connector
FaultDetectionAlarm Connector
UpdateDB Connector
QueryDB Connector

Computation Elements

Data Elements

Connector Elements

Table 2: Properties Results in The Constraint View

[Elements “ Receive [Issue [Check]
Sensor Manager (S_-M) Field Data S Data Correctness
FaultDetection Engine . .
(FD.E) S F.1, F.D Sanity, Consistency
Alarm Manager
(AM) F.1 Al AD Fault Detected
UpdateDB Manager AL AD,

(UDB_M) S_.I,F.D

UserlInteraction User) UR

Manager (UILM) Operations

QueryDB Manager

(QDB_M) UR Q-A

Sensor Information (S_I) SM FD_E Sanity, Consistency
Fault Information (F_I) FD_E AM Fault Detected
Alarm Information (A_I) AM UDBM Fault Detected
Alarm Diagnosis (A_D) AM UDBM Alarm Transmitted
Fault Diagnosis (F_D) FD_E UDBM Fault Detected
User Request (U_R) UILM QDBM -

Query Answer (Q_A) QDB.M UM

Sensor Connector (S_C) S.M FD_E Data Correctness
FaultDetectionAlarm . .
Connector (FDAC) FD_E AM Sanity, Consistency
UpdateDB Connector S-M, FD_E, Secure,

(UDB.C) AM UDB-M TimeConstraint=2s
QueryDB Connector . L
(QDB_C) UILM QDBM TimeConstraint=5s

When applying our UML metamodel as a fine-
grained way, we further defined all of these ADDs as
objects for the corresponding UML classes. We fi-
nally derived seventeen objects for the elements, three
objects for the architectural/design style and patterns,
and about fifty objects for the rationale during the en-
tire architecting process. The contents in Table 2 are

Table 3: Questions For Establishing The Intent View

(Motivation)

What is the motivation to establish the monitoring system?
(Alternatives)

How can we get the six computation elements?

(Reasons)

Why do we need the computation element “FaultDetection
Engine”?

(Trade-offs)

‘What is the trade-off between using “Sensor Manager” or not?
(Justifications)

How to justify “Alarm Manager” works according to the
requirements?

Rationale

(Architectural styles)

‘What kind of architectural style we can use to establish the
system?

(Architectural patterns)

Is the layers architectural pattern applicable to the system?
(Design patterns)

Is there any design pattern we can adopt to design the system?

Best-
Practices

transferred as the values of attributes in the element
objects.

When we first applied the UML metamodel, we
got the initial version of each object in every class.
During the evolutionary change, the ADDs in the el-
ement, the constraint, and the intent view will also
be changed, and should be tracked and updated ex-
plicitly. With the UML metamodel, we do not need
to update evolutionary changes from the Triple View
Model, but only add new objects for specifying the
corresponding changes. As in the case study we did
for the TVM [6], some new reliability requirements
are added to the system afterward. One requirement
is that “once a fault is detected by the FaultDetection
Engine, the alarm should be raised within 5 seconds”,
which is a new limitation included in the requirement
specifications. Based on this newly added require-
ment, we need to introduce a new object for the Fault-
DetectionAlarm connector element that evolves from
the previous one. The evolutionary change is shown
in Figure 7.

FaultDetectionAlarm_0
- name : FaultDetectionAlarm_0
- description : The connector between the FaultDetection Engine and the Alarm Manager
- source_Element : FaultDetection Engine
- target_Element : Alarm Manager
- check_Constraint+-Sanity, Consistency
- creation,Date
- version:0
- evolve_From:0

FaultDetectionAlarm_1
- name : FaultDetectionAlarm_1
- description : The connector between the FaultDetection Engine and the Alarm Manager
- source_Element : FaultDetection Engine

- target_Element : Alarm Manager

- check_Constraint +-Sani Consistenc
- creation_Date

- version

- evolve,From

Figure 7: An Evolutionary Change

In Figure 7, we can see that a new ob-
ject FaultDetectionAlarm_1 is added based on the
changing requirement. The value of the attribute
check_Constraint has been changed, and the cre-

ation_Date and the version respectively specified the
new creation date and the version number of this
object. We trace the evolution from the attribute
evolve_From, and the evolution chain provides us the
snapshot of the evolutionary history. Most of the time,
the ADDs in the intent view evolve as well if the de-
cisions in element view or the constraint view change.
Hence we also need to document the reason and the
justification as ADD objects, in order to specify the
rationale for the time constraint of the FaultDectec-
tionAlarm connector. In this way, we explicitly record
how the FaultDetectionAlarm connector evolves in
the architecting process and the rationale behind the
new decision during the decision making process.

Due to the space limitations, we will not spec-
ify all the possible decisions in the architectural evo-
lution. Using the UML metamodel we propose, we
can effectively manage the evolutionary change of ar-
chitectural design decisions. The stakeholders in the
software development process can share consistent
architectural knowledge on ADDs evolution without
knowledge evaporation.

5 Related Work

The key concepts of the traditional view on software
architecture are components and connectors [2], [18].
Nowadays, software architecture has been seen as a
set of architectural design decisions [3], [13], [19].
The architectural decisions in the software architect-
ing process are increasingly focused by researchers
and practitioners [11], [15], and architectural design
decisions are also considered to be a part of archi-
tectural knowledge [16]. In [10], a systematic review
for architectural knowledge is presented, and different
definitions on architectural knowledge and how they
are relevant to each other are discussed as well.
Recently, the research on managing the evolution
of ADDs has been focused in the software architec-
ture area. A number of models and tools have been
proposed for ADDs evolution management. In [12],
an approach for assisting architects in reasoning ar-
chitectural evolution paths has been described, and
the concept of evolution style is defined in it. Some
other techniques as discussed in [7] and [22] introduce
different approaches for capturing architectural evolu-
tion and selection architectural evolution alternatives.
Our work presents a complete documentation of
ADDs, specifically focusing on ADDs evolution man-
agement. Comparing the research work related to
ours, the UML metamodel we proposed not only sup-
ports the documentation of ADDs evolution, but also
enables us to trace the evolutionary changes. More-
over, the UML metamodel captures ADDs on ratio-
nale as well; therefore, the tacit architectural knowl-

edge in the architects’ mind are explicitly recorded in
order to keep the knowledge from being evaporated.

6 Conclusions and Future Work

A recent strand of software architecture research is
that software architecture is considered as a set of ar-
chitectural design decisions. Managing the evolution
of ADDs helps to maintain consistency between re-
quirements and the deployed system, and is also nec-
essary for reducing architectural knowledge evapora-
tion. In this paper, we propose a UML metamodel in-
corporating key evolution-centered characteristics to
manage the evolution of ADDs. The goal of the UML
metamodel is to ensure that the architectural knowl-
edge on the evolutionary changes of ADDs can be
recored and traced in a systematic way, in order to re-
duce architectural knowledge evaporation during the
architecting process.

Our ongoing work is devoted to conducting more
extensive evaluation on our UML metamodel. Fur-
thermore, we plan to provide tool support to enable
the practical application of the UML metamodel.

References:

[1] http://www.enel.com/en-GB/.

[2] L. Bass, P. Clements, and R. Kazman. Soft-
ware architecture in practice. Addison-Wesley,
Boston, MA, USA, 1998.

[3] J. Bosch. Software architecture: The next step.
In EWSA, pages 194-199, 2004.

[4] R. Capilla, F. Nava, S. Pérez, and J. C. Dueiias.
A web-based tool for managing architectural de-
sign decisions. SIGSOFT Softw. Eng. Notes, 31,
September 2006.

[5] R. Capilla, F. Nava, and A. Tang. Attributes for
characterizing the evolution of architectural de-
sign decisions. Software Evolvability, IEEE In-
ternational Workshop on, 0:15-22, 2007.

[6] M. Che and D. E. Perry. Scenario-based ar-
chitectural design decisions documentation and
evolution. In ECBS, pages 216-225, 2011.

[7] S. Ciraci, H. Sozer, and M. Aksit. Guiding archi-
tects in selecting architectural evolution alterna-
tives. In ECSA, pages 252-260, 2011.

[8] A. Coen-porisini and D. Mandrioli. Using trio
for designing a corba-based application. Con-

currency and Computation: Practice and Expe-
rience, 12:981-1015, 2000.

[9] A. Coen-Porisini, M. Pradella, M. Rossi, and
D. Mandrioli. A formal approach for designing
corba-based applications. TOSEM, 12:107-151,
April 2003.

[10] R. C. de Boer and R. Farenhorst. In search of
‘architectural knowledge’. In SHARK, pages 71—
78, 2008.

[11] J. C. Dueas and R. Capilla. The decision view of
software architecture. In ECSA, pages 222-230,
2005.

[12] D. Garlan, J. M. Barnes, B. R. Schmerl, and
O. Celiku. Evolution styles: Foundations and
tool support for software architecture evolution.
In WICSA/ECSA, pages 131-140, 2009.

[13] A. Jansen and J. Bosch. Software architecture
as a set of architectural design decisions. In
WICSA, pages 109-120, 2005.

[14] A.Jansen,J. van der Ven, P. Avgeriou, and D. K.
Hammer. Tool support for architectural deci-
sions. In WICSA, pages 4—, 2007.

[15] P. Kruchten, R. Capilla, and J. C. Dueiias. The
decision view’s role in software architecture
practice. IEEE Softw., 26:36—42, March 2009.

[16] P. Kruchten, P. Lago, and H. V. Vliet. Building
up and reasoning about architectural knowledge.
In QoSA, pages 43-58, 2006.

[17] D.E. Perry. Issues in architecture evolution: Us-
ing design intent in maintenance and controlling
dynamic evolution. In ECSA, pages 1-1, 2008.

[18] D.E. Perry and A. L. Wolf. Foundations for the
study of software architecture. SIGSOFT Softw.
Eng. Notes, 17:40-52, October 1992.

[19] R. N. Taylor, N. Medvidovic, and E. M.
Dashofy. Software Architecture: Foundations,
Theory, and Practice. Wiley, 2009.

[20] D. Tofan. Tacit architectural knowledge. In
ECSA Companion Volume, pages 9-11, 2010.

[21] J. Tyree and A. Akerman. Architecture deci-
sions: Demystifying architecture. IEEE Softw.,
22:19-27, March 2005.

[22] A. Zalewski, S. Kijas, and D. Sokolowska. Cap-
turing architecture evolution with maps of archi-
tectural decisions 2.0. In ECSA, pages 83-96,
2011.

