A Graph-based Framework for Reasoning about
Relationships among Software Modifications

Ripon Saha, Rui Qiu; Miryung Kim, Dewayne Perry
Department of Electrical and Computer Engineering
The University of Texas at Austin

ABSTRACT

During the development and maintenance of large-scale soft-
ware systems, developers need to be aware of other devel-
opers’ changes and the implications of how and why those
changes impact their own work. We introduce CHIME, a
graph-based framework for finding relevant software modifi-

cations according to various notions of relevance—dependence,

interference, similarity, and co-occurance. The heart of the
framework is a novel data structure called CHIMEGRAPH
that stores program elements, change facts, and their tem-
poral, spatial, and structural dependencies across multiple
versions of a program. We have implemented a prototype
of CHIME and applied it to three subject systems. For
459 revisions of a Java program of size over 142KLOC, the
CHIMEGRAPH construction took just over two hours. To
demonstrate the flexibility of our CHIMEGRAPH, we have
defined six types of delta relationships, i.e., useful relations
among program modifications and implemented correspond-
ing graph-traversal algorithms for these delta relationships.
Our initial results indicate that CHIMEGRAPH scales to at
least medium size systems and shows promise in identifying
relationship between revisions in a flexible manner.

1. INTRODUCTION

Large-scale software systems are pervasive in modern so-
ciety. Software engineers typically work in a collaborative
development environment to build and maintain large-scale
software systems. Since software modules are heavily in-
tertwined with one another, changes to one piece of code
often have a notable impact on other pieces of code, both
changed and unchanged. Therefore, software engineers need
to be aware of modifications implemented by others in or-
der to resolve merge conflicts or manage potential change
impacts.

Existing awareness tools either overload developers with a
large volume of irrelevant information or hardwire the rele-

*The first two authors collaboratively implemented and eval-
uated the work.

vance criteria among software modifications that one should
know about. For example, the most basic awareness service
such as a SVN email feature monitors a repository and au-
tomatically generates an email notification for each commit,
quickly flooding developers’ inboxes with a large volume of
irrelevant change information. Palantir [10] and FASTDash
[1] strive to mitigate information overload by only notifying
developers about certain change events; however, these no-
tifications are filtered in a predefined way, e.g., notify Alice
when someone else is modifying the same file she modified.
YooHoo [6] reports only external API changes that lead to
build errors. Chianti [9] finds only the tests affected by the
changes between two program versions and a subset of edits
affecting those tests.

While there exist frameworks for version history analyses,
they do not explicitly model temporal, spatial, and struc-
tural dependency relationships among the software modifi-
cations. Thus, they are not designed for identifying revision
pairs meeting various types of dependencies, interference,
and similarity, relationships. For example, Evolizer [5] ex-
tracts and stores software modification per revision, such
as method foo() was deleted in revision s. But Evolizer
does not store structural dependencies among those modi-
fications, such as a deleted method foo() was invoked by
another method bar () in revision t.

Our ultimate goal is to create an extensible code change
analysis framework, where developers can define their own
notion of relevance between software revisions, and search
and monitor code changes using these customized relevance
criteria. As a first step towards this goal, we have de-
veloped, implemented, and evaluated a graph-based data
structure, called CHIMEGRAPH. CHIMEGRAPH stores change
facts and their temporal, spatial, and structural dependen-
cies. CHIMEGRAPH is designed to be flexible and exten-
sible—users can import the results from other tools into
CHIMEGRAPH by defining new types of edges and nodes.

We have implemented a prototype tool that extracts source
code from an SVN repository, computes program differences
per each revision, and stores change facts and the temporal,
spatial, and structural dependencies among them.

By surveying existing literature, we have identified 18 delta

relationships—relationships among software modifications that

developers can use to identify relevant changes made by
other developers. For example, if a developer creates method
m1 in revision s that overrides method mso created by an-

other developer in revision ¢, we say there is a delta rela-
tionship between revision s and revision ¢. Such relation-
ships could potentially help developers detect unanticipated
behavior changes, or help the two developers recognize how
the two revisions may impact one another. We have imple-
mented corresponding graph reachability algorithms for six
delta relationships.

We constructed CHIMEGRAPH on three Java programs of
varying sizes. For a program history of 142KLOC and 459
revisions, CHIMEGRAPH construction took just over two hours.
Running the six types of delta relationship queries on these
graphs took less than two seconds. These initial results sug-
gest that CHIMEGRAPH scales well to at least medium size
systems.

In the remainder of this paper, we describe the design of
CHIMEGRAPH in Section 2, and our implementation details
and preliminary results in Section 3. We then present our
future work in Section 4.

2. CHIMEGRAPH

CHIMEGRAPH is a dependency graph that models changes
to program elements (e.g., packages, classes, methods, etc.)
and their inter-dependencies (e.g. containment relations,
subtype relations, calling relations, etc.) across multiple re-
visions of a program. We represent each program element
as a CHIMEGRAPH node and each dependency between two
elements as a CHIMEGRAPH edge. To concisely represent ad-
ditions and deletions of program elements in CHIMEGRAPH,
we add a lifetime [ry,re] to corresponding nodes. Here 1
represents the revision number where the element was added
and rerepresents the revision number where the element was
deleted. In Figure 2, PL, CL, ML, and FL represent the lifetime
nodes for packages, classes, methods, and fields respectively.

In addition to defining nodes for source code elements, we
have defined another type of node, change node, that repre-
sents modifications to any code element that ever existed in
the version history. The change node contains information
about the nature of the changes and the revision number in
which the changes occurred. We define two different types of
change nodes: method body change (MC) and lookup change
(LC). While an MC node represents any syntactic changes to
a method body, an LC node represents changes which af-
fect the lookup table of a program by altering its dynamic
dispatching behavior. For example, a method call could be
redirected to a different method due to an additional over-
riding method definitions, changes to the class hierarchy, or
other forms of dynamic dispatching change. Therefore, the
CHIMEGRAPH data structure represents not only syntactic
changes but also behavioral changes of object-oriented pro-
grams.

We currently model four types of inter-dependencies among
individual nodes: containment edges to represent spatial de-
pendencies, reference edges (method calls, field accesses, and
object instantiations), and subtyping edges (extends or im-
plements relations in Java) to represent structural depen-
dencies, and change order edges to represent temporal de-
pendencies. We add a lifetime for each reference and sub-
typing edges to keep track of the appearances and disap-
pearances of dependencies. For example, a call dependency
edge from method mi to method my with a lifetime [2,10]

indicates that method ms called method m; at revision 2,
but the call has been deleted at revision 10. Thus, from
the CHIMEGRAPH, one can easily extract the change history
of a program element along with its dependency on other
elements by simply traversing the edges of the correspond-
ing node. The lifetime information also allows a wiolation
detection algorithm to detect any inconsistencies (e.g. defi-
nition of a method is deleted while its call is still present) in
the graph by checking the lifetimes of edges and associated
source nodes.

Finally, CHIMEGRAPH is an extensible data structure capa-
ble of accommodating finer-grained information and addi-
tional definitions of relevance beyond what we have already
implemented. For example, developers may add renaming
edges to describe how deleted nodes in one version corre-
spond to added nodes in the next version.

A Concrete Example. We now present a simple code ex-
ample comprising three revisions (see Figure 1) to illustrate
how we model change facts and their inter-dependencies in
actual CHIMEGRAPH. Suppose that all elements of revision
1 are considered to be added with respect to revision 0 and
that one package, three classes, and three method definitions
were added in revision 1. To model these changes, we first
create a package lifetime node PL(1,00, pl) to represent
that package pl was added, and three class lifetime nodes
CL(1,00, pl.A), CL(1,00, p1.B), and CL(1,00, p1.C) to
represent the addition of three classes A, B, and C respec-
tively. For all newly added nodes, a lifetime of [1,00] indi-
cates that these nodes were created in revision 1 and have
not yet been deleted. In a similar fashion, we create all
method lifetime (ML) nodes for each method definition and
add the containment edges to reflect their spatial relation-
ships.

Since class B extends class A, we add a subtyping edge from
node CL(1,00, pl.A) to CL(1,00, pl.B) to indicate that
super class A must exist before sub class B can exist. Sim-
ilarly, since B.bar() is calling A.foo(), we add a refer-
ence edge (1,00,MI) from ML(1,00, pl.A.foo) toML(1,00,
pl.B.bar). The parameter MI stands for method invoca-
tion. The lifetime of both the reference edge and associ-
ated nodes allow us easily to detect accidental deletions of
methods that lead to build errors. In revision 2, a method
B.foo is added that overrides A.foo(). Because of this
change, the invocation of B.foo inside method B.bar is
no longer referring to A.foo. We model this change by
adding a lookup change node LC(B.foo,A.foo) and con-
nect it from ML(2,00,p1.B.foo) node using a change order
edge. We continue in this way to populate the remainder of
the CHIMEGRAPH. To model deletions, we update the life-
time of the corresponding node instead of deleting the node
entirely. In the example code base, B.bar() is deleted in
revision 3. We can easily obtain this information from the
CHIMEGRAPH by observing the lifetime of that node.

3. IMPLEMENTATION AND EVALUATION

Our current prototype is implemented as an Eclipse plug-
in. CHIME extracts program versions from a target SVN
repository using SVNKit! and uses an Eclipse JDT abstract
syntax tree analysis to analyze each program version. For
each consecutive version pair, it compares each file’s AST us-

"http://svnkit.com/

Revision 1 Revision 2

1 package pil; 1 package pi;
2 Class A { 2 Class A {
3 void foo (){} 3 void foo (){}
4 %} 4 void boo (){}
5 Class B extends A { 5)
6 void bar() { 6 Class B extends A {
7 foo(); 7 void foo() {}
8 } 8 void bar () {
9 3 9 foo();
10 Class C { 10 }
11 B b; 11}
12 void baz () { 12 Class C {
13 b = new BQ); 13 B b;
14 b.bar (); 14 void baz(int a) {
15 T 15 b = new BQ);
16 ¥ 16 b.bar ();
17 }
18 }

Revision 3

1 package pi;

2 Class A {

3 void foo() {

4 boo ()

5 }

6 void boo (){}
7}

8 Class B extends A {
9 void foo () {};

10 // B.bar () was deleted
11}

12 Class C {

13 B b;

14 void baz(int a) {
15 b = new BQ);

16 b.bar ();

17 ¥

18)

Figure 1: CHIMEGRAPH Code Example

235,
AN

ML RN ML | w2
‘ 11, =pLAfool | | 1w 3pLabarn | | (L 2p1Cbaz)

A : IA :
A 1T
s

mMc ML | Lc
\ 3,pLAfoo] \ (2, =pLB.foo] | <Afoo, B.foo>

e =p1Aboo] \

Figure 2: CHIMEGRAPH Data Structure Example

Table 1: Subject Systems

Name LOC #Rev. #Nodes #Edges
ChimeGraph 5492 52 2138 3582
JUnit 17,509 650 11481 19368
Columba 142,432 459 28519 63209

ing ChangeDistiller’s [4] tree differencing algorithm. It then
builds and updates CHIMEGRAPH incrementally based on
program differencing results. Furthermore, to resolve types
as much as possible for incomplete, uncompilable programs,
it uses the partial program analysis (PPA) [3]. It stores
CHIMEGRAPH in an XML file for future use. We implement
graph traversal algorithms to encode each of the six delta
relationships represented in Table 2.

Evaluation. To evaluate the scalability of CHIMEGRAPH,
we have used three Java projects: ChimeGraph, JUnit, and
Columba (see Table 1). Our evaluation addresses the follow-
ing two research questions.

RQ1: Can CHIME serve as a basis for identifying
various delta relationships surveyed in the litera-
ture? We have first compiled various temporal, spatial, and
structural dependency relationships among software modifi-
cations mentioned or implemented in the literature [7]. Out
of 18 delta relationships identified by the survey, we have
implemented 6 of them because these relationships are cur-

Table 2: Various Delta Relationship Definitions

No. Relationships between two revisions s and ¢

DR1 Revision s introduces a call dependency for a
method that is deleted in revision ¢ while the call
still exists [6].

DR2 Revision s introduces a call dependency for a
method whose visibility decreased by ¢. For ex-
ample, a public method is changed to private[6].

DR3 Revision s overrides a method which is created in
revision ¢ [2].

DR4 Both revision s and revision ¢ modify the same
method [10].

DR5 Revision s introduces a call dependency for a
method whose implementation changed in revision
t [6].

DR6 Revision s and revision ¢ insert the same structural
dependencies [8]. For example, both revisions in-
troduce a call dependency for the same method.

rently supported by the granularity of change facts and de-
pendencies in our graph. (We plan to make CHIMEGRAPH
extensible and to demonstrate that the remaining 12 delta
relationships can be supported based on CHIMEGRAPH.) Be-
cause CHIMEGRAPH represents spatial, temporal, and struc-
tural dependencies among change facts and encodes the life-
time of individual code elements explicitly, it is fairly simple
to encode those delta relationships as a graph traversal algo-
rithm. For example, to detect the delta relationship #1 in
Table 2, we can simply traverse all method invocation edges
and check the lifetime of the associated nodes and the edges
between them to identify a set of revision pairs where one
deletes code elements but the corresponding references to
them are not deleted accordingly. Timely identification of
these delta relationships can help identify potential build er-
rors caused by other developers. Table 3 reports number of
relevant revision pairs that we have identified for each delta
relationship. We also calculate the percentage of identified
delta relationships among all possible revision pairs.

RQ2: Can CHIME handle version histories of real
world projects? To assess scalability of CHIMEGRAPH, we
measured the time taken for constructing a graph and run-
ning graph-traversal algorithms for individual delta relation-
ships. We used a 3.33 GHz Intel Core2Duo iMac computer

Table 3: Number of Relevant Revision Pairs

Name DR1 DR2 DR3 DR4 DRS5 DR6
ChimeGraph 15 0 57 121 178 167
1.1% 0% 42% 9.1% 13.4% 12.6%
JUnit 252 24 468 660 956 671
0.1% 0.01% 0.2% 0.3% 04% 0.3%
Columba 368 4 657 1695 2309 2341

0.3% 0.003%0.6% 1.6% 22% 2.2%

Table 4: Performance

Name Update Time Query Time XML Size
ChimeGraph 4m 25s 0.153s 3.2MB
JUnit 58m 21s 0.673s 19.8MB
Columba 129m 50s 1.393s 53.8MB

and allocated 2GB of memory to run the program. It took
less than an hour to handle 650 revisions of JUnit, 4.5 min
to handle 52 revisions of our own ChimeGraph version his-
tory, and 2 hours and 10 minutes to handle 459 revisions
of Columba (see Table 4). The running time for identifying
all six types of delta relationships took less than two sec-
onds in all three subjects. On the basis of these results, our
graph construction and traversal shows promises in handling
version histories of medium size, real world Java projects.

Comparison with Evolizer. To the best of our knowledge,
existing version history analysis frameworks model only in-
dividual change facts per each revision but are not suitable
for the relationships among software revisions. For example,
Evolizer stores individual syntactic change facts per revision
in the form of a relational database. Though comparing
Evolizer and CHIME is like comparing apples and oranges,
to demonstrate the suitability of CHIMEGRAPH for reasoning
about delta relationships, we tried to encode the six types
of delta relationships as MySQL queries to be run on the
Evolizer database. For each delta relationship query, we
found the required data are stored in multiple tables, thus
requiring expensive JOIN operations to create the needed
relationship. For example, all the queries need to access
at least four tables: SourceCodeEntity to get information
about program elements, SourceCodeChange for the changed
elements, StructureEntityVersion to get the version when
the elements were changed, and Transaction_Revision for
converting version numbers to revision numbers. In con-
trast, it is easy to identify the six delta relationships among
revisions in CHIMEGRAPH, because CHIMEGRAPH explicitly
represents the lifetime information of program elements and
stores the temporal, spatial, and structural dependencies us-
ing various types of edges. For example, to identify all pairs
of DR4, we can traverse each method lifetime node (ML) and
find all outgoing edges with a destination being a method
body change node (MC) - that is, there will be a set of MC
nodes that are the destinations of a ML (see Figure 2). The
output of DR4 would be all possible pairs of this set. As-
sume that method foo() is changed in revisions 2,3, and 4.
There are then three MC nodes connected from the ML node
of foo() and the result of DR4 is (2,3), (2,4), and (3,4).

4. FUTURE WORK

Our CHIMEGRAPH prototype models only code elements and
change facts at or above the granularity of methods and
fields and a limited set of structural, temporal, spatial de-

pendencies among them. Due to this limitation, we were
able to encode only 6 out of 18 delta relationships we have
currently identified. Our ultimate vision is to design an ex-
tensible framework where developers can define customized
delta relationships in a flexible manner and use these rela-
tionships to search and monitor program changes relevant to
their own modifications. To achieve this vision, our data rep-
resentation should be extensible to accommodate new types
of change facts or inter-dependencies among them. For ex-
ample, to keep track of the lifetime of code despite renamings
or refactorings, developers may want declare refactoring (or
mapping) edges between deleted methods in the old version
and the corresponding added methods in the next version.
We plan to provide a porting functionality in our framework
so that developers can add new types of nodes and edges in
CHIMEGRAPH to import the results of existing tools, such as
an API matching tool for creation of refactoring edges [8].

Furthermore, our framework should not require developers
to hand code graph-traversal algorithms to identify software
revisions of interest based on these new types of edges and
nodes. To relieve developers’ burden in encoding various
delta relationships in terms of traversal algorithms on the
CHIMEGRAPH, we plan to convert the edges and nodes into
a logic fact data base representation and provide a logic
query language for developers to declare delta relationships
of interest in terms of a logical query. We also plan to pro-
vide a graphical user interface, where developers can define
new queries (or refine existing ones) to investigate the rela-
tionships among software revisions.

5. REFERENCES

[1] J. T. Biehl, M. Czerwinski, G. Smith, and G. G.
Robertson. Fastdash: a visual dashboard for fostering
awareness in software teams. In Proc. of CHI ’07,
pages 1313-1322, 2007.

[2] O. C. Chesley, X. Ren, and B. G. Ryder. Crisp: A
debugging tool for java programs. In Proc. of ICSM
’05, pages 401-410, 2005.

[3] B. Dagenais and L. Hendren. Enabling static analysis
for partial java programs. In Proc. of OOPSLA 08,
pages 313-328, 2008.

[4] B. Fluri, M. Wursch, M. Pinzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source
code change extraction. IEEE Trans. on Software
Engineering, 33(11):725 —743, 2007.

[5] H. C. Gall, B. Fluri, and M. Pinzger. Change analysis
with evolizer and changedistiller. IEEE Trans. on
Software Engineering, 26(1):26-33, Jan. 2009.

[6] R. Holmes and R. J. Walker. Customized awareness:
recommending relevant external change events. In
Proc. of ICSE ’10, pages 465—474, 2010.

[7] M. Kim. An exploratory study of awareness interests
about software modifications. In Proc. of CHASE ’11,
CHASE 11, pages 80-83, 2011.

[8] M. Kim, D. Notkin, and D. Grossman. Automatic
inference of structural changes for matching across
program versions. In Proc. of ICSE ’07, pages
333-343, 2007.

X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.

Chianti: a tool for change impact analysis of java

programs. In Proc. of OOPSLA ’04, pages 432-448,

2004.

[10] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantir:
raising awareness among configuration management
workspaces. In Proc. of ICSE 03, pages 444-454,
2003.

[9

