
 

 

  
Abstract—Software architecture is considered as a set of 

architectural design decisions (ADDs). Capturing and representing 
ADDs during the architecting process is necessary for reducing 
architectural knowledge evaporation. Moreover, managing the 
evolution of ADDs helps to maintain consistency between 
requirements and the deployed system. In this paper, we create the 
Triple View Model (TVM) as a general architecture framework for 
documenting ADDs. The TVM clarifies the notion of ADDs in three 
different views and covers key features of the architecting process. 
Based on the TVM, we propose a scenario-based methodology 
(SceMethod) to manage the documentation and evolution of ADDs. 
Furthermore, we also develop a UML metamodel that incorporates 
evolution-centered characteristics to manage ADDs evolution. We 
conduct a case study on an industrial project to validate the 
applicability and the effectiveness of the TVM, the SceMethod and 
the UML metamodel. The results show they provide complete 
documentation on ADDs for creating system architecture, and well 
support architecture evolution with changing requirements. 
 
Keywords—Architectural design decisions, Architecture 

documentation, Architecture evolution, Architectural knowledge, 
Scenario 

I. INTRODUCTION 
OFTWARE architecture plays an important role in 
achieving functional and non-functional requirements. The 

architecting process provides a high-level framework to 
support designing, developing, testing, and maintaining 
software systems after deployment. The traditional concept of 
software architecture focuses on components and connectors, 
as Perry/Wolf proposed in [1]. Although the achievement by 
recognizing components and connectors is significant in re- 
search and industry, some problems still remain in software 
architecture theory and practice. As the most critical aspects of 
the problems for researchers and practitioners, architectural 
knowledge representation and knowledge evaporation have 
major influence on complexity and cost of system evolution, 
communication among stakeholders, and software architecture 
reuse. 

Perry and Wolf considered the selection of elements and 
their form to be architectural design decisions (ADDs), and 
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the justification for these decisions to be found in the 
rationale. It was not until 2004, with Bosch’s paper [2] at the 
European Workshop on Software Architecture, that software 
architecture has finally come to be considered as a set of 
ADDs. This specific focus on ADDs led to a broader focus on 
architectural knowledge [3]. Capturing and representing 
ADDs helps to organize architectural knowledge and reduce 
its evaporation, thus providing a better control on many 
fundamental architectural drift and erosion problems in the 
software life cycle. In the research related to our work, the 
focus has been on the development of models and tools to 
capture, manage, and share ADDs [4]–[6]. A brief comparison 
and analysis of the existing models and tools has been 
conducted in [7]. However, there is still no agreed notion on 
what should be considered as an architectural design decision 
during an architecting process. Besides, current models and 
tools do not support architecture evolution very well, which is 
also critical for architectural knowledge management and 
needs more attention in research and industry [8]. 

To address this need, we propose the Triple View Model 
(TVM) as a general architecture framework of ADDs. The 
TVM divides ADDs set into three different views, i.e., the 
element view, the constraint view, and the intent view. These 
three views specify ADDs by three aspects, “what”, “how”, 
and “why”, and all the ADDs are regarded as a software 
architecture. In addition, based on the TVM, we propose a 
scenario-based methodology (SceMethod) for ADDs 
documentation and evolution, which enables us to manage 
architectural knowledge effectively. Furthermore, we also 
develop a UML metamodel for the TVM in order to manage 
architecture knowledge evolution. The core idea of the UML 
metamodel is to ensure that the evolution of ADDs can be 
captured and tracked properly, thus all the stakeholders can 
share the evolutionary architectural knowledge without 
evaporation. Several evolution-centered characteristics are 
incorporated into the metamodel to achieve this goal. We 
subsequently conduct a substantial case study to validate our 
TVM, SceMethod and UML metamodel. 

We make the following three contributions: 
1) The TVM - A general framework of ADDs. The “what” - 

“how” - “why” triple view clarifies the notion when 
documenting ADDs; 

2) The SceMethod - A scenario-based approach to ADDs 
documentation and evolution. It provides an effective way to 
derive ADDs and keep architectural knowledge complete and 
consistent during architecture evolution; 
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3) The UML metamodel - A fine-grained definition for the 
TVM, which designs each ADD category in the TVM as a 
UML class with multiple attributes to describe the decision 
information. The evolutionary characteristics in the UML 
metamodel helps to capture architectural knowledge for 
managing the architectural design decision evolution; 

4) The substantial case study - A validation for the TVM, 
the SceMethod, and the UML metamodel on an industrial 
project. The results demonstrate the applicability and the 
effectiveness of them.  

II. TRIPLE VIEW MODEL 
The Triple View Model provides a fundamental frame- 

work of ADDs and covers key features of the architecting 
process [9]. It has the following advantages: 

First, the TVM captures ADDs not only on components, 
connectors, and their relationships, but also on intent behind 
each design decision. It is essentially consistent with the 
traditional concept of software architecture, and helps 
researchers and practitioners grasp both the fundamental 
concepts and the decision-making strategies in an architecting 
process; 

Second, the TVM enables us to establish a complete set of 
architectural knowledge, which provides clear directions for 
communication among different stakeholders in the software 
development life cycle; 

Third, the TVM supports scenario-based ADDs 
documentation and evolution, and finally supports software 
architecture evolution.  

A. Framework   
The TVM is defined by three views: the element view, the 

constraint view, and the intent view. This is analogous to 
Perry/Wolf model’s elements, form, and rationale but with 
expanded content and specific representations. Each view in 
the TVM is a subset of ADDs, and the three views constitute 
an entire ADDs set. Specifically, the three views mean three 
different aspects when creating an architecture, i.e., “what”, 
“how”, and “why”, as shown in Fig. 1. The three aspects aim 
to cover design decisions on “what” elements should be 
selected in software architecture, “how” these elements 
combine and influence each other, and “why” a certain 
decision is made.  

During the architecting process in the software life cycle, 
architects are the main role operating ADDs. However, 
programmers, project managers, or customers in the real 
software project environment may be brought forward 
architectural decisions as well. In any case, the TVM provides 
a right selection of ADDs, and it is applicable for all 
stakeholders. Moreover, the TVM suggests a systematical way 
to include complete architectural decisions for creating 
software architecture. Fig. 2 shows the relations among ADDs, 
the TVM and software architecture in a system.  

B. Model 
Here, we discuss the detailed contents of each view in the 

Triple View Model, which are illustrated in Fig. 3. 

 
 

Fig. 1 Triple View Model Framework 
 

 
 

Fig. 2 Triple View Model and Software Architecture 
 

In the element view, the ADDs describe “what” elements 
should be selected in an architecting process. We define 
computation elements, data elements, and connector elements 
in this view. Computation elements represent processes, 
services, and interfaces in a software system. Data elements 
indicate data accessed by computation elements. Both 
computation elements and data elements are regarded as 
components in software architecture, and connector elements 
are communication channels between those components in the 
architecture. Note that the ADDs in the element view consist 
of traditional architecture concepts, which are mainly 
represented by components and connectors. 

In the constraint view, the ADDs are defined as behavior, 
properties, and relationships. They describe constraints on 
system operations and are typically derived from requirement 
specifications. Specifically, behavior illustrates what a system 
should do and what it should not do in general. It specifies 
prescriptions and proscriptions based on requirement 
specifications, and influences the design decisions in the 
element view. Properties are defined as constraints on a single 
element in the element view, and relationships mean 
interactions and configurations among different elements.
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Fig. 3 Triple View Model for Architectural Design Decisions

    The ADDs in the intent view are composed of rationale 
and best practices in the architecting process. Rationale, 
which includes alternatives, motivations, trade-offs, 
justifications and reasons, is generated when analyzing and 
justifying every decision that is made. Best-practices are 
styles and patterns we choose for system architecture and 
design. The architectural decisions in the intent view 
mainly exist as tacit knowledge [10], and we need to 
document them during the decision making process, so that 
stakeholders can clearly understand these tacit architectural 
knowledge during the architecting process. What’s more, 
the consistent communication among different stakeholders 
effectively decreases architectural knowledge evaporation. 

III. SCENARIO-BASED DOCUMENTATION AND 
EVOLUTION METHOD 

In this section, we propose the scenario-based ADDs 
documentation and evolution method (SceMethod). 

The TVM is the foundation of ADDs documentation and 
evolution. In the SceMethod, we aim to obtain and specify 
the element view, constraint view, and intent view through 
end-user scenarios, which are represented by Message 
Sequence Charts (MSCs). Most of the functional 
requirements can be represented by end-user scenarios 
through MSCs; while non-functional requirements and 
quality attributes probably cannot be directly shown in the 
scenarios. However, in the end, all non-functional 
properties can be reified functionally into architecture 
design decisions, so that we still can manage non-functional 
properties in the SceMethod. Fig. 4 illustrates the 
SceMethod process. We can see that for the first time we 
apply this method, we obtain initial ADDs results. Later on, 
as the requirements change, the architectural decisions are 
evolved and refined according to the newly requirements. 
By documenting all the possible ADDs and evolving these 
decisions with changing requirements, the SceMethod 
effectively makes architectural knowledge explicit and 
reduces architectural knowledge evaporation. 

 

 
Fig. 4 The SceMethod Process 

 

A. Initialization 
Before applying the TVM to end-user scenarios, the 

requirements of the software system are elicited, and then 
we use MSCs to describe both the positive and negative 
scenarios. MSC is used for representing end-user scenarios 
[11], and it is a widespread notation for describing 
scenarios as its UML counterpart, sequence diagrams. 
Specifically, an MSC is composed of vertical lines, 
horizontal arrows, and agent instances. Fig. 5 is a simple 
example of an MSC [11]. 

 

 
Fig. 5 An MSC example 
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The vertical line associated with the agent instance 
specifies the timeline of the corresponding agent. The 
horizontal arrow shows the interaction message between the 
source and the target agent instances. In Fig. 5, we can see 
that i1, i2, i3, and i4 are agent instances, and each of them 
has a timeline. m1, m2, and m3 are three interaction 
messages among the four agent instances. Based on the 
end-user scenarios represented by MSCs, we initially derive 
the ADDs as defined in the TVM. If the scenarios change 
afterward, we then track the evolution of the decisions and 
refine them based on the changing requirement 
specifications. The following three steps illustrate the 
complete SceMethod process. 

B. From MSC Syntax to Element View 
As we mentioned previously, the element view captures 

ADDs on components and connectors we need in the 
architecting process. Since an MSC is associated with 
several agent instances, we can derive the element view 
directly from the syntax of MSCs. 

Specifically, each agent instance is taken as a 
computation element, which includes its services or 
interfaces according to requirement specifications. Besides, 
from the interaction messages between the source and target 
agent instances, we can extract data elements that accessed 
by computation elements. Connector elements serve as 
communication channels between computation elements. 

Therefore, the element view is derived as follows:  
Computation Elements = {Agent Instances} 
Data Elements = {Interaction Messages} 
Connector Elements = {Channels between Agents} 
 
From the syntax of MSCs, the element view is initially 

documented. When end-users introduce new scenarios, the 
element view is then evolved and refined based on updated 
MSCs. 

C. From MSC Semantics to Constraint View 
Based on the semantics of MSCs, we analyze behavior, 

properties, and relationships of the goal system, in order to 
document ADDs in the constraint view. 

In terms of behavior, we focus on general functionality of 
the system that is specified by the end-user scenarios, i.e., 
the prescriptions and the proscriptions. Typically, in the 
end-user scenarios, positive scenarios describe the desirable 
behavior of the system, while negative scenarios describe 
the undesirable behavior. Therefore, we can tell what the 
system should do from positive scenarios, and what should 
not do from negative scenarios as well as exceptions 
handled in the MSCs. Through this information, the 
following steps document ADDs on the behavior of the 
system: 

 
Behavior = {Prescriptions, Proscriptions}  
Prescriptions = {Positive Scenarios}  
Proscriptions = {Negative Scenarios, Exceptions}  
Properties in the constraint view mean the constraints on 

a single element. We use “Receive”, “Issue”, and “Check” 
factors to define properties. 

 
Properties = {Receive, Issue, Check} 
 
“Receive” and “Issue” factors identify the responsibility 

of each element. For a computation element, “Receive” 
factor indicates the data which inputs to the element, and 
“Issue” factor means the data which outputs from the 
element. Both of them are retrieved according to the 
message interactions in the MSCs. If the element is a data 
element or a connector element, the “Receive” and “Issue” 
factors are specified as the corresponding computation 
elements directly operating the data element or connected 
by the connector element. “Check” factor is the 
pre-condition and the post-condition for an element 
according to requirement specifications. Generally, 
properties capture architectural decisions for a single 
element, through which we are able to grasp the 
responsibility of the element and the requirement 
constraints on the element. 

Relationships are ADDs on interactions and 
configurations among different elements. In order to find 
out the interactions among agent instances, we use simple 
path expressions to illustrate the interacted events in the 
MSCs.  

Relationships = {Event Traces by Path Expressions} 
 
The event traces provide us with general information 

about the interaction among agent instances. Based on the 
event traces results, the couplings and the structure of the 
components are obtained. Additionally, interactions and 
con- figurations among different elements provide a 
blueprint for us to choose architectural styles and patterns 
for subsequent architecting and designing process. 

D. Intent View Documentation 
Documenting the intent, i.e., decision making strategy, is 

necessary for communicating clearly among different 
stakeholders and keeping architectural knowledge complete 
in the software development life cycle. Since decision 
making strategies are usually behind architects and other 
stakeholders’ thoughts, the intent view cannot be derived 
and evolved directly from MSCs as the element and 
constraint view, which make it difficult to define a formal 
specification for documenting the intent view. The best way 
to make the intent explicit is to record decision-making 
strategies as the architecting process moves forward. 
Specifically, answering each question that occurs to the 
stakeholders in the architecting and designing phase is 
helpful to constitute the ADDs in the intent view. For 
instance, we may document the motivations why we choose 
some elements as computation elements while others as 
connector elements, and the reasons that we put a certain 
property on an element, etc. Basically, rationale evolves 
together with the element view and the constraint view. 
When the decisions in the element and constraint view 
change, the documented rationale is to be updated as well in 
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order to keep the architectural knowledge up-to-date. 
Besides, architectural styles, architectural patterns and 

design patterns that we apply as best-practices should also 
be recorded as design decisions in the intent view. At the 
same time, the justifications, alternatives, and trade-offs 
generated when selecting a certain best-practice during the 
decision making process are documented in the rationale as 
well. 

In conclusion, the intent view are documented in two 
aspects:  

Rationale = {Answers or Solutions to The Intent-Related 
Questions} 

Best-Practices = {Architectural Styles, Architectural 
Patterns, Design Patterns}  

The intent view is as important as the element and 
constraint view, and is critical for architectural knowledge 
management. Therefore, when we update the element view 
and the constraint view according to the changing 
requirements, it is necessary to update the intent view as 
well. 

IV. EVOLUTION-CENTERED UML METAMODEL 

A. Metamodel 
Based on the research work where we focused on 

managing the documentation and the evolution of ADDs, 
we develop a UML metamodel of our Triple View Model. 
The UML metamodel provides more detailed 
evolution-centered characteristics, which enable us to 
manage the evolution of architectural knowledge [12]. 

Figure 6, 7, and 8 illustrate the UML metamodel. In 
Figure 6, we can see that computation elements, data 
elements and connector elements in the element view are 
specified as classes where each of them has a bunch of 
attributes to describe its information. Behavior and 
Relationship classes describe the ADDs in the constraint 
view, and the architectural decisions for the “properties” of 
each element are merged into the corresponding element 
class as attributes. In Figure 7 and 8, ADDs on “Rationale” 
and “Best-Practices” are described as specific classes that 
extended the general Rationale and Best-Practices class. 

 

 
Fig. 6 Metamodel for the Element and the Constraint View 

 

 
Fig. 7 Metamodel for Rationale in the Intent View 

 
 

 
Fig. 8 Metamodel for Best-Practices in the Intent View 

 

B. Evolution-Centered Characteristics 
The metamodel aims to manage the evolution of ADDs. 

It has the following evolution-centered characteristics that 
enable us to make ADDs evolution explicitly, so that all the 
stakeholders can share architectural knowledge, 
specifically, decreasing the evaporation of the evolutionary 
knowledge in the software architecting process. 

1) Evolution-Related Attributes 
We define several evolution-related attributes to describe 

the ADDs classes in the metamodel. We use creation_Date 
to record the specific time stamp when a certain ADD is 
made. Version is used to specify a version number assigned 
to each ADD, which helps to manage multiple copies of a 
certain ADD during the evolutionary process. Moreover, 
we aim to record the evolution history by an attribute called 
evolve_From. When a new ADD is made that is evolved 
from an existing one, the evolve_From attribute is used to 
indicate the version of the previous ADD based on which 
the newly ADD is evolving. Another evolution-related 
attribute we propose is the related_Version for the 
Rationale classes, which is used to specify the version 
number of an ADD the rationale describes. 

2) Traceable Evolution Chain 
Besides the aforementioned evolution-related attributes, 

the UML metamodel provides a complete evolution chain 
for every ADD’s evolutionary change, which enables us to 
keep tracking the evolution history of the ADDs set. 
Specifically, the evolve_From attribute provides a bridge to 
establish the evolution chain for ADDs. Through the 
evolution chain, the architect and other stakeholders are 
able to trace the changing information of a certain ADD, 
and they can share consistent architectural knowledge. 
Additionally, a traceable evolution chain keeps all the 
evolution history explicitly and hence significantly reducing 
the evaporation of the evolutionary architectural knowledge 
during the software development process. 
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3) Version-Specific Rationale 
We can see that in all the rationale classes we have an 

attribute called related_Version, which is used to record the 
specific version number of an element or a best-practice 
that a rationale describes. The version-specific rationale 
classes provide us multiple ways of managing the 
evolutionary knowledge of ADDs by either tracking the 
rationale for a target ADD for its multiple versions or 
tracking the rationale for a certain version of an ADD. 
Thus, the tacit knowledge can be obtained according to the 
specific requirement on ADDs evolution. 

V. CASE STUDY: VALIDATION IN A POWER PLANT 
MONITORING SYSTEM 

Our TVM and SceMethod have been validated in a 
substantial case study on an industrial project provided by 
the Italian electrical company ENEL [13]. In this project, an 
information system is designed to manage ENEL’s thermal 
power plant operations. The purpose of the project aims to 
improve power plant efficiency, to reduce operation and 
maintenance costs, and to avoid forced outages [14]. 
Therefore, a power plant monitoring system is to be 
established with functions such as data acquisition from the 
field through sensors, fault detection in the power plant, and 
alarm raising in case of fault occurred. The main 
requirements of the system are gathered from [15]–[17]. 

Perry and Brandozzi have presented a method that trans- 
forms the goal oriented requirement specifications into 
architectural prescriptions [18], [19]. The power plant 
monitoring system has already been applied in a case study 
by using Perry/Brandozzi’s method [20]. We conducted the 
case study on the same real world project. On the one hand, 
we assessed the applicability of the TVM and the 
SceMethod for a real industrial project; on the other hand, 
we further evaluated the effectiveness of the TVM and the 
SceMethod by comparing our results with those in the 
previous case study that used Perry/Brandozzi’s method. 

A. Research Questions 
The TVM and the SceMethod provide a general 

architecture framework and a complete process to support 
the documentation and evolution of ADDs. This leads to the 
following research questions: 

RQ1:  Are the TVM and the SceMethod feasible when 
applied to real scenarios in an industrial project context?  

RQ2:  How well do the ADDs derived from the 
SceMethod cover the main architectural specifications and 
issues?  

RQ3:  How well do the derived results on ADDs support 
architecture evolution?  

We conducted a case study to address these questions. 
We describe our end-user scenarios, results, analysis, and 
discussion respectively. In addition, we also applied the 
UML metamodel to this real project. 

B. End-user Scenarios 
Based on the requirement specifications of the power 

plant monitoring system, we established end-user scenarios 
to cover the functionality of the system, including all the 
positive scenarios and some of the negative scenarios. Fig. 
9 and Fig. 10 show the MSC specifications for the positive 
and negative scenarios of the power plant monitoring 
system. 

C. Results 
Taking the MSC specifications as the input, we followed 

the SceMethod to derive the ADDs of the power plant 
monitoring system. 

1) Element View 
From the syntax of the MSCs in Fig. 9 and Fig. 10, all 

the agent instances are considered as the computation 
elements, and the information transmitted by the interaction 
messages are the data elements. We defined four connector 
elements as the channels between the source and target 
computation elements. Table 1 shows the element view of 
the power plant monitoring system. 

 
Table. 1 The Element View Results 

Computation 
Elements 

Sensor Manager 
FaultDetection Engine 
Alarm Manager 
UpdateDB Manager 
UserInteraction Manager 
QueryDB Manager 

Data Elements 

Sensor Information 
Fault Information 
Alarm Information 
Alarm Diagnosis 
Fault Diagnosis 
User Request 
Query Answer 

Connector Elements 

Sensor Connector 
FaultDetectionAlarm 
Connector 
UpdateDB Connector 
QueryDB Connector 

 
2) Constraint View 

From the semantics of the MSCs, we derived ADDs on 
behavior, properties, and relationships of the power plant 
monitoring system. First of all, we focused on the behavior 
of the system. The positive and the negative scenarios tell 
the system behavior, and each conclusion we draw from the 
end-user scenarios can be seen as an ADD on system 
behavior. Such as “when the Alarm Manager receives fault 
information, it should send alarm information to the 
UpdateDB Manager to update the database” and “If the 
FaultDetection Engine does not receive abnormal sensor 
information, it should not release fault information”. The 
ADDs relevant to the system behavior provide us general 
functionality of the power plant monitoring system, based 
on which we find out the detailed system architecture 
through further analysis. 
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Fig. 9 MSC Specifications of the Power Plant Monitoring System (positive scenarios) 

 

 
Fig. 10 MSC Specifications of the Power Plant Monitoring System (negative scenarios)
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   Secondly, we documented the properties of each element 
in the element view. The results are shown in Table 2. From 
these results, the responsibility of each element enables us 
to extract the requirement constraints (pre-condition and 
post-condition) that we need to comply with in the later 
architecting and designing process. 

 
Table. 2 The Properties Results for the Constraint View  

Elements Receive Issue Check 
Sensor Manager (S_M) Field Data S_I Data Correctness 
FaultDetection Engine 
(FD_E) 

S_I F_I, 
F_D 

Sanity, Consistency 

Alarm Manager (A_M) F_I A_I, 
A_D 

Fault Detected 

UpdateDB Manager 
(UDB_M) 

A_I, A_D 
S_I, F_D 

- - 

UserInteraction 
Manager (UI_M) 

User 
Operations 

U_R - 

QueryDB Manager 
(QDB_M) 

U_R Q_A - 

Sensor Information 
(S_I) 

S_M FD_E Sanity, Consistency 

Fault Information (F_I) FD_E A_M Fault Detected 
Alarm Information 
(A_I) 

A_M UDB_M Fault Detected 

Alarm Diagnosis 
(A_D) 

A_M UDB_M Alarm Transmitted 

Fault Diagnosis (F_D) FD_E UDB_M Fault Detected 
User Request (U_R) UI_M QDB_M - 
Query Answer (Q_A) QDB_M UI_M - 
Sensor Connector 
(S_C) 

S_M FD_E Data Correctness 

FaultDetectionAlarm 
Connector (FDA_C) 

FD_E A_M Sanity, Consistency 

UpdateDB Connector 
(UDB_C) 

S_M, 
FD_E 
A_M 

UDB_M Secure, 
TimeConstraint=2s 

QueryDB Connector 
(QDB_C) 

UI_M QDB_M TimeConstraint=5s 

 
As for relationships among different elements, we 

obtained each event trace from the MSC specifications of 
the system. One example of the event trace is: 

 
S_M: send abnormal sensor info  
→ FD_E: transmit fault info  
→ A_M: transmit alarm info  
→UDB_M 
 
Based on all the event traces from the end-user scenarios, 

we captured the coupling relationship among the 
computation elements, data elements, and connector 
elements. Structure diagram is the best way to show how 
each element related with others to establish the complete 
architecture. We illustrated the structure diagram of the 
power plant monitoring system in Fig. 11, which is 
generated from the event traces. 

3) Intent View 
    Since the intent view reflects the thoughts behind 
stakeholders’ head during the architecting process, as 
mentioned previously, we documented the answers to the 
questions that concerned with the decision making process 
as ADDs. 

 
Fig. 11 Structure Diagram of The Power Plant Monitoring System 

 
For the sake of brevity, we did not specify all the 

possible decisions in the intent view. We only illustrated 
some questions as examples here, which are shown in Table 
3. Answers to these questions provide us with the intent 
during the architecting process. 
 

Table 3. Questions for Establishing The Intent View 

Rationale 

(Motivation) 
What is the motivation to establish the monitoring system? 
Alternatives) 
How can we get the six computation elements? 
(Reasons) 
Why do we need the computation element “FaultDetection 
Engine”? 
(Trade-offs) 
What is the trade-off between using “Sensor Manager” or 
not? 
(Justifications) 
How to justify “Alarm Manager” works according to the 
requirements? 
… 

Best- 
practices 
 

(Architectural styles) 
What kind of architectural style we can use to establish the 
system? 
(Architectural patterns) 
Is the layers architectural pattern applicable to the system? 
Design patterns) 
Is there any design pattern we can adopt to design the 
system? 
… 

 

D. Analysis 
RQ1: Are the TVM and the SceMethod feasible when 

applied to real scenarios in an industrial project context?  
The power plant monitoring system is an industrial project 
that supported by the Italian company ENEL. We note that 
after we have described the end-user scenarios based on the 
requirement specifications of the system, it is easy to apply 
the TVM and the SceMethod to those scenarios to derive 
most of the ADDs. Basically, the end-user scenarios 
specified by MSCs enable us to obtain the element view, 
the constraint view, and the intent view respectively 
according to the SceMethod. 

RQ2: How well do the ADDs derived from the SceMethod 
cover the main architectural specifications and issues? 
Table 1 shows all the components and connectors that we 
need to establish the power plant monitoring system. 
Comparing with the previous case study by using 
Perry/Brandozzi’s method on the same system, we find that 
the elements generated from the SceMethod have covered 
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all the process components, data components, and 
connectors from Perry/Brandozzi’s method [20]. However, 
there is a little difference that we have one more 
computation element, i.e., the Sensor Manager, in our 
element view. Because by providing more computation 
elements, we can make the architecture more flexible, 
which helps to support detailed functionality and is also 
easier for us to manage the coupling and the evolution of 
the architecture. Table 2 indicates that the properties enable 
us to clarify the responsibility of each element and the 
requirement constraints that need to be considered in the 
future designing process. In addition, in order to establish a 
whole blueprint of the goal system, we generate Fig. 11 
based on the relationships among all the computation and 
connector elements, which is similar as the box diagram in 
the architecture results using Perry/Brandozzi’s method 
[20]. Note that the architectural decisions derived from the 
SceMethod have covered all the architecture prescriptions 
from Perry/Brandozzi’s method, and in our case study, the 
main issues on the components, connectors, and their 
relationships have been achieved as well when deriving 
ADDs. Furthermore, we captured all the possible 
intent-related design decisions, which are then used to 
record and track the architectural knowledge and the 
decision making process during the architecting phase. On 
the contrary, the intent-related decisions were not 
mentioned in Perry/Brandozzi’s method. 

RQ3: How well do the derived results on ADDs support 
architecture evolution? 
The architecture derivation process is basically an 
evolutionary process. Since architecture is regarded as a set 
of ADDs, we primarily analyze the evolution of ADDs to 
manage architecture evolution. The initial ADDs results 
largely cover the functional requirements of the power plant 
monitoring system, from which we can obtain the 
architecture blueprint of the system. During the 
evolutionary change, the architectural decisions in the 
elements, the constraints, and the intent view should be 
tracked and updated with the changing scenarios and 
requirements. Here, we take the constraint view evolution 
as an example. For the constraint view, non-functional 
requirements influence the properties of the elements, and 
they may be changed after the components, the connectors, 
and the structure diagram of the system are derived. 
Specifically, as the architecting process proceeds, some 
quality attributes, e.g., reliability requirements, are more 
crucial for the whole system, and adding these quality 
requirements will make the system more realistic. For 
instance, we have basic requirement constraints between the 
FaultDetection Engine and the Alarm Manager in the initial 
architecture, and some new reliability requirements are 
added to the system afterward. One requirement may be 
“once a fault is detected by the FaultDetection Engine, the 
alarm should be raised within 5 seconds”. When this new 
limitation is included in the requirement specifications, we 
need to find out how it affects the current design decisions 
results. Based on the TVM, we find that the element view 

does not change, since there is no change on the syntax of 
the end-user scenarios. However, the constraint view is to 
be updated, because the “Check” factor of the property for 
the FaultDetectionAlarm Connector should comply with 
the new requirement specification, i.e., we need to add 
“TimeConstraint=5s” to the “Check” factor. Most of the 
time, the intent view evolves together if the element view or 
the constraint view changes. Hence we also need to 
document the reason or the justification in the intent view, 
in order to specify why the time constraint should be within 
5 seconds for the FaultDectectionAlarm Connector. 

Generally, the architecture evolution process is based on 
the initial ADDs results. When new requirements or new 
decisions via end-user scenarios arrive, we apply the 
SceMethod to the changing information to evolve the initial 
decisions. The SceMethod ensures that the architecture 
evolution results are consistent with the changing 
requirement specifications, and keeps architectural 
knowledge complete in the changing environment. 

E. Applying UML Metamodel 
When applying our UML metamodel as a fine-grained 

way, we further defined all of these ADDs as objects for the 
corresponding UML classes. We finally derived seventeen 
objects for the elements, three objects for the 
architectural/design style and patterns, and about fifty 
objects for the rationale during the entire architecting 
process. The contents in Table 2 are transferred as the 
values of attributes in the element objects. 

When we first applied the UML metamodel, we got the 
initial version of each object in every class. During the 
evolutionary change, the ADDs in the element, the 
constraint, and the intent view will be changed as well, and 
should be tracked and updated explicitly. With the UML 
metamodel, we do not need to update evolutionary changes 
from the Triple View Model, but only add new objects for 
specifying the corresponding changes. For example, “once 
a fault is detected by the FaultDetection Engine, the alarm 
should be raised within 5 seconds”, which is a new 
limitation included in the requirement specifications. Based 
on this newly added requirement, we need to introduce a 
new object for the FaultDetectionAlarm Connector element 
that evolves from the previous one. The evolutionary 
change is shown in Fig. 12. 

 

 
Fig. 12 An Evolutionary Change 
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    In Fig. 12, we can see that a new object 
FaultDetectionAlarm 1 is added based on the changing 
requirement. The value of the attribute check_Constraint 
has been changed, and the creation_Date and the version 
respectively specified the new creation date and the version 
number of this object. We trace the evolution from the 
attribute evolve_From, and the evolution chain provides us 
the snapshot of the evolutionary history. Most of the time, 
the ADDs in the intent view evolve as well if the decisions 
in element view or the constraint view change. Hence we 
also need to document the reason and the justification as 
ADD objects, in order to specify the rationale for the time 
constraint of the FaultDectectionAlarm Connector. In this 
way, we explicitly record how the FaultDetectionAlarm 
Connector evolves in the architecting process and the 
rationale behind the new decision during the decision 
making process. 

Due to the space limitations, we will not specify all the 
possible decisions in the architectural evolution. Using the 
UML metamodel we propose, we can effectively manage 
the evolutionary change of ADDs. The stakeholders in the 
software development process can share consistent 
architectural knowledge on ADDs evolution without 
knowledge evaporation 

F. Discussion 
1) Practicality 

The TVM and the SceMethod, which are applied during 
the architecting and designing process, enable us to capture 
ADDs and manage their evolution. As the software life 
cycle proceeds, the ADDs results are widely employed 
throughout the entire software development process. 
Specifically, the documentation on ADDs intuitively 
reflects development artifacts, such as the decisions in the 
element view, which trigger the implementation of the 
particular classes in the development phase. Furthermore, 
the constraint view brings benefits to system testing and 
system configuration, since the decisions on properties and 
relationships enable us to define effective test cases and 
system configuration framework. The architectural 
knowledge is also important for training and project 
management by providing efficient understanding among 
different stakeholders in the software development life 
cycle. 

By applying the TVM and the SceMethod, the ADDs are 
employed in most of the software development phases, and 
finally architectural knowledge is well incorporated in 
various levels of the software development process. 

2) Scalability 
In the case study, we applied the TVM and the 

SceMethod to the power plant monitoring system and it 
worked well. As the system become more complex, for 
instance, more requirements need to be considered, our 
method can be applied incrementally. Each time we obtain 
new requirements, we describe them as scenarios by MSCs, 
and then follow the process of the SceMethod to derive the 
newly ADDs. Our method right now is not quite applicable 

to distributed system, because the decision-collection 
mechanism in the SceMethod does not support for 
distributed environment. We try to improve this by 
providing tool support as integrating the SceMethod into 
configuration management tools, in order to better support 
the application and management of architectural decisions 
for complex systems. 

3) Limitations 
One limitation of the TVM and the SceMethod is lack of 

automatic traceability from ADDs to requirement 
specifications. The automatic traceability between 
requirement and architectural knowledge will be more 
efficient when considering large-scale software systems, 
which have larger ADDs set and more difficult to trace by 
hand. Therefore, tool support of the TVM and the 
SceMethod is also necessary to manage the traceability. 
Moreover, it may be useful to include a status for each 
decision to support the traceability. Another limitation is 
that current ADDs results do not show the relations among 
each decision, and thus cannot provide in-depth 
architectural knowledge information. We aim to overcome 
this limitation by creating a network of the design 
decisions, through which we are capable of looking into 
further relationships of each decision, such as the cause and 
effect influence among them. 

VI. RELATED WORK 
The key concepts of the traditional view on software 

architecture are components and connectors [1], [21]. 
Nowadays, software architecture has been seen as a set of 
ADDs [2], [22], [23]. The architectural decisions in the 
software architecting process are increasingly focused by 
researchers and practitioners [24]-[26], and ADDs are also 
considered to be a part of architectural knowledge [3]. In 
[27], a systematic review for architectural knowledge is 
presented, and different definitions on architectural 
knowledge and how they are relevant to each other are 
discussed as well. 

Guidelines for documenting software architecture has 
been provided in [28], [29], however, those documentation 
approaches do not explicitly capture ADDs in the 
architecting process. Recently, many models and tools have 
been proposed for capturing, managing, and sharing ADDs. 

Tyree’s template [4] provides a simple document 
describing key architectural decisions, which establishes a 
concrete direction for design and implementation, and also 
clarifies the rationale for different stakeholders. In [3], an 
ontology of ADDs and their relationships have been 
described. This ontology then can be used to construct 
architectural knowledge of a software system. ADDSS [5] 
is a web-based tool for documenting ADDs. It establishes 
the backward and forward traceability between 
requirements, decisions, and architectures. Archium [6] is a 
Java tool, including a complier and a run-time environment, 
for supporting ADDs capturing, tracing, and managing. It 
also provides visualization for design decisions by using a 
dependency graph, which is easy for stakeholder to evaluate 
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and track the decisions. Other models and tools such as 
AREL [30], PAKME [31], and RIAP [32], and other 
approaches in [33] and [34] are also proposed for managing 
architectural knowledge. 

The research on managing the evolution of ADDs has 
been focused in the software architecture area as well. A 
number of models and tools have been proposed for ADDs 
evolution management. In [35], an approach for assisting 
architects in reasoning architectural evolution paths has 
been described, and the concept of evolution style is 
defined in it. Some other techniques as discussed in [36] 
and [37] introduce different approaches for capturing 
architectural evolution and selection architectural evolution 
alternatives. 

A detailed comparison of these existing models and tools 
has been done in [7]. Since each model has its own strong 
and weak points, it is still difficult for researchers and 
practitioners to choose which one is more suitable for their 
architecting process, and the existing models are hard to 
support architecture evolution very well [38]. Perry and 
Grisham have focused on architecture and design intent in 
[39], and our work in this paper tries to further generalize 
the concept of the intent and architectural decisions in 
software architecture and its evolution. Our TVM intends to 
provide a general architecture framework to clarify the 
notion of ADDs, and the triple views perfectly cover the 
key features in software architecture. In addition, the 
SceMethod based on the TVM gives a simple and 
consistent way to manage the documentation and the 
evolution of ADDs, which is effective in operating and 
maintaining the architecting process in a changing software 
development context. The UML metamodel incorporates 
evolution-centered characteristics to manage ADDs 
evolution, and helps to capture and trace the evolution of 
ADDs explicitly, thus reducing the evaporation of 
architectural knowledge that results from decisions 
evolution. 

VII. CONCLUSIONS AND FUTURE WORK 
A recent strand of software architecture research is that 

software architecture is considered as a set of ADDs. ADDs 
are also defined as a part of architectural knowledge, and 
are necessary to be documented and managed in order to 
control fundamental problems in the software life cycle. In 
this paper, we discuss the documentation and evolution of 
ADDs. We propose the Triple View Model (TVM) as a 
general architecture framework, which includes an element 
view, a constraint view, and an intent view to indicate 
“what”-“how”-“why” features for ADDs. Based on the 
TVM, we propose a scenario-based method (SceMethod) 
for ADDs documentation and evolution. In addition, we 
develop a UML metamodel that incorporates key 
evolution-centered characteristics to manage the evolution 
of ADDs. The goal of the UML metamodel is to ensure that 
the architectural knowledge on the evolutionary changes of 
ADDs can be recorded and traced in a systematic way, in 

order to reduce architectural knowledge evaporation during 
the architecting process. The case study on an 
industrial-strength project validates the applicability and the 
effectiveness of the TVM, the SceMethod, and the UML 
metamodel. 

In our future work, we plan to provide tool support for 
the TVM and the SceMethod. We also need to evaluate our 
UML metamodel in multiple large-scale software projects 
and complex systems. 
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