

Abstract—Software architecture is considered as a set of

architectural design decisions (ADDs). Capturing and representing
ADDs during the architecting process is necessary for reducing
architectural knowledge evaporation. Moreover, managing the
evolution of ADDs helps to maintain consistency between
requirements and the deployed system. In this paper, we create the
Triple View Model (TVM) as a general architecture framework for
documenting ADDs. The TVM clarifies the notion of ADDs in three
different views and covers key features of the architecting process.
Based on the TVM, we propose a scenario-based methodology
(SceMethod) to manage the documentation and evolution of ADDs.
Furthermore, we also develop a UML metamodel that incorporates
evolution-centered characteristics to manage ADDs evolution. We
conduct a case study on an industrial project to validate the
applicability and the effectiveness of the TVM, the SceMethod and
the UML metamodel. The results show they provide complete
documentation on ADDs for creating system architecture, and well
support architecture evolution with changing requirements.

Keywords—Architectural design decisions, Architecture

documentation, Architecture evolution, Architectural knowledge,
Scenario

I. INTRODUCTION
OFTWARE architecture plays an important role in
achieving functional and non-functional requirements. The

architecting process provides a high-level framework to
support designing, developing, testing, and maintaining
software systems after deployment. The traditional concept of
software architecture focuses on components and connectors,
as Perry/Wolf proposed in [1]. Although the achievement by
recognizing components and connectors is significant in re-
search and industry, some problems still remain in software
architecture theory and practice. As the most critical aspects of
the problems for researchers and practitioners, architectural
knowledge representation and knowledge evaporation have
major influence on complexity and cost of system evolution,
communication among stakeholders, and software architecture
reuse.

Perry and Wolf considered the selection of elements and
their form to be architectural design decisions (ADDs), and

Manuscript received March 25, 2012. This work was supported in part by
the NSF under Grant Nos. IIS-0438967 and CCF-0820251.

Meiru Che is with department of Electrical and Computer Engineering, the
University of Texas at Austin, Austin, TX 78712 USA (e-mail:
meiruche@utexas.edu).

Dewayne E. Perry is with department of Electrical and Computer
Engineering, the University of Texas at Austin, Austin, TX 78712 USA
(e-mail: perry@mail.utexas.edu).

the justification for these decisions to be found in the
rationale. It was not until 2004, with Bosch’s paper [2] at the
European Workshop on Software Architecture, that software
architecture has finally come to be considered as a set of
ADDs. This specific focus on ADDs led to a broader focus on
architectural knowledge [3]. Capturing and representing
ADDs helps to organize architectural knowledge and reduce
its evaporation, thus providing a better control on many
fundamental architectural drift and erosion problems in the
software life cycle. In the research related to our work, the
focus has been on the development of models and tools to
capture, manage, and share ADDs [4]–[6]. A brief comparison
and analysis of the existing models and tools has been
conducted in [7]. However, there is still no agreed notion on
what should be considered as an architectural design decision
during an architecting process. Besides, current models and
tools do not support architecture evolution very well, which is
also critical for architectural knowledge management and
needs more attention in research and industry [8].

To address this need, we propose the Triple View Model
(TVM) as a general architecture framework of ADDs. The
TVM divides ADDs set into three different views, i.e., the
element view, the constraint view, and the intent view. These
three views specify ADDs by three aspects, “what”, “how”,
and “why”, and all the ADDs are regarded as a software
architecture. In addition, based on the TVM, we propose a
scenario-based methodology (SceMethod) for ADDs
documentation and evolution, which enables us to manage
architectural knowledge effectively. Furthermore, we also
develop a UML metamodel for the TVM in order to manage
architecture knowledge evolution. The core idea of the UML
metamodel is to ensure that the evolution of ADDs can be
captured and tracked properly, thus all the stakeholders can
share the evolutionary architectural knowledge without
evaporation. Several evolution-centered characteristics are
incorporated into the metamodel to achieve this goal. We
subsequently conduct a substantial case study to validate our
TVM, SceMethod and UML metamodel.

We make the following three contributions:
1) The TVM - A general framework of ADDs. The “what” -

“how” - “why” triple view clarifies the notion when
documenting ADDs;

2) The SceMethod - A scenario-based approach to ADDs
documentation and evolution. It provides an effective way to
derive ADDs and keep architectural knowledge complete and
consistent during architecture evolution;

Managing Architectural Design Decisions
Documentation and Evolution

Meiru Che, Dewayne E. Perry

S

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

137

3) The UML metamodel - A fine-grained definition for the
TVM, which designs each ADD category in the TVM as a
UML class with multiple attributes to describe the decision
information. The evolutionary characteristics in the UML
metamodel helps to capture architectural knowledge for
managing the architectural design decision evolution;

4) The substantial case study - A validation for the TVM,
the SceMethod, and the UML metamodel on an industrial
project. The results demonstrate the applicability and the
effectiveness of them.

II. TRIPLE VIEW MODEL
The Triple View Model provides a fundamental frame-

work of ADDs and covers key features of the architecting
process [9]. It has the following advantages:

First, the TVM captures ADDs not only on components,
connectors, and their relationships, but also on intent behind
each design decision. It is essentially consistent with the
traditional concept of software architecture, and helps
researchers and practitioners grasp both the fundamental
concepts and the decision-making strategies in an architecting
process;

Second, the TVM enables us to establish a complete set of
architectural knowledge, which provides clear directions for
communication among different stakeholders in the software
development life cycle;

Third, the TVM supports scenario-based ADDs
documentation and evolution, and finally supports software
architecture evolution.

A. Framework
The TVM is defined by three views: the element view, the

constraint view, and the intent view. This is analogous to
Perry/Wolf model’s elements, form, and rationale but with
expanded content and specific representations. Each view in
the TVM is a subset of ADDs, and the three views constitute
an entire ADDs set. Specifically, the three views mean three
different aspects when creating an architecture, i.e., “what”,
“how”, and “why”, as shown in Fig. 1. The three aspects aim
to cover design decisions on “what” elements should be
selected in software architecture, “how” these elements
combine and influence each other, and “why” a certain
decision is made.

During the architecting process in the software life cycle,
architects are the main role operating ADDs. However,
programmers, project managers, or customers in the real
software project environment may be brought forward
architectural decisions as well. In any case, the TVM provides
a right selection of ADDs, and it is applicable for all
stakeholders. Moreover, the TVM suggests a systematical way
to include complete architectural decisions for creating
software architecture. Fig. 2 shows the relations among ADDs,
the TVM and software architecture in a system.

B. Model
Here, we discuss the detailed contents of each view in the

Triple View Model, which are illustrated in Fig. 3.

Fig. 1 Triple View Model Framework

Fig. 2 Triple View Model and Software Architecture

In the element view, the ADDs describe “what” elements
should be selected in an architecting process. We define
computation elements, data elements, and connector elements
in this view. Computation elements represent processes,
services, and interfaces in a software system. Data elements
indicate data accessed by computation elements. Both
computation elements and data elements are regarded as
components in software architecture, and connector elements
are communication channels between those components in the
architecture. Note that the ADDs in the element view consist
of traditional architecture concepts, which are mainly
represented by components and connectors.

In the constraint view, the ADDs are defined as behavior,
properties, and relationships. They describe constraints on
system operations and are typically derived from requirement
specifications. Specifically, behavior illustrates what a system
should do and what it should not do in general. It specifies
prescriptions and proscriptions based on requirement
specifications, and influences the design decisions in the
element view. Properties are defined as constraints on a single
element in the element view, and relationships mean
interactions and configurations among different elements.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

138

Fig. 3 Triple View Model for Architectural Design Decisions

 The ADDs in the intent view are composed of rationale
and best practices in the architecting process. Rationale,
which includes alternatives, motivations, trade-offs,
justifications and reasons, is generated when analyzing and
justifying every decision that is made. Best-practices are
styles and patterns we choose for system architecture and
design. The architectural decisions in the intent view
mainly exist as tacit knowledge [10], and we need to
document them during the decision making process, so that
stakeholders can clearly understand these tacit architectural
knowledge during the architecting process. What’s more,
the consistent communication among different stakeholders
effectively decreases architectural knowledge evaporation.

III. SCENARIO-BASED DOCUMENTATION AND
EVOLUTION METHOD

In this section, we propose the scenario-based ADDs
documentation and evolution method (SceMethod).

The TVM is the foundation of ADDs documentation and
evolution. In the SceMethod, we aim to obtain and specify
the element view, constraint view, and intent view through
end-user scenarios, which are represented by Message
Sequence Charts (MSCs). Most of the functional
requirements can be represented by end-user scenarios
through MSCs; while non-functional requirements and
quality attributes probably cannot be directly shown in the
scenarios. However, in the end, all non-functional
properties can be reified functionally into architecture
design decisions, so that we still can manage non-functional
properties in the SceMethod. Fig. 4 illustrates the
SceMethod process. We can see that for the first time we
apply this method, we obtain initial ADDs results. Later on,
as the requirements change, the architectural decisions are
evolved and refined according to the newly requirements.
By documenting all the possible ADDs and evolving these
decisions with changing requirements, the SceMethod
effectively makes architectural knowledge explicit and
reduces architectural knowledge evaporation.

Fig. 4 The SceMethod Process

A. Initialization
Before applying the TVM to end-user scenarios, the

requirements of the software system are elicited, and then
we use MSCs to describe both the positive and negative
scenarios. MSC is used for representing end-user scenarios
[11], and it is a widespread notation for describing
scenarios as its UML counterpart, sequence diagrams.
Specifically, an MSC is composed of vertical lines,
horizontal arrows, and agent instances. Fig. 5 is a simple
example of an MSC [11].

Fig. 5 An MSC example

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

139

The vertical line associated with the agent instance
specifies the timeline of the corresponding agent. The
horizontal arrow shows the interaction message between the
source and the target agent instances. In Fig. 5, we can see
that i1, i2, i3, and i4 are agent instances, and each of them
has a timeline. m1, m2, and m3 are three interaction
messages among the four agent instances. Based on the
end-user scenarios represented by MSCs, we initially derive
the ADDs as defined in the TVM. If the scenarios change
afterward, we then track the evolution of the decisions and
refine them based on the changing requirement
specifications. The following three steps illustrate the
complete SceMethod process.

B. From MSC Syntax to Element View
As we mentioned previously, the element view captures

ADDs on components and connectors we need in the
architecting process. Since an MSC is associated with
several agent instances, we can derive the element view
directly from the syntax of MSCs.

Specifically, each agent instance is taken as a
computation element, which includes its services or
interfaces according to requirement specifications. Besides,
from the interaction messages between the source and target
agent instances, we can extract data elements that accessed
by computation elements. Connector elements serve as
communication channels between computation elements.

Therefore, the element view is derived as follows:
Computation Elements = {Agent Instances}
Data Elements = {Interaction Messages}
Connector Elements = {Channels between Agents}

From the syntax of MSCs, the element view is initially

documented. When end-users introduce new scenarios, the
element view is then evolved and refined based on updated
MSCs.

C. From MSC Semantics to Constraint View
Based on the semantics of MSCs, we analyze behavior,

properties, and relationships of the goal system, in order to
document ADDs in the constraint view.

In terms of behavior, we focus on general functionality of
the system that is specified by the end-user scenarios, i.e.,
the prescriptions and the proscriptions. Typically, in the
end-user scenarios, positive scenarios describe the desirable
behavior of the system, while negative scenarios describe
the undesirable behavior. Therefore, we can tell what the
system should do from positive scenarios, and what should
not do from negative scenarios as well as exceptions
handled in the MSCs. Through this information, the
following steps document ADDs on the behavior of the
system:

Behavior = {Prescriptions, Proscriptions}
Prescriptions = {Positive Scenarios}
Proscriptions = {Negative Scenarios, Exceptions}
Properties in the constraint view mean the constraints on

a single element. We use “Receive”, “Issue”, and “Check”
factors to define properties.

Properties = {Receive, Issue, Check}

“Receive” and “Issue” factors identify the responsibility

of each element. For a computation element, “Receive”
factor indicates the data which inputs to the element, and
“Issue” factor means the data which outputs from the
element. Both of them are retrieved according to the
message interactions in the MSCs. If the element is a data
element or a connector element, the “Receive” and “Issue”
factors are specified as the corresponding computation
elements directly operating the data element or connected
by the connector element. “Check” factor is the
pre-condition and the post-condition for an element
according to requirement specifications. Generally,
properties capture architectural decisions for a single
element, through which we are able to grasp the
responsibility of the element and the requirement
constraints on the element.

Relationships are ADDs on interactions and
configurations among different elements. In order to find
out the interactions among agent instances, we use simple
path expressions to illustrate the interacted events in the
MSCs.

Relationships = {Event Traces by Path Expressions}

The event traces provide us with general information

about the interaction among agent instances. Based on the
event traces results, the couplings and the structure of the
components are obtained. Additionally, interactions and
con- figurations among different elements provide a
blueprint for us to choose architectural styles and patterns
for subsequent architecting and designing process.

D. Intent View Documentation
Documenting the intent, i.e., decision making strategy, is

necessary for communicating clearly among different
stakeholders and keeping architectural knowledge complete
in the software development life cycle. Since decision
making strategies are usually behind architects and other
stakeholders’ thoughts, the intent view cannot be derived
and evolved directly from MSCs as the element and
constraint view, which make it difficult to define a formal
specification for documenting the intent view. The best way
to make the intent explicit is to record decision-making
strategies as the architecting process moves forward.
Specifically, answering each question that occurs to the
stakeholders in the architecting and designing phase is
helpful to constitute the ADDs in the intent view. For
instance, we may document the motivations why we choose
some elements as computation elements while others as
connector elements, and the reasons that we put a certain
property on an element, etc. Basically, rationale evolves
together with the element view and the constraint view.
When the decisions in the element and constraint view
change, the documented rationale is to be updated as well in

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

140

order to keep the architectural knowledge up-to-date.
Besides, architectural styles, architectural patterns and

design patterns that we apply as best-practices should also
be recorded as design decisions in the intent view. At the
same time, the justifications, alternatives, and trade-offs
generated when selecting a certain best-practice during the
decision making process are documented in the rationale as
well.

In conclusion, the intent view are documented in two
aspects:

Rationale = {Answers or Solutions to The Intent-Related
Questions}

Best-Practices = {Architectural Styles, Architectural
Patterns, Design Patterns}

The intent view is as important as the element and
constraint view, and is critical for architectural knowledge
management. Therefore, when we update the element view
and the constraint view according to the changing
requirements, it is necessary to update the intent view as
well.

IV. EVOLUTION-CENTERED UML METAMODEL

A. Metamodel
Based on the research work where we focused on

managing the documentation and the evolution of ADDs,
we develop a UML metamodel of our Triple View Model.
The UML metamodel provides more detailed
evolution-centered characteristics, which enable us to
manage the evolution of architectural knowledge [12].

Figure 6, 7, and 8 illustrate the UML metamodel. In
Figure 6, we can see that computation elements, data
elements and connector elements in the element view are
specified as classes where each of them has a bunch of
attributes to describe its information. Behavior and
Relationship classes describe the ADDs in the constraint
view, and the architectural decisions for the “properties” of
each element are merged into the corresponding element
class as attributes. In Figure 7 and 8, ADDs on “Rationale”
and “Best-Practices” are described as specific classes that
extended the general Rationale and Best-Practices class.

Fig. 6 Metamodel for the Element and the Constraint View

Fig. 7 Metamodel for Rationale in the Intent View

Fig. 8 Metamodel for Best-Practices in the Intent View

B. Evolution-Centered Characteristics
The metamodel aims to manage the evolution of ADDs.

It has the following evolution-centered characteristics that
enable us to make ADDs evolution explicitly, so that all the
stakeholders can share architectural knowledge,
specifically, decreasing the evaporation of the evolutionary
knowledge in the software architecting process.

1) Evolution-Related Attributes
We define several evolution-related attributes to describe

the ADDs classes in the metamodel. We use creation_Date
to record the specific time stamp when a certain ADD is
made. Version is used to specify a version number assigned
to each ADD, which helps to manage multiple copies of a
certain ADD during the evolutionary process. Moreover,
we aim to record the evolution history by an attribute called
evolve_From. When a new ADD is made that is evolved
from an existing one, the evolve_From attribute is used to
indicate the version of the previous ADD based on which
the newly ADD is evolving. Another evolution-related
attribute we propose is the related_Version for the
Rationale classes, which is used to specify the version
number of an ADD the rationale describes.

2) Traceable Evolution Chain
Besides the aforementioned evolution-related attributes,

the UML metamodel provides a complete evolution chain
for every ADD’s evolutionary change, which enables us to
keep tracking the evolution history of the ADDs set.
Specifically, the evolve_From attribute provides a bridge to
establish the evolution chain for ADDs. Through the
evolution chain, the architect and other stakeholders are
able to trace the changing information of a certain ADD,
and they can share consistent architectural knowledge.
Additionally, a traceable evolution chain keeps all the
evolution history explicitly and hence significantly reducing
the evaporation of the evolutionary architectural knowledge
during the software development process.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

141

3) Version-Specific Rationale
We can see that in all the rationale classes we have an

attribute called related_Version, which is used to record the
specific version number of an element or a best-practice
that a rationale describes. The version-specific rationale
classes provide us multiple ways of managing the
evolutionary knowledge of ADDs by either tracking the
rationale for a target ADD for its multiple versions or
tracking the rationale for a certain version of an ADD.
Thus, the tacit knowledge can be obtained according to the
specific requirement on ADDs evolution.

V. CASE STUDY: VALIDATION IN A POWER PLANT
MONITORING SYSTEM

Our TVM and SceMethod have been validated in a
substantial case study on an industrial project provided by
the Italian electrical company ENEL [13]. In this project, an
information system is designed to manage ENEL’s thermal
power plant operations. The purpose of the project aims to
improve power plant efficiency, to reduce operation and
maintenance costs, and to avoid forced outages [14].
Therefore, a power plant monitoring system is to be
established with functions such as data acquisition from the
field through sensors, fault detection in the power plant, and
alarm raising in case of fault occurred. The main
requirements of the system are gathered from [15]–[17].

Perry and Brandozzi have presented a method that trans-
forms the goal oriented requirement specifications into
architectural prescriptions [18], [19]. The power plant
monitoring system has already been applied in a case study
by using Perry/Brandozzi’s method [20]. We conducted the
case study on the same real world project. On the one hand,
we assessed the applicability of the TVM and the
SceMethod for a real industrial project; on the other hand,
we further evaluated the effectiveness of the TVM and the
SceMethod by comparing our results with those in the
previous case study that used Perry/Brandozzi’s method.

A. Research Questions
The TVM and the SceMethod provide a general

architecture framework and a complete process to support
the documentation and evolution of ADDs. This leads to the
following research questions:

RQ1: Are the TVM and the SceMethod feasible when
applied to real scenarios in an industrial project context?

RQ2: How well do the ADDs derived from the
SceMethod cover the main architectural specifications and
issues?

RQ3: How well do the derived results on ADDs support
architecture evolution?

We conducted a case study to address these questions.
We describe our end-user scenarios, results, analysis, and
discussion respectively. In addition, we also applied the
UML metamodel to this real project.

B. End-user Scenarios
Based on the requirement specifications of the power

plant monitoring system, we established end-user scenarios
to cover the functionality of the system, including all the
positive scenarios and some of the negative scenarios. Fig.
9 and Fig. 10 show the MSC specifications for the positive
and negative scenarios of the power plant monitoring
system.

C. Results
Taking the MSC specifications as the input, we followed

the SceMethod to derive the ADDs of the power plant
monitoring system.

1) Element View
From the syntax of the MSCs in Fig. 9 and Fig. 10, all

the agent instances are considered as the computation
elements, and the information transmitted by the interaction
messages are the data elements. We defined four connector
elements as the channels between the source and target
computation elements. Table 1 shows the element view of
the power plant monitoring system.

Table. 1 The Element View Results

Computation
Elements

Sensor Manager
FaultDetection Engine
Alarm Manager
UpdateDB Manager
UserInteraction Manager
QueryDB Manager

Data Elements

Sensor Information
Fault Information
Alarm Information
Alarm Diagnosis
Fault Diagnosis
User Request
Query Answer

Connector Elements

Sensor Connector
FaultDetectionAlarm
Connector
UpdateDB Connector
QueryDB Connector

2) Constraint View

From the semantics of the MSCs, we derived ADDs on
behavior, properties, and relationships of the power plant
monitoring system. First of all, we focused on the behavior
of the system. The positive and the negative scenarios tell
the system behavior, and each conclusion we draw from the
end-user scenarios can be seen as an ADD on system
behavior. Such as “when the Alarm Manager receives fault
information, it should send alarm information to the
UpdateDB Manager to update the database” and “If the
FaultDetection Engine does not receive abnormal sensor
information, it should not release fault information”. The
ADDs relevant to the system behavior provide us general
functionality of the power plant monitoring system, based
on which we find out the detailed system architecture
through further analysis.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

142

Fig. 9 MSC Specifications of the Power Plant Monitoring System (positive scenarios)

Fig. 10 MSC Specifications of the Power Plant Monitoring System (negative scenarios)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

143

 Secondly, we documented the properties of each element
in the element view. The results are shown in Table 2. From
these results, the responsibility of each element enables us
to extract the requirement constraints (pre-condition and
post-condition) that we need to comply with in the later
architecting and designing process.

Table. 2 The Properties Results for the Constraint View

Elements Receive Issue Check
Sensor Manager (S_M) Field Data S_I Data Correctness
FaultDetection Engine
(FD_E)

S_I F_I,
F_D

Sanity, Consistency

Alarm Manager (A_M) F_I A_I,
A_D

Fault Detected

UpdateDB Manager
(UDB_M)

A_I, A_D
S_I, F_D

- -

UserInteraction
Manager (UI_M)

User
Operations

U_R -

QueryDB Manager
(QDB_M)

U_R Q_A -

Sensor Information
(S_I)

S_M FD_E Sanity, Consistency

Fault Information (F_I) FD_E A_M Fault Detected
Alarm Information
(A_I)

A_M UDB_M Fault Detected

Alarm Diagnosis
(A_D)

A_M UDB_M Alarm Transmitted

Fault Diagnosis (F_D) FD_E UDB_M Fault Detected
User Request (U_R) UI_M QDB_M -
Query Answer (Q_A) QDB_M UI_M -
Sensor Connector
(S_C)

S_M FD_E Data Correctness

FaultDetectionAlarm
Connector (FDA_C)

FD_E A_M Sanity, Consistency

UpdateDB Connector
(UDB_C)

S_M,
FD_E
A_M

UDB_M Secure,
TimeConstraint=2s

QueryDB Connector
(QDB_C)

UI_M QDB_M TimeConstraint=5s

As for relationships among different elements, we

obtained each event trace from the MSC specifications of
the system. One example of the event trace is:

S_M: send abnormal sensor info
→ FD_E: transmit fault info
→ A_M: transmit alarm info
→UDB_M

Based on all the event traces from the end-user scenarios,

we captured the coupling relationship among the
computation elements, data elements, and connector
elements. Structure diagram is the best way to show how
each element related with others to establish the complete
architecture. We illustrated the structure diagram of the
power plant monitoring system in Fig. 11, which is
generated from the event traces.

3) Intent View
 Since the intent view reflects the thoughts behind
stakeholders’ head during the architecting process, as
mentioned previously, we documented the answers to the
questions that concerned with the decision making process
as ADDs.

Fig. 11 Structure Diagram of The Power Plant Monitoring System

For the sake of brevity, we did not specify all the

possible decisions in the intent view. We only illustrated
some questions as examples here, which are shown in Table
3. Answers to these questions provide us with the intent
during the architecting process.

Table 3. Questions for Establishing The Intent View

Rationale

(Motivation)
What is the motivation to establish the monitoring system?
Alternatives)
How can we get the six computation elements?
(Reasons)
Why do we need the computation element “FaultDetection
Engine”?
(Trade-offs)
What is the trade-off between using “Sensor Manager” or
not?
(Justifications)
How to justify “Alarm Manager” works according to the
requirements?
…

Best-
practices

(Architectural styles)
What kind of architectural style we can use to establish the
system?
(Architectural patterns)
Is the layers architectural pattern applicable to the system?
Design patterns)
Is there any design pattern we can adopt to design the
system?
…

D. Analysis
RQ1: Are the TVM and the SceMethod feasible when

applied to real scenarios in an industrial project context?
The power plant monitoring system is an industrial project
that supported by the Italian company ENEL. We note that
after we have described the end-user scenarios based on the
requirement specifications of the system, it is easy to apply
the TVM and the SceMethod to those scenarios to derive
most of the ADDs. Basically, the end-user scenarios
specified by MSCs enable us to obtain the element view,
the constraint view, and the intent view respectively
according to the SceMethod.

RQ2: How well do the ADDs derived from the SceMethod
cover the main architectural specifications and issues?
Table 1 shows all the components and connectors that we
need to establish the power plant monitoring system.
Comparing with the previous case study by using
Perry/Brandozzi’s method on the same system, we find that
the elements generated from the SceMethod have covered

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

144

all the process components, data components, and
connectors from Perry/Brandozzi’s method [20]. However,
there is a little difference that we have one more
computation element, i.e., the Sensor Manager, in our
element view. Because by providing more computation
elements, we can make the architecture more flexible,
which helps to support detailed functionality and is also
easier for us to manage the coupling and the evolution of
the architecture. Table 2 indicates that the properties enable
us to clarify the responsibility of each element and the
requirement constraints that need to be considered in the
future designing process. In addition, in order to establish a
whole blueprint of the goal system, we generate Fig. 11
based on the relationships among all the computation and
connector elements, which is similar as the box diagram in
the architecture results using Perry/Brandozzi’s method
[20]. Note that the architectural decisions derived from the
SceMethod have covered all the architecture prescriptions
from Perry/Brandozzi’s method, and in our case study, the
main issues on the components, connectors, and their
relationships have been achieved as well when deriving
ADDs. Furthermore, we captured all the possible
intent-related design decisions, which are then used to
record and track the architectural knowledge and the
decision making process during the architecting phase. On
the contrary, the intent-related decisions were not
mentioned in Perry/Brandozzi’s method.

RQ3: How well do the derived results on ADDs support
architecture evolution?
The architecture derivation process is basically an
evolutionary process. Since architecture is regarded as a set
of ADDs, we primarily analyze the evolution of ADDs to
manage architecture evolution. The initial ADDs results
largely cover the functional requirements of the power plant
monitoring system, from which we can obtain the
architecture blueprint of the system. During the
evolutionary change, the architectural decisions in the
elements, the constraints, and the intent view should be
tracked and updated with the changing scenarios and
requirements. Here, we take the constraint view evolution
as an example. For the constraint view, non-functional
requirements influence the properties of the elements, and
they may be changed after the components, the connectors,
and the structure diagram of the system are derived.
Specifically, as the architecting process proceeds, some
quality attributes, e.g., reliability requirements, are more
crucial for the whole system, and adding these quality
requirements will make the system more realistic. For
instance, we have basic requirement constraints between the
FaultDetection Engine and the Alarm Manager in the initial
architecture, and some new reliability requirements are
added to the system afterward. One requirement may be
“once a fault is detected by the FaultDetection Engine, the
alarm should be raised within 5 seconds”. When this new
limitation is included in the requirement specifications, we
need to find out how it affects the current design decisions
results. Based on the TVM, we find that the element view

does not change, since there is no change on the syntax of
the end-user scenarios. However, the constraint view is to
be updated, because the “Check” factor of the property for
the FaultDetectionAlarm Connector should comply with
the new requirement specification, i.e., we need to add
“TimeConstraint=5s” to the “Check” factor. Most of the
time, the intent view evolves together if the element view or
the constraint view changes. Hence we also need to
document the reason or the justification in the intent view,
in order to specify why the time constraint should be within
5 seconds for the FaultDectectionAlarm Connector.

Generally, the architecture evolution process is based on
the initial ADDs results. When new requirements or new
decisions via end-user scenarios arrive, we apply the
SceMethod to the changing information to evolve the initial
decisions. The SceMethod ensures that the architecture
evolution results are consistent with the changing
requirement specifications, and keeps architectural
knowledge complete in the changing environment.

E. Applying UML Metamodel
When applying our UML metamodel as a fine-grained

way, we further defined all of these ADDs as objects for the
corresponding UML classes. We finally derived seventeen
objects for the elements, three objects for the
architectural/design style and patterns, and about fifty
objects for the rationale during the entire architecting
process. The contents in Table 2 are transferred as the
values of attributes in the element objects.

When we first applied the UML metamodel, we got the
initial version of each object in every class. During the
evolutionary change, the ADDs in the element, the
constraint, and the intent view will be changed as well, and
should be tracked and updated explicitly. With the UML
metamodel, we do not need to update evolutionary changes
from the Triple View Model, but only add new objects for
specifying the corresponding changes. For example, “once
a fault is detected by the FaultDetection Engine, the alarm
should be raised within 5 seconds”, which is a new
limitation included in the requirement specifications. Based
on this newly added requirement, we need to introduce a
new object for the FaultDetectionAlarm Connector element
that evolves from the previous one. The evolutionary
change is shown in Fig. 12.

Fig. 12 An Evolutionary Change

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

145

 In Fig. 12, we can see that a new object
FaultDetectionAlarm 1 is added based on the changing
requirement. The value of the attribute check_Constraint
has been changed, and the creation_Date and the version
respectively specified the new creation date and the version
number of this object. We trace the evolution from the
attribute evolve_From, and the evolution chain provides us
the snapshot of the evolutionary history. Most of the time,
the ADDs in the intent view evolve as well if the decisions
in element view or the constraint view change. Hence we
also need to document the reason and the justification as
ADD objects, in order to specify the rationale for the time
constraint of the FaultDectectionAlarm Connector. In this
way, we explicitly record how the FaultDetectionAlarm
Connector evolves in the architecting process and the
rationale behind the new decision during the decision
making process.

Due to the space limitations, we will not specify all the
possible decisions in the architectural evolution. Using the
UML metamodel we propose, we can effectively manage
the evolutionary change of ADDs. The stakeholders in the
software development process can share consistent
architectural knowledge on ADDs evolution without
knowledge evaporation

F. Discussion
1) Practicality

The TVM and the SceMethod, which are applied during
the architecting and designing process, enable us to capture
ADDs and manage their evolution. As the software life
cycle proceeds, the ADDs results are widely employed
throughout the entire software development process.
Specifically, the documentation on ADDs intuitively
reflects development artifacts, such as the decisions in the
element view, which trigger the implementation of the
particular classes in the development phase. Furthermore,
the constraint view brings benefits to system testing and
system configuration, since the decisions on properties and
relationships enable us to define effective test cases and
system configuration framework. The architectural
knowledge is also important for training and project
management by providing efficient understanding among
different stakeholders in the software development life
cycle.

By applying the TVM and the SceMethod, the ADDs are
employed in most of the software development phases, and
finally architectural knowledge is well incorporated in
various levels of the software development process.

2) Scalability
In the case study, we applied the TVM and the

SceMethod to the power plant monitoring system and it
worked well. As the system become more complex, for
instance, more requirements need to be considered, our
method can be applied incrementally. Each time we obtain
new requirements, we describe them as scenarios by MSCs,
and then follow the process of the SceMethod to derive the
newly ADDs. Our method right now is not quite applicable

to distributed system, because the decision-collection
mechanism in the SceMethod does not support for
distributed environment. We try to improve this by
providing tool support as integrating the SceMethod into
configuration management tools, in order to better support
the application and management of architectural decisions
for complex systems.

3) Limitations
One limitation of the TVM and the SceMethod is lack of

automatic traceability from ADDs to requirement
specifications. The automatic traceability between
requirement and architectural knowledge will be more
efficient when considering large-scale software systems,
which have larger ADDs set and more difficult to trace by
hand. Therefore, tool support of the TVM and the
SceMethod is also necessary to manage the traceability.
Moreover, it may be useful to include a status for each
decision to support the traceability. Another limitation is
that current ADDs results do not show the relations among
each decision, and thus cannot provide in-depth
architectural knowledge information. We aim to overcome
this limitation by creating a network of the design
decisions, through which we are capable of looking into
further relationships of each decision, such as the cause and
effect influence among them.

VI. RELATED WORK
The key concepts of the traditional view on software

architecture are components and connectors [1], [21].
Nowadays, software architecture has been seen as a set of
ADDs [2], [22], [23]. The architectural decisions in the
software architecting process are increasingly focused by
researchers and practitioners [24]-[26], and ADDs are also
considered to be a part of architectural knowledge [3]. In
[27], a systematic review for architectural knowledge is
presented, and different definitions on architectural
knowledge and how they are relevant to each other are
discussed as well.

Guidelines for documenting software architecture has
been provided in [28], [29], however, those documentation
approaches do not explicitly capture ADDs in the
architecting process. Recently, many models and tools have
been proposed for capturing, managing, and sharing ADDs.

Tyree’s template [4] provides a simple document
describing key architectural decisions, which establishes a
concrete direction for design and implementation, and also
clarifies the rationale for different stakeholders. In [3], an
ontology of ADDs and their relationships have been
described. This ontology then can be used to construct
architectural knowledge of a software system. ADDSS [5]
is a web-based tool for documenting ADDs. It establishes
the backward and forward traceability between
requirements, decisions, and architectures. Archium [6] is a
Java tool, including a complier and a run-time environment,
for supporting ADDs capturing, tracing, and managing. It
also provides visualization for design decisions by using a
dependency graph, which is easy for stakeholder to evaluate

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

146

and track the decisions. Other models and tools such as
AREL [30], PAKME [31], and RIAP [32], and other
approaches in [33] and [34] are also proposed for managing
architectural knowledge.

The research on managing the evolution of ADDs has
been focused in the software architecture area as well. A
number of models and tools have been proposed for ADDs
evolution management. In [35], an approach for assisting
architects in reasoning architectural evolution paths has
been described, and the concept of evolution style is
defined in it. Some other techniques as discussed in [36]
and [37] introduce different approaches for capturing
architectural evolution and selection architectural evolution
alternatives.

A detailed comparison of these existing models and tools
has been done in [7]. Since each model has its own strong
and weak points, it is still difficult for researchers and
practitioners to choose which one is more suitable for their
architecting process, and the existing models are hard to
support architecture evolution very well [38]. Perry and
Grisham have focused on architecture and design intent in
[39], and our work in this paper tries to further generalize
the concept of the intent and architectural decisions in
software architecture and its evolution. Our TVM intends to
provide a general architecture framework to clarify the
notion of ADDs, and the triple views perfectly cover the
key features in software architecture. In addition, the
SceMethod based on the TVM gives a simple and
consistent way to manage the documentation and the
evolution of ADDs, which is effective in operating and
maintaining the architecting process in a changing software
development context. The UML metamodel incorporates
evolution-centered characteristics to manage ADDs
evolution, and helps to capture and trace the evolution of
ADDs explicitly, thus reducing the evaporation of
architectural knowledge that results from decisions
evolution.

VII. CONCLUSIONS AND FUTURE WORK
A recent strand of software architecture research is that

software architecture is considered as a set of ADDs. ADDs
are also defined as a part of architectural knowledge, and
are necessary to be documented and managed in order to
control fundamental problems in the software life cycle. In
this paper, we discuss the documentation and evolution of
ADDs. We propose the Triple View Model (TVM) as a
general architecture framework, which includes an element
view, a constraint view, and an intent view to indicate
“what”-“how”-“why” features for ADDs. Based on the
TVM, we propose a scenario-based method (SceMethod)
for ADDs documentation and evolution. In addition, we
develop a UML metamodel that incorporates key
evolution-centered characteristics to manage the evolution
of ADDs. The goal of the UML metamodel is to ensure that
the architectural knowledge on the evolutionary changes of
ADDs can be recorded and traced in a systematic way, in

order to reduce architectural knowledge evaporation during
the architecting process. The case study on an
industrial-strength project validates the applicability and the
effectiveness of the TVM, the SceMethod, and the UML
metamodel.

In our future work, we plan to provide tool support for
the TVM and the SceMethod. We also need to evaluate our
UML metamodel in multiple large-scale software projects
and complex systems.

REFERENCES
[1] D. E. Perry and A. L. Wolf, “Foundations for the study of software

architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, 1992, pp.
40–52.

[2] J. Bosch, “Software architecture: The next step,” Software
Architecture, 2004, pp. 194–199.

[3] P. Kruchten, P. Lago, and H. van Vliet, “Building up and reasoning
about architectural knowledge,” Quality of Software Architectures,
2006, pp. 43–58.

[4] J. Tyree and A. Akerman, “Architecture decisions: Demystifying
architecture,” IEEE Software, vol. 22, 2005, pp. 19–27.

[5] R. Capilla, F. Nava, S. Pe ́rez, and J. C. Due nas, “A web-based tool
for managing architectural design decisions,” SIGSOFT Softw. Eng.
Notes, vol. 31, no. 5, 2006, p. 4.

[6] A. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer, “Tool
support for architectural decisions,” in WICSA, 2007, p. 4.

[7] M. Shahin, P. Liang, and M. R. Khayyambashi, “Architectural design
decision: Existing models and tools,” in WICSA/ECSA, 2009, pp.
293–296.

[8] D. E. Perry, “Issues in architecture evolution: Using design intent in
maintenance and controlling dynamic evolution,” in ECSA, 2008, pp.
1-1.

[9] M. Che and D. E. Perry, Scenario-based architectural design
decisions documentation and evolution. In ECBS, 2011, pages
216–225.

[10] D. Tofan, “Tacit architectural knowledge,” in ECSA, 2010, pp. 9–11.
[11] D. M. A. Reniers, “Message sequence chart: Syntax and semantics,”

Faculty of Mathematics and Computing, Tech. Rep., 1998.
[12] M. Che and D. E. Perry, “Evolution-Centered Architectural Design

Decisions Management”, in the 11th WSEAS International
Conference on Software Engineering, Parallel and Distributed
Systems (SEPADS '12), 2012, pp. 131-136.

[13] http://www.enel.com/en-GB/.
[14] D. Vanderveken, “Deriving architectural descriptions from

goal-oriented requirements,” Ph.D. dissertation, Universit catholique
de Louvain, 2004.

[15] E. Ciapessoni, P. Mirandola, A. Coen-Porisini, D. Mandrioli, and A.
Morzenti, “From formal models to formally based methods: an
industrial experience,” ACM Trans. Softw. Eng. Methodol., vol. 8, no.
1, 1999, pp. 79–113.

[16] A. Coen-Porisini and D. Mandrioli, “Using trio for designing a
corba-based application,” Concurrency - Practice and Experience,
vol. 12, no. 10, 2000, pp. 981–1015.

[17] M. Pradella, M. Rossi, D. Mandrioli, and A. Coen-Porisini, “A
formal approach for designing corba based applications,” in ICSE,
2000, pp. 188–197.

[18] M. Brandozzi, “Transforming goal oriented requirements
specifications into architectural prescriptions,” in Proceedings
STRAW 01, ICSE 2001, 2001, pp. 54–61.

[19] M. Brandozzi and D. E. Perry, “Architectural prescriptions for
dependable systems,” in ICSE 2002 Workshop on Architecting
Dependable Systems, 2002.

[20] D. Jani, D. Vanderveken, and D. E. Perry, “Deriving architecture
specifications from kaos specifications: A research case study,” in
EWSA, 2005, pp. 185–202.

[21] L. Bass, P. Clements, and R. Kazman, Software architecture in
practice. Addison-Wesley Professional; 2nd edition, 2003.

[22] A. Jansen and J. Bosch, “Software architecture as a set of
architectural design decisions,” in WICSA, 2005, pp. 109–120.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

147

[23] R. N. Taylor, N. Medvidovic, and E. Dashofy, Software
Architecture: Foundations, Theory, and Practice. John Wiley &
Sons; New edition, 2009.

[24] J. C. Duen ̃as and R. Capilla, “The decision view of software
architecture,” Software Architecture, 2005, pp. 222–230.

[25] P. Kruchten, R. Capilla, and J. C. Duenas, “The decision view’s role
in software architecture practice,” IEEE Software, vol. 26, 2009, pp.
36–42.

[26] A. Ghazarian, “A domain-specific architectural foundation for
engineering of numerical software systems,” in WSEAS transactions
on systems, vol. 10, no. 7, 2011, pp. 193-208.

[27] R. C. de Boer and R. Farenhorst, “In search of ‘architectural
knowledge’,” in SHARK, 2008, pp. 71–78.

[28] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R.
Nord, and J. Stafford, Documenting Software Architectures: Views
and Beyond. Addison-Wesley Professional, 2002.

[29] C. Hofmeister, R. Nord, and D. Soni, Applied software architecture.
Addison-Wesley Longman Publishing Co., Inc., 2000.

[30] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model
for design traceability and reasoning,” J. Syst. Softw., vol. 80, no. 6,
2007, pp. 918–934.

[31] M. A. Babar and I. Gorton, “A tool for managing software
architecture knowledge,” in SHARK-ADI, 2007, pp. 11.

[32] T. Al-Rousan, S. Sulaiman, and R. A. Salam, “Supporting
architectural design decisions through risk identification architecture

pattern (RIAP) Model,” in WSEAS transactions on information
science and applications, vol. 6, no. 4, 2009, pp. 611-620.

[33] A. A.A Saed, W. M.N. Kadir, and A. Yousif, “A Prediction
Approach to Support Alternative Design Decision for
Component-Based System Development,” in the 11th WSEAS
International Conference on Software Engineering, Parallel and
Distributed Systems (SEPADS '12), 2012, pp. 85-91.

[34] Z. Li, X. Wang, and X. Yu, “Orthogonal software architecture design
for radar data processing system with object-oriented component and
COM interface,” in WSEAS transactions on computers, vol. 10, no. 2,
2011, pp. 61-70.

[35] D. Garlan, J. M. Barnes, B. R. Schmerl, and O. Celiku, “Evolution
styles: Foundations and tool support for software architecture
evolution”. In WICSA/ECSA, 2009, pp. 131–140.

[36] S.Ciraci, H.So ̈zer, and M.Aksit, “Guiding architects in selecting
architectural evolution alternatives”. In ECSA, 2011, pp. 252–260.

[37] A. Zalewski, S. Kijas, and D. Sokolowska. “Capturing architecture
evolution with maps of architectural decisions 2.0”, in ECSA, 2011,
pp. 83–96.

[38] R. Capilla, F. Nava, and A. Tang, “Attributes for characterizing the
evolution of architectural design decisions,” in the 3rd International
IEEE Workshop on Software Evolvability, 2007, pp. 15-22.

[39] D. E. Perry and P. S. Grisham, “Architecture and design intent in
component & cots based systems,” in ICCBSS, 2006, pp. 155.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 6, 2012

148

