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Abstract—
Background: Software agents are becoming increasingly

common in the engineering of software systems. In this work,
we explore using human subjects to create benchmarks for
evaluating these agents. In our case studies, we address the
domain of instructable software agents as proposed by the
Bootstrapped Learning project [1].

Aim: Our aim is to define and refine requirements, problem
solving strategies, and evaluation methodologies for software
agents, paving the way for rigorous experiments comparing their
performance with human benchmarks.

Method: Little was known about what factors would be
critical, so our empirical approach is exploratory case studies. In
two studies covering three distinct groups, we use human subjects
to develop an evaluation curriculum for instructable software
agents, collecting quantitative data through online quizzes and
tests and qualitative data through observation.

Results: Though we provide some analysis of quantitative
data, our most important results are qualitative. We uncover and
address several intrinsic challenges in comparing software agents
with humans, including the greater semantic understanding
of humans, the eidetic memory of software agents, and the
importance of various study parameters (including timing issues
and lesson complexity) to human performance.

Conclusions: This work provides valuable insight into
evaluating software agents with human benchmarks. We hope
future researchers will be able to perform controlled experiments
in various domains using a methodology based on the results of
our case studies.

I. INTRODUCTION

Software agents are becoming increasingly common in the
engineering of software systems. These agents are generally
intended to be autonomous and independent, and may be
specialized to a particular domain or required to function in un-
foreseen domains. There are a variety of techniques for creat-
ing that autonomy; in this paper we target domain-independent
human-instructable agents. Whatever the approach used, we
should rigorously evaluate agent performance through empir-
ical studies. In this research we explore the use of humans in
creating benchmarks for the evaluation of software agents.

II. STUDY AIMS

In this paper we present two exploratory case studies with
human subjects wherein we define and refine requirements,
problem solving strategies, and evaluation methodologies for
instructable software agents (e-students) as proposed by the
Bootstrapped Learning project [1]. The eventual goal is to
directly compare agents performance with human performance
on “identical” curricula in controlled experiments. This paper

is a more complete version of preliminary publications [2,3] in
which we could not yet reveal details of the hidden domain of
instruction. We refer to these studies as “Phase II” and “Phase
III” with respect to a preliminary “Phase I” study conducted
earlier by our group and not covered in this paper [3,4].

III. RELATED WORK

Since this work concerns evaluating instructable agents
rather than developing them, there is little previous work that is
directly applicable. In this section, we begin with an overview
of the Bootstrapped Learning project and our work’s relation
to it, and we then give a short overview of other related work.

A. The Bootstrapped Learning Project

Bootstrapped Learning (BL) is a program originated by
DARPA exploring a new direction for machine learning in
which human instructors teach, rather than program, electronic
computational agents [1,5].

Two teams are working in parallel as part of this project.
Our group is part of the Curriculum Team, which also includes
groups from BAE Systems [2,3], Stottler Henke Associates
Inc. [6,7], Cycorp Inc., and others. The Curriculum Team
is developing the Bootstrapped Learning Analysis and cur-
riculum Development Environment (BLADE), which includes
developing a framework to support BL, a set of laddered
curricula across a variety of domains as testing vehicles for the
e-student, and an evaluation of the e-student on both hidden
and known domains. Other groups, as part of the Learning
Team, are developing the learning agents [8]–[10].

BLADE includes three agents, whose interactions and rela-
tionships are shown in Fig. 1. A teacher agent serves as a proxy
for an eventual human teacher, instructing and testing the e-
student. The student agent is the embodiment of the e-student,
which typically employs a number of learning algorithms. The
world agent serves as a proxy for a domain simulator. Over the
first three phases of the BL program, the Curriculum Team has
developed sets of curricula in a variety of complex domains
including planning robotic arm movements in a Blocksworld
[3,4], robot soccer [11,12], unmanned aerial vehicle surveil-
lance, diagnosis tasks for the international space station [6],
armored task force maneuvers, and diagnosing and repairing
problems with a satellite-tracking ground station (the domain
explored in this work).

BLADE employs InterLingua (IL) and InteracTion Lan-
guage (ITL), developed specifically for the BL project [1], to



pass messages between agents in the BLADE framework. It
uses an automated teacher, rather than a human teacher, to ease
testing scalability and reproducibility. Part of the Curriculum
Team’s research is to explore how best to incorporate a human
teacher.

Fig. 1. The BLADE Framework

B. Computer Tutoring

The area of computer tutoring can be seen as an inverse
problem to what we are investigating. In particular, the area
of teachable agents bears some surface similarity to BL. In this
field, human students teach learning agents in order to improve
their own understanding of concepts (Learning by Teaching).
One example is the Betty’s Brain system [13]. However, in
these systems the importance is placed on how well the human
instructor learns, not on the capabilities of the learning agent.

C. Human Learning, Teaching, and HCI

Our group previously performed a case study to determine
how a human would attempt to teach an e-student [3,4].
We leveraged the results of this study to create the human
benchmark studies outlined in this paper.

We leverage existing knowledge about human learning and
computer-human interaction when giving recommendations
for future benchmarking experiments [14]–[16].

IV. PHASE II: INITIAL HUMAN COMPARISON STUDY

In Phase II of this project, the overall plan was
1) to establish a laboratory setup in which to create

benchmark tests using human students and a human-
consumable representation of the e-student instruction,
and

2) to create the necessary experimental protocols by which
to create those benchmark tests for the e-student.

Our overarching goal was to mimic the e-student context
as closely as possible in the human student studies so an e-
student can be fairly but rigorously evaluated with respect to
its ability to learn from the defined curricula.

As we knew very little about the curriculum complexity for
which human students could achieve a satisfactory level of
learning, this study was an exploratory case study. Our use
of human students in this study was solely to establish the
benchmark lessons and tests. We were not studying the human
students at all; we were only using them to establish the levels
of lessons and tests to which the e-students shall be held in
evaluating their performance.

A. Study Objectives

Our goal was for this case study to provide us with a set
of benchmark lessons and tests by which to measure an e-
student’s ability to learn from an automated teacher. We sought
to produce lessons and tests on which human students could
achieve a minimum score of 80%. To ensure the internal
validity of the study, it was imperative that the lessons and tests
given to the human students matched the corresponding units
for the e-students as closely as possible, through differences
between the student types made this somewhat difficult.

B. The Hidden Domain

The hidden domain for this study was diagnosing and fixing
problems with a satellite-tracking ground station. In the real-
world counterpart to our hidden domain, satellites in orbit
are monitored and controlled from mission-control centers on
the ground. These mission-control centers communicate with
satellites through ground stations that operate antennas. The
training scenarios in our study’s hidden domain consisted of
diagnosing and repairing misconfigurations and component
failures in ground station equipment. These scenarios and the
simulation interface are drawn from actual experiences with
ground stations for scientific satellites.

Students interacted with the domain through a Java sim-
ulator with a Graphical User Interface (GUI), as shown in
Fig. 2. Each lesson was available in up to three different
instructional styles, known as Natural Instruction Methods
(NIMs). Respectively, these methods presented material

Fig. 2. Hidden Domain Simulator



1) by telling - by giving the definition of a task to be done
2) by example - by showing screenshots of tasks being done

in the simulator, and
3) by feedback - by instructing students to perform a task

and then providing feedback about whether the student
performed the task correctly.

In this phase, we gave each human student all three lesson
types, with the option to skip any particular lesson type on
any curriculum unit or rung.

C. Initial Study Design

Our first design was a direct analog of the relationship
between an automated teacher and an e-student. Since we
were concerned with evaluating the curriculum and not the
subjects, a major concern was preventing a human teacher
from unconsciously providing extra-curricular information to
the student through facial expressions, gestures, tone, etc. In
this design there was one teacher, one student, and at least one
observer per session. The teacher and the student were each
provided with two Windows Vista laptops and one external
monitor. These setups were positioned on desks facing one
another but separated by a screen (as shown in Fig. 3). One
laptop on each side was used for instant messaging between
teacher and student, and the other was used for manipulation
of the hidden domain simulator. The external monitor on each
side was connected to the hidden domain simulator laptop on
the other side of the separating screen. This allowed a student
to see the teacher’s example usage of the simulator and also
allowed the teacher to observe a student’s simulator practice
and tests.
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External 
Monitor

Simulator 
Laptop

Chat 
Laptop

External 
Monitor

Simulator 
Laptop

Chat 
Laptop
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Fig. 3. Phase II: Initial Testing Setup

The student and teacher were only allowed to communicate
through the electronic means provided. The student was al-
lowed to talk to the observer about practical issues like the

need for breaks, equipment or software failures, or desire to
withdraw from the study. For teaching, the human teacher
simply typed transliterations of the electronic curriculum into
the chat window and performed curriculum examples in the
simulator on the corresponding laptop. We used a screen-
drawing tool to allow the teacher to emphasize certain areas of
the screen by circling and underlining. The student was only
allowed to ask the teacher to skip or repeat a lesson; no other
communication was allowed, as there is none between the e-
students and automated teachers. After testing this setup with
a few volunteers, we uncovered significant problems.

D. Problems with Initial Design

There were several practical problems with this initial setup
and instantiation of the curriculum. First, because of the
restricted communication method, there was no way for the
teacher to tell if a student had seen and understood an utterance
or demonstration, so the teacher could not pace the curriculum
correctly. Also, the teacher’s job of typing utterances and
giving demonstrations was time-consuming, extremely error-
prone, and initially there was no protocol that allowed the
teacher to report errors or redo instructions.

These minor issues were easy to fix, but there were deeper
problems with teaching human students in this way (with a
direct translation of the electronic curriculum). Mainly, this
method of instruction was very slow, and we were overrunning
our allotted study time of four hours per person by a large
margin. Also, both the method of communication and the
phrasing of instructions were sometimes awkward, frustrating,
and misleading for human students.

To solve these problems, we thought carefully about the
differences between electronic and human students and con-
sidered how we could improve the human testing process
while ensuring that the curriculum we were evaluating was
still equivalent to that given to the e-student.

One major issue was that e-students have the advantage
of eidetic memory. This means that an e-student is able to
recall any given lesson exactly, whereas a human student is
not. On the other hand, human students have a much deeper
understanding of language. This knowledge can sometimes
lead a human student to glean more from a given instruction
than an e-student could, but it can also confuse a human
student when an instruction may have multiple meanings, or
when an instruction is unnaturally phrased (though strictly
correct).

E. Final Study Design

Our main modification that rendered human testing fea-
sible was to make the curriculum self-paced. Instead of a
human teacher feeding every line of curriculum to the student
and demonstrating simulator usage manually, we formatted
the curriculum as PowerPoint slides with instructions and
accompanying figures. For the feedback/practice lessons, we
provided the student with instructions on procedures to try in
the simulator and what the outcome should look like if the



procedure was performed correctly; we called this the choose-
your-own-adventure style.

This eliminated several complexities in our initial laboratory
design. Instead of two laptops and an external monitor for
both student and teacher, a student could now go through
the curriculum on a single laptop, and a teacher/observer
could watch either over a subject’s shoulder or electronically
through Microsoft Remote Desktop. We no longer needed the
awkward and restricted text communications channel, and we
no longer needed to worry about issues of pacing or about
instructor error. This format had the additional advantage of
allowing us to run multiple students in parallel with only one
teacher/observer.

We addressed the issue of the electronic students’ eidetic
memory by allowing human students to review previously
viewed lessons at any time, and by allowing students to take
notes, either by hand (on scratch paper) or in Notepad on their
laptop.

The issue of awkward and/or ambiguous language was
harder to solve, but we overcame it by beta testing our curricu-
lum with several students and by changing the offending parts
based on feedback. We ended up using a much more “natural”
expression of the instructions for human testing despite the
small risk of deviating from the electronic curriculum, because
the direct translation from the e-curriculum was simply too
confusing for human students. Moreover, where we had en-
countered semantic laden terms (such as the names of lessons),
we substituted neutral language—for example “lesson blue”
instead “fix the X lesson”.

While self-pacing did decrease the overall time for a student
significantly, there was no escaping the fact that the curriculum
was simply too long for a human student to complete in four
hours. In our final version, human students learned and were
tested on a much-reduced, but still representative, sampling of
the curriculum than the e-students must endure.

F. Participant Selection and Scheduling

The study participants were volunteer respondents to mass
emails sent to the graduate student mailing lists at The Univer-
sity of Texas at Austin (UT). The participants were selected on
a first-come first-served basis, and those who qualified were
offered $75 if they completed the study or $7.50 per hour if
they withdrew or were unable to finish. Participants were told
the study would take approximately three hours, and that they
would have a maximum of four hours to complete the study.
They were told they might be asked to leave if they exceeded
four hours or failed a quiz more than twice.

A maximum of two subjects were tested concurrently, and
we held at most two testing sessions per day: one at 9:00
AM and one at 1:00 PM, for a total of four subjects per
day. Participants were assigned testing times based on their
preference and availability.

G. Benchmark Procedure

Before students came to the lab they were provided with
basic instructions and a broad overview of how the study

TABLE I
PHASE II SUBJECT SCHEDULE

Minutes Material

15 Introduction and background
15 Pre-test

180 Lessons and Quizzes
30 Post-test

would proceed. The schedule for a participant is listed in
Table I; times are approximate.

When subjects first arrived, they were required to fill out
the requisite forms with their payment information. Then, an
instructor gave a short presentation on necessary background
knowledge. This was knowledge that human subjects needed
to know before beginning the true curriculum and mostly
consisted of an overview of the hidden domain simulator GUI.
This was not part of the evaluated curriculum; the e-student
has no similar interface to the hidden domain. No curriculum
material was covered by this point.

Then, the observer seated each student at a workstation and
administered a short pre-test. In this test, the observer opened
the hidden domain simulator for each student (remotely, using
Microsoft Remote Desktop), chose a single test scenario (out
of five possible scenarios), and each student was given five
minutes to complete the test. The true test-scenario labels
were replaced with numbers in the student-facing version, but
nonetheless, we required the students to face away from their
monitors while the observer selected a scenario. The study
preference was for the human student to get no more than 20%
on the pre-test, thereby assuring us that the results on the post-
test were the results of the lessons and not prior knowledge.

Next, the students were allowed to begin the self-paced cur-
riculum. The student proceeded by opening and reading cur-
riculum files in the order indicated on their provided Student
Instructions form. This curriculum consisted of PowerPoint
slides (the lessons), interspersed with five multiple-choice
web-browser-based quizzes that tested students’ understanding
of previous units. A student was not allowed to continue on
to further lessons until he or she scored a minimum of 80%,
and if a student should fail the same quiz more than twice,
the subject would be asked to leave the study.

The observer was able to watch the students from his
own workstation and view their screens remotely using the
Microsoft Remote Desktop software. The observer was not
allowed to answer any questions about the material itself, so
students were forced to rely on the curriculum for all of their
domain knowledge.

Finally, after students successfully completed all the lessons
and quizzes, they were given a post-test. The post-test was
similar to the pre-test, except that the student was given five
different test scenarios out of six possible (instead of a single
scenario selected out of five possible). The sixth scenario was
a Null scenario we deemed unsuitable for a pre-test. The
scenarios were administered in a random order, computed



with the Python random.sample function before subjects
arrived. As in the pre-test, a student only had five minutes to
successfully complete each test. At the observer’s discretion,
students were then given a more difficult test.

To avoid associating personal information about the study
participants with their study data, the observer assigned each
subject a monotonically increasing Subject ID number and
recorded all subject data under this identifier. To help the ob-
server, a Subject Data form was prepared in advance for each
subject with random values for a session pre-computed (such
as pre-test scenario number and post-test scenario numbers and
order). This form also had blanks for recording all relevant
data for a subject, including:

• Testing Date
• Testing Group (History or Electrical & Computer Engi-

neering)
• Start Time
• End Time
• Pre-test scores
• Quiz scores
• Post-test scores
• Notes

H. Quantitative Results
A total of 5 students were used in preliminary dry runs,

4 of which were Graduate Research Assistants under Profes-
sor Perry, one of which was a Post-Doctoral Student under
Professor Perry. 31 students participated under the final study
design: 6 students were respondents to the History department
mailing (Group H), and 25 were respondents to the Electrical
& Computer Engineering department mailing (Group E).

Background data about subjects (such as major) was not
actually recorded, but most of the H Group subjects were
graduate students in History, and most of the E Group subjects
were graduate students in Electrical & Computer Engineering
with a few students of Computer Science and other engineer-
ing disciplines mixed in. The H Group was evenly split on
gender with 3 females and 3 males, while the E Group had
22 males and 3 females.

All subjects except for one failed the pre-test; the one who
passed confessed to having previous knowledge of the domain.
If that student is included, the mean pre-test score is 3%;
otherwise, it is 0%.

The mean quiz scores are as follows (where there two
scores, the second is the mean of retakes after failing a first
try):

The mean score on the post-test scenarios was 92% if the
knowledgeable student is kept in; otherwise, the mean score
is 91%. 1 to 3 (mean 2) students failed any given post-test
scenario.

The time taken for an individual to complete the study
ranged from 1:40 to 3:19, with a mean completion time of
2:30.

I. Qualitative Results
The hidden domain curriculum was neither too hard nor too

easy. Before going through the curriculum, all students without

TABLE II
PHASE II MEAN QUIZ SCORES

Quiz Mean Score (%) N

Try 1 Try 2 Try 1 Try 2

Q1 1.1 89 98 28 9
Q2 3.1 89 99 28 5
Q2 6.1 98 99 28 1
Q3.4 3.1 99 n/a 28 0
Q3.4 6.1 100 n/a 28 0

domain knowledge failed the pre-test. After going through the
curriculum, 28 out of 31 students passed the post-test (80%
was considered passing).

Subjects clearly improved their comprehension as they
progressed through the lessons. Quiz scores steadily improved,
and no students needed to retake quizzes 4 or 5. The student
with the lowest post-test score (20%) had problems with the
English language, though this was not clear until later in the
study when he repeatedly and blatantly ignored instructions.
This student was also the only one who came close to being
asked to leave the study because of failing quizzes.

The History graduate students did as well as the Electrical
Engineering graduate students and took less time on average
to complete the study. Thus, it is unlikely that technical bias
is a confounding variable. A couple of the History students
had more difficulty with the basics of computer operation
and required more explanation in the Background Knowledge
portion of the study, but this did not seem to affect their post-
test scores.

Switching to a self-paced approach significantly reduced the
study completion time for the subjects (by a factor of 3 or 4),
and the subjects seemed to enjoy the self-paced version much
more than the initial version of the study. Several subjects even
commented that the study was “fun”.

The curriculum was generally consistent throughout the
final run of the study, but inevitably curriculum errors and
simulator bugs were uncovered as more students participated.
When a curriculum error came up (such as an incorrect figure),
an observer would tell the student what the correct unit should
have looked like, and the curriculum would be corrected for
the next run. Occasionally simulator bugs would require a
simulator restart. We believe that neither factor affected our
results.

V. PHASE III: EXPANDED HUMAN COMPARISON STUDY

A. Study Objectives

Our goal was for this case study to provide us with a
set of benchmark lessons and tests by which to measure
an automated student’s ability to learn from an automated
teacher. While there were no formal requirements for human
performance in this phase of the program, based on our
experience with the Phase II evaluation and the Phase III
curriculum, we again aimed to produce lessons and tests on



which human students who scored less than 20% on a pre-test
could achieve a post-test score of at least 75-80%.

In this phase, the range of instruction methods used in the
curriculum and the difficulty and complexity of tasks given to
computational agents increased (over Phase II). Accordingly,
we broadened the human student curriculum, increased the
total number of human subjects from 28 to 75, and increased
the number and diversity of treatment groups. In addition to
benchmarking subjects given all three NIM types, we also
benchmarked students given only a single NIM, students given
only two NIMs, and students who were allowed to ask the
study supervisor questions (through a restricted interface). We
will refer to subjects who received all three NIM types as the
baseline treatment.

B. Study Design

For Phase III, we added new learning challenges to the
curriculum as well as a number of Relaxation Trajectories,
which are changes to the curriculum designed to explore the
ability of e-students to deal with more difficult aspects of
human instruction. For example, in Phase II precise terms were
used in the vocabulary of the lessons, and the e-student was
given certain pieces of basic information about each lesson,
including which NIMs were being used and the names of the
procedures being taught. This initial approach was a result of
some of the lessons learned in the Phase I Blocksworld study
[3,4]; in that study, the human teachers had to be very precise
in their bottom-up instructions in order for the e-student to
understand the lessons being taught.

In Phase III we greatly streamlined and automated our
testing setup. Whereas in Phase II we could test at most two
subjects at a time, we now have the ability to test up to six
subjects at once (Fig. 4). We assigned each subject to a station
in our testing lab, each equipped with a Windows PC with their
particular curriculum pre-loaded.

Each of these workstations mounted a Network Attached
Storage (NAS) device containing a specially generated curricu-
lum folder for each workstation. The corresponding curriculum
folder was linked on the desktop of each machine, making all
curriculum materials easily accessible to the subject.

We also mounted the NAS on our Linux server. This allowed
the study supervisors to run our curriculum-generating scripts
on the server and automatically create and distribute new
curriculum folders to each workstation in preparation for each
study group.

To ensure that subjects followed proper protocol, study
supervisors monitored subject progress in person (by walking
around and observing) and through monitoring scripts set up
on our server. We used automated grading for tests, and the
domain simulator provided the ability to replay tests if there
was any question as to what actions a subject performed.

C. Participant Selection and Scheduling

The study participants were volunteer respondents to mass
emails we sent to the Electrical and Computer Engineering,
History, and Public Affairs graduate-student mailing lists at
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PCLinux 
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Fig. 4. Phase III: Lab Setup (for six parallel subjects)

The University of Texas at Austin. Potential subjects were
asked to sign up for our study mailing list (through Google
Groups), and we announced study times on this list. Those who
qualified were offered $75 if they completed the study or $7.50
per hour if they withdrew or were unable to finish. Participants
were told the study would take approximately three hours, and
that they would have a maximum of four hours to complete
the study.

We used the website Doodle.com, a site designed to help
groups agree on dates and times for events, to handle signups
for our study. When we decided on a study time, we posted the
time to our account on Doodle.com, sent the signup-link to our
potential-subject mailing list, and Doodle.com allowed up to
six students to sign up for any particular study time (first-come
first-served), recorded their name and email address, and sent
us the information. Information about students who signed up



for studies was visible only to us (the study supervisors), not
to other subjects.

We tested a maximum of six subjects concurrently, and we
held at most two testing sessions per day. We varied our study
times to accommodate subject availability, including morning,
afternoon, evening, and weekend study times.

D. Benchmark Procedure

In our email inviting students to sign up for a study session,
subjects were provided documents giving a broad overview of
how the study would proceed and basic instructions for when
they arrived. The approximate schedule for a participant was
the same as in Phase II (Table I).

As each subject arrived, they were assigned a workstation
and required to fill in their major and student status (under-
graduate/graduate/other) on a Subject Data form. The study
supervisor would then collect this form and fill in the date
and Subject ID fields. This form is much shorter than its
counterpart in Phase II, since much of the data that was taken
by hand in Phase II was automatically recorded in Phase III.

After all subjects had arrived and completed their forms,
the instructor would record the study Start Time and begin the
15-minute background knowledge presentation. This was not
part of the curriculum we were evaluating; this was knowledge
that human subjects needed to know before beginning the true
curriculum and mostly consisted of an overview of the hidden
domain simulator GUI. The e-student does not use the GUI
interface. No material on diagnosing or fixing problems with
the satellite-tracking rig was covered by this presentation.

Then, the study supervisor would have each student open
their study navigation page (a simple HTML page linking
to each curriculum component in order) and begin their
self-paced study, beginning with the pre-test. The pre-test,
consisting of a single randomly chosen fault, was meant to
determine if a student had any previous knowledge of the
domain. The only possible scores were 0% or 100%, and a
student only scored 100% if he completely fixed all problems
within the specified time limits. We excluded students who
scored 100% from our post-experiment analysis. The amount
of time given to subjects and the particular fault scenario
chosen varied by experiment.

After taking the pre-test, students continued with the regular
curriculum at their own pace, taking quizzes in the order
indicated on the navigation page. The study observer could
view students progress through a monitoring program on our
Linux server (which monitored quiz and test log files), or by
walking around and looking at their screens.

Except for in the Question and Answer (Q&A) treatment
(Section V-H), the observer was not allowed to answer any
questions about the material itself, so students were forced
to rely on the curriculum for all of their domain knowledge.
Five multiple-choice quizzes were administered at fixed points
in the lessons that tested students understanding of previous
units. In the main treatment, where students received all three
NIM types, students were not allowed to continue on to further
lessons unless they scored a minimum of 80% on each quiz.

In the single- and double-NIM treatments we assumed that
subjects would do poorly, but we wanted to see how they
would do on the full set of rungs anyway. Therefore in these
treatments, we configured the quizzes to not reveal scores, and
we did not require subjects to pass the quizzes (though we did
not tell them that).

After a student successfully completed all the lessons and
quizzes, they continued on to the post-tests. All post-tests
consisted of the student diagnosing and fixing problems with
the satellite-tracking rig in the domain simulator. The amount
of time given to subjects and the particular fault scenarios
chosen varied by experiment.

E. Experiment Configurations

For the pre-test in our first experiment, a single fault
scenario was chosen out of six possible (see Table III). The
Null Fault and Multi Fault scenarios were excluded. The
student had eight minutes to diagnose and fix any problems
with the satellite-tracking rig: one minute for each state of the
domain simulator.

Two post-tests were given. First, a student was given five
different at-most-one-fault scenarios, randomly selected out of
seven, administered in a random order (see Table III). The
Null Fault case was one of the possible scenarios for this test.
Afterwards, some students were given a Multi-Fault scenario,
in which the satellite-tracking rig had several different faults
in a single run. In each post-test fault scenario, the student
had eight minutes to diagnose and fix any problems.

To add realism to the test scenarios, in this initial experiment
we configured the test simulator to advance through states in
real-time rather than allowing the subject to manually advance
the states. This configuration caused unexpectedly low post-
test scores; students were averaging 57% on the post-test as
opposed to the Phase II mean of greater than 90%. Some
reduction in post-test scores was expected, since this Phase’s
curriculum was harder than Phase II’s, but we did not expect
a reduction this severe. We attributed the reduction to the real-
time clock for two reasons:

1) Training vs. Knowledge: Though the overall test-
scenario time was greater than in Phase II (8 minutes
rather than 5 minutes), the critical time-window in which
subjects were required to perform each task was shorter
(1 minute rather the entire 5 minutes of Phase II). We
originally thought this indicated that success in real-time
scenarios was more a matter of training (improving a skill
through repetitive practice) than knowledge, as students
scored much better when the real-time constraint was
removed. This is discussed further in Section VI.

2) Boredom: Since subjects were not allowed to manually
advance the simulator past states in which nothing occurs,
we observed them losing focus while waiting through
these states. Subjects were clearly less attentive and
energetic when critical simulation events came to pass.

Additionally, one test scenario (Antenna Intrack Pointing
Error) seemed to be too difficult in our initial setup. In this
scenario, the student was required to take multiple actions



TABLE III
PHASE III POST-TEST FAULT SCENARIOS

Fault Scenario p3.realtime p3.non-realtime
pre-test post-test pre-test post-test

Antenna Motion Error s s s s
Baseband Misconfiguration s s s s
Antenna Intrack Pointing Error (Easy) s s
Antenna Intrack Pointing Error (Hard) s s A
Antenna Azimuth Pointing Error s s s s
Antenna Elevation Pointing Error s s s s
Baseband Hangup s s s s
Null Fault s s
Multi-Fault s A

s - Given to some students in this treatment
A - Given to all students in this treatment

instead of just one as in the other scenarios; students often
either missed or ignored one of the necessary actions. In
Table III, we refer to this scenario as Antenna Intrack Pointing
Error (Hard). In our second, revised experiment, we replaced
it in the main post-test with an easier version (Antenna Intrack
Pointing Error (Easy)) and gave all students the Hard version
afterwards.

Also, in our revised experiment we returned to allowing
subjects to advance the simulator by hand, and gave students a
total of five minutes for each scenario (as in Phase II). Average
final test scores for the baseline condition jumped from 57%
to 81%, validating our hypothesis that a large part of the score
reduction was due to the real-time clock.

F. Baseline Results

A total of two subjects were used in preliminary dry
runs, both of whom were Graduate Research Assistants under
Professor Perry. 20 subjects participated fully in our initial
study design (real-time clock), and one additional subject
chose to leave the study early. 55 subjects participated fully
in our revised study design, and one additional subject chose
to leave early. In all results we exclude students that passed
the pretest (5 students total in Phase III). When we discuss a
post-test score in the following analysis, we mean the fraction
correct out of the five randomly-chosen post-test scenarios. We
discuss the Multi-Fault and (in the case of p3.non-realtime)
Antenna Intrack Pointing Error (Hard) scenarios separately.

We can compare three groups of baseline subjects: those
from Phase II (denoted p2.non-realtime), those in Phase III
with a realtime test clock (denoted p3.realtime), and those
in Phase III without a realtime test-clock (denoted p3.non-
realtime). These groups contained 28, 12, and 19 subjects re-
spectively. As shown in Fig. 5, all baseline subjects completed
the study in under the four-hour time limit. Because of the
curriculum extensions, the Phase III subjects generally took
longer than the Phase II subjects. The median p3.non-realtime
study time is slightly longer than the median p3.realtime study
time possibly because of the additional post-test scenario.
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Fig. 5. Study Completion Time for Baseline

The mean post-test score for p3.realtime students was
57%; for the p3.non-realtime students, the mean was 81%,
surpassing our goal of 80%. The median scores for all three
baseline groups are shown in Figure 5. It is clear from the
figure that our curriculum changes between the two Phase
III groups improved scores across the board, not just the
mean. The Phase III curriculum overall is more difficult than
the Phase II curriculum, and our p3.non-realtime curriculum
achieved our goal of 80% while being more discriminative
than the Phase II curriculum. The p2.non-realtime box plot is
compressed to a line because the interquartile range (IQR) is
zero; most of the post-test scores were 1.0, including the 25th
percentile, the median, and the 75th percentile.
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Fig. 6. Post-test Scores for Baseline

We can also compare the means for each post-test sce-
nario. In Fig. 7, the p3.non-realtime scores almost dominate
the p3.realtime scores, as expected (excepting only Antenna
Motion Error). Additionally, the jump in passing rate between
Antenna Intrack Pointing Error (Hard) and . . . (Easy) is clear
in this plot. p3.non-realtime does not have the Antenna Intrack
Pointing Error (Easy) scenario since the Easy scenario was
created in response to it. We do not compare against the
p2.non-realtime means here, since many of the Phase II fault
scenarios have been changed enough to no longer be directly
comparable.

Finally, we compare the progression of quiz scores among
the three baseline groups (first tries). The median score for
all first-try quizzes in all experiments is 100%, and the
inter-quartile range of the quiz scores decreases to 0 as the
subjects progress through the quizzes, indicating they are
learning.In Table IV, we provide the means in tabular form
for comparison. Since means are more affected by outliers,
the story is not as clear.

G. Other Results

In addition to the baseline, in Phase III we also tested
subjects with only two NIMs, and subjects given only a
single NIM. We restrict this analysis to the p3.non-realtime
curriculum, since in p2.non-realtime we only had the baseline
treatment, and in p3.realtime we only tested a few non-baseline
subjects before decided to switch to a non-realtime testing
procedure. We denote the NIMs as T (by telling), E (by
example), and F (by feedback). In these results, we group in
the few subjects allowed to ask questions, since in our study
they ended up asking so few questions.
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In Fig. 9, we show the length of study by NIM-set given. We
can see that subjects tended to take less time when given the T
NIM, and more time when given the F NIM. In general, the T
lessons were shorter than the F lessons, and the F lessons also
required subjects to interact with the simulator and encouraged
subjects to repeat if necessary.

In Figure Fig. 10, we show mean post-test score by NIM-



TABLE IV
BASELINE MEAN QUIZ SCORES (%)

Q1 1.1 Q2 3.1 Q2 6.1 Q3.4 3.1 Q3.4 6.1

p2.non-realtime 89.3 88.8 97.6 98.6 100.0
p3.realtime 90.9 89.6 95.0 100.0 96.4
p3.non-realtime 90.8 95.5 100.0 96.8 96.8
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Fig. 9. p3.non-realtime Study Times by NIM

set. The double-NIM subjects seemed to do almost as well
as those given the full set of NIMs. The subjects given the
F NIM seemed to do the best of the restricted sets; in fact,
all subjects in the F-only group had a perfect post-test score.
There are several reasons why this might be the case. This
NIM is somewhat a combination of by feedback and by telling;
in the self-paced by feedback lessons, if a subject doesn’t
follow the correct procedure, the subject is given a by telling
description of what should have been done. This is also the
only NIM where subjects get any practice with the simulator
before the post-test.

H. Q&A

We also tried allowing subjects of the lowest performing
NIM sets (T and E) to ask questions through a restricted
interface. Counter to our expectations, it was very difficult to
get subjects to ask anything. Finally, by choosing subjects who
knew us and who were in relatively non-technical fields, we
got a few questions. Even then, the questions were relatively
basic questions about definitions, such as, “what does it mean
to ‘input to a component’ ”, and a misunderstanding about
“absolute value”.
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Fig. 10. p3.non-realtime Mean Post Test Score by NIM Set

VI. LESSONS LEARNED AND RECOMMENDATIONS

Creating the context and protocols needed to evaluate
learning software agents has been a challenging enterprise.
It is our hope that with our procedures and recommendations,
researchers can benchmark the performance of human subjects
on a domain of choice and confidently use this benchmark to
evaluate agent performance.

A. Timing of Tests

In our results students, did much worse in p3.realtime than
in p2.non-realtime. We hypothesized that this was because
passable performance required training (improving a skill
through repetitive practice) rather than knowledge.

Was the drop in scores between p2.non-realtime and
p3.realtime in part due to the difference between training
and knowledge? That is, were we attempting to test their
knowledge but instead testing a skill that would require a
different sort of curriculum? Here is what Allen Newell and
Paul S. Rosenbloom have to say on the subject in the book
chapter, “Acquisition of problem-solving skill”:

Practice used to be a basic topic. For instance, the
first edition of Woodworth (1938) has a chapter



entitled “Practice and Skill.” But, as Woodworth [p.
156] says, “There is no essential difference between
practice and learning except that the practice experi-
ment takes longer.” Thus, practice has not remained
a topic by itself but has become simply a variant
term for talking about learning skills through the
repetition of practice. [14]

This implies that no, there is no difference between knowl-
edge (learning) and training (practice). However, time to
complete tasks improves with practice at a rate well-modeled
by a power law [14], and it is possible that students were not
given enough time in p3.realtime given their level of practice.

In both p2 and p3, students learned which simulator states
were likely to be significant. In p2.non-realtime, students
would quickly advance past the unimportant states, leaving
most of their 5-minute test time to do the essential diagnosis
and repair. In p3.realtime, each state lasted 1 minute, so a
student had to wait for the correct state and then perform
diagnosis and repair in under a minute, so he was essentially
given less time.

In future benchmarking experiments, experimenters should
simply ensure that students are given a reasonable amount of
time to complete each test task, whether they employ realtime
testing or not. We are not testing human subjects, we are
attempting to provide an appropriate human benchmark for
e-student testing, so test time should be selected so that a
requisite number of human subjects pass.

If the benchmarking is similar enough to ours, our testing
times can be used as starting points. If not, reasonable testing
times can be determined with pilot studies or generated by
modeling the test with the Model Human Processor method
[15] or GOMS [16].

Should realtime testing or non-realtime testing be used?
That should be decided based on the importance of this issue
to the internal validity of the domain being studied balanced
against the impact of boredom. In our domain, since boredom
was a real issue in human benchmarking and realtime testing
was deemed nonessential, we went with non-realtime testing.

B. Other Lessons Learned

• Human and electronic students differ in fundamental
ways that make it difficult to create analogous contexts
without providing one side with undue advantages over
the other.

• Seemingly insignificant semantic details are critically
important in the attempt to provide analogous contexts.

• The self-pacing mechanism for human teaching and
learning proved an invaluable insight in establishing the
e-student benchmarks.

• Increasing automation of lesson structures has been es-
sential for the extensions we needed for Phase III.
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