
International Journal of Information Technology& Decision Making
 World Scientific Publishing Company

1

ANTIPATTERNS FOR ARCHITECTURAL KNOWLEDGE MANAGEMENT

ELENA NAVARRO

Laboratory of User Interface and Software Engineering, Computing Systems Department,
University of Castilla-La Mancha,

Albacete, 02071, Spain
elena.navarro@uclm.es

CARLOS E. CUESTA

School of Computer Science & Engineering,
Rey Juan Carlos University

Mostoles, 2893328933 Madrid, Spain
carlos.cuesta@urjc.es

DEWAYNE E. PERRY

Department of Electrical and Computer Engineering,
The University of Texas at Austin,

Austin, TX 78712, USA
perry@mail.utexas.edu

PASCUAL GONZÁLEZ

Laboratory of User Interface and Software Engineering, Computing Systems Department,
University of Castilla-La Mancha,

Albacete, 02071, Spain
pascual.gonzalez@uclm.es

Received 28 July 2011
Revised 15 January 2013

Communicated by (xxxxxxx)

Recent research on Software Architecture has recovered its original emphasis on keeping track of
design decisions and their rationales during software development, compiling them under the name
of Architectural Knowledge (AK). This knowledge is composed of explicit, atomic decision assets,
which relate to each other creating a decision network structure. We argue that relationships in these
networks of AK contain valuable information, in particular when they describe negative semantics.
We use reusable knowledge, in the form of antipatterns, to exploit and manage these negative
semantic relationships systematically. After examining and classifying the kinds of AK
relationships, we describe a method that enriches this network by means of antipattern structures. To
show the feasibility and suitability of this approach, we provide a proof-of-concept by applying it to
an existing process, ATRIUM. A concrete example illustrates our approach in which we use the
Excessive Dynamic Allocation performance antipattern against the classic Gas Station metaphor.
Results of the use of the presented approach into three different projects with different complexities
show both the feasibility and applicability of our method. The combination of this model-driven
support and explicit AK makes it possible to go beyond traceability to a more proactive AK
management system that may additionally trigger modifications in the final architecture.

Keywords: software architecture, architectural knowledge, antipatterns, requirements engineering,
model-driven development.

*

http://www.editorialmanager.com/ijitdm/download.aspx?id=16132&guid=560a4d8f-59fc-4e8b-a208-1d76684864ae&scheme=1

2 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

1 Introduction

In a typical software development process, the rationale for the architecture and the intent
behind the design decisions are lost in the pursuit of that final system artifact, code. If by
chance the architecture and design is documented, the documents themselves are usually
out of date or incorrect – in other words, probably at least as harmful as they are helpful.

Given that architecture rationale [72] and design intent are critical in evolving
software systems, it is imperative that they be captured in some useful form to aid that
evolution process. We claim that the rationale and intent, instead of being lost during the
development process, can be captured as a byproduct of architecting and designing the
system. Every decision is explicitly specified and included in the process of architecting
the system and each decision becomes a part of a hyper-textual document that represents
the network of architectural assets with their complex relationships. The advantage of
such an approach is that it provides traceability and, optionally, even backtracking for
design decisions.

The resulting structure, the architectural rationale, can be considered just
documentation, the transcription of the thought process followed during design.
However, in recent research it has acquired a more active role. It can be seen as a
computational structure, composed of small assets, or artifacts, of design knowledge,
tracing back to some requirements and forward towards an implementation. As such, it
can be considered the extended discourse of the system’s design, defining our
architectural knowledge (AK). AK is therefore composed of architectural elements,
requirements, and a number of design assets. There are several ways to represent them;
we talk about Design Decisions (DDs) and Design Rationales (DRs), which comprise a
concrete decision in the architecture process, and the reasoning behind it. This conception
is consistent with the existing literature on design; indeed, design rationale is a topic with
a long tradition on its own [53]. The purpose of research on AK is to incorporate this
derivation of the architectural design in the architectural process – that is, include that
derivation via design decisions and rationales as part of the architecture description.
When only the final architecture is described, this derivation is lost and becomes
unrepresented design knowledge [86].

From the AK perspective, architecture is therefore better defined as “a set of design
decisions” [34]. But it is indeed, not a set, but a network. DDs are related to some others,
both forward and backwards, defining an intertwined chain of decisions. When the
rationale is conceived as a network of AK assets, the network itself can subsume much of
its structure. Moreover, these AK relationships (AKRs) can be either positive or negative.
A positive AKR between two DDs determines that both of them should be made for the
software architecture to be correctly specified, as one depends on the other. On the other
hand, a negative AKR between two DDs establishes that there is a conflict between them,
and that a compromise has to be achieved to resolve the conflict in the architecture.
However, when trying to provide automatic (or at least, semi-automatic) support for this
process, positive relationships are easy to deduce and, hence, to process. However,
negative relationships are not easy to deduce and process. A decision not taken, or

 Antipatterns for Architectural Knowledge Management 3

inhibited due to some other decision, is not visible (there are no traces of it) in the final
architecture. This unrepresented knowledge [86], which cannot be deduced from the final
design, must be introduced manually. This is perhaps the most important reason to
introduce the distinction between positive and negative AK relationships.

The main contribution presented in this work is the use of standard “negative” design
knowledge, namely antipatterns, as a source of information that helps to identify
potential negative relationships within the AK structure and suggest possible solutions.
As a proof of concept, we have implemented this support in an existing model-driven
methodology, ATRIUM [52], that already has the support for DDs [61]. This enables us
to offer two secondary contributions: (i) the extension of ATRIUM with a new activity
named Analysis that embodies the exploitation of antipatterns for AK management; and
(ii) the definition of new AK relationships that are necessary both to change the AK to a
network of AK and to weave antipatterns into this network.

This paper is structured as follows. Section 2 describes the proposal presented in this
work: the automation of the process of detecting negative relationships by exploiting
antipatterns. Next, Section 3 describes the current approaches to AKRs, discussing their
coverage and benefits, while Section 4 presents the related work about the exploitation of
anti-patterns. Section 5 demonstrates, by means of a proof of concept, that our approach
can be put into practice, describing its application by using the well-known gas station
example in Section 5.4. Section 6 describes the most relevant results obtained from its
application into three different projects of different complexities. Finally, Section 7
presents our conclusions and suggestions for further research.

2 Problem Statement: Antipatterns for AK Management

As stated in the previous section, we can classify AKRs into two kinds: positive and
negative AKRs. The former makes it possible to specify obligation semantics within the
AK network. These kinds of relationships are specified to describe when some DDs need,
constrain, etc., other DDs. The latter group implies negation semantics, such that specific
conditions, situations, etc., cannot occur in the system-to-be. Usually, negative AKRs are
used either to describe choices (DDs) which, if taken, would mean bad decisions for the
system-to-be, or sets of DDs whose combination would result in architectural problems.
Although both of them are very noteworthy for the design and the maintenance of
software systems, the negative relationships are especially relevant as they can lead to
faults, inconsistencies, conflicts or other design problems in the final system. Therefore,
their early detection can avoid problems in terms of the quality of the final system.

Usually, the detection of the positive relationships emerges naturally as part of the
process of the description of the software architecture. However, the negative
relationships must usually be detected by the architect without any automated support,
relying on his previous architectural experience, or on his knowledge of the current
system and its history. This happens because software development is a constructive
design process, that is, for many decisions to be made it is mandatory that other ones
already have been taken. However, when a decision is not taken, something is just not

4 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

done, and hence the corresponding negative relationship does not emerge naturally from
the final result. Therefore this knowledge of what was not done is lost, unless we
explicitly capture it.

Manual analysis can become cumbersome and error-prone, especially when it is
carried out by an inexpert architect. Therefore, the introduction of techniques that help in
the automatic (or at least semi-automatic) detection of these negative AKRs would
provide an initial advantage for creating higher quality specifications of software
architectures, just a first step to bridge the gap between initial development and the
evolution of a system.

In order to meet this challenge, we propose the use of antipatterns. Brown et al. [9]
defined an antipattern as “a literary form that describes a commonly occurring solution to
a problem that generates decidedly negative consequences.” As can be observed,
antipatterns describe very useful knowledge about ineffective software practices in terms
of software development processes, software architecture, project management, etc. This
is not a new concept in Software Engineering but has been applied over last decades,
almost simultaneously with the introduction of design patterns [28] or software
architecture patterns [11]. Unlike antipatterns, these do describe good practices in
software development as they document good solutions to recurring problems. When
software patterns are formally identified and specified, they enable us to reason about the
architecture because they describe how and why the software architecture is as it is. This
has motivated some proposals that have emerged in the AK management arena that
promote the use of patterns as a way to detect and document DDs [30] automatically.
However, as far as we know, there are no approaches that promote the use of antipatterns
in the context of AK management, despite their utility to document bad DDs or bad
combinations of DDs.

As can be observed in Fig. 1, whenever an antipattern is detected, it involves one or
more artifacts. It can also determine that either a bad decision was made during its
specification or an improper combination of DDs led to such a condition. For instance,
during the requirements stage, the antipattern Functional Decomposition of Use Cases
(UCs) [22] can be detected if the architect made the decision of specifying a set of all too
simple UCs instead of one unique and more comprehensive UC that can be more easily
traceable and assignable during the software development process. One-Lane Bridge [78]
is another example of an antipattern that can be found when the software architecture is
being specified. It indicates that concurrency problems can arise whenever the architect
decides that only one, or only a few, processes can proceed to execute in a concurrent
way causing the other ones to wait. At the code or design level we can also find this
relationship between bad decisions and antipatterns, as for example when the blob
antipattern [9] is found. In this case, developers assign most of the responsibility for the
system to a unique class. Therefore, we can establish a direct relationship between
antipatterns and artifacts that we have represented as involves in Fig. 1. But we can also
establish a direct relationship between antipatterns and bad DDs, described as affects in

 Antipatterns for Architectural Knowledge Management 5

Fig. 1, because the detection of an antipattern may suggest or cause a change in the
decision network.

Fig. 1. Elements affected/involved by an antipattern

Most of the current approaches in AK management, such as [35][59][82], intend to
provide solutions to maintain the relationship between the artifacts produced, the
software development process, and the DDs that lead to its specification in their current
form (shown as describedBy in Fig. 1). This relationship can be used during the software
lifecycle to evaluate in advance the impact of changes; to help novice analysts to
understand why the system is the way it is; etc. Therefore, they constitute a valuable asset
during both the software development process and the maintenance stage.

Our approach intends to exploit describedBy, involves and affects relationships to
help the architect in the process of determining when bad DDs were made during the
process and when negative relationships among them can arise. With this goal, our
approach can be described as follows:
• Let us consider an approach for AK management where clear relationships between

DDs and artifacts are defined – that is, a similar notation to describedBy exists;
• Apply the following process: (1) apply some of the existing algorithms for detection

of antipatterns; (2) whenever an antipattern involves an artifact, mark its related DDs
as potentially bad DDs and establish a suspicion on the relationships among them;
(3) analyze the potentially bad DDs and resolve possible conflicts, taking into
account the antipattern they are related to.

It should be noted that this process cannot be fully automated, as several steps could
require human intervention. However, our purpose is to provide as much automation as
possible. This article focuses mainly on steps (2) and (3). The step (1), dealing with
detection, will be based on the state-of-the-art research, and will make use of existing
tools, but it is not the main concern of this paper. On the other hand, the step (3), related
to the analysis of the situation, should not be automatic, as the architect has to evaluate
what the problem actually is. The architect must always be the one who takes the final
decision. However, we can provide semi-automatic support for this step: the architect

Bad
Decision/s

Artifact/s

affectsinvolves

describedBy

Anti-pattern

6 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

does have an automatic warning and helpful information to detect and solve a situation
that perhaps he would not have come across otherwise.

As can be observed, the proposal is not related to any existing approach to AK
management and our primary requirement is that we should provide notations for AK
relationships and clearly identify DDs.

A proof of concept, described in Section 5, has been carried out to validate our
proposal by modifying ATRIUM [52] to incorporate the above described process. In
order to improve the understandability of our approach, first Section 3 presents a
discussion about AKRs discussing their benefits and drawbacks and next Section 4
provides a brief background on antipatterns.

3 AKRs: Networking Architectural Knowledge

The most natural way to think about a decision is to consider it in isolation, separately
from the rest of the system by a process of abstraction. It is also the easiest way to
document it, particularly when provided with a template defining its basic attributes. A
set of such isolated decisions would provide basic knowledge about a system’s design, as
they operate on the same substrate, namely the system architecture. However, such a
view is necessarily incomplete and partial. Design decisions are connected, because they
refer to each other, interact with, and affect each other. In fact, there is a complex fabric
of relationships surrounding them: even the simplest model of DDs in the existing
literature provides some structure. First, every decision is chosen on purpose: it can be
traced back to some goal it achieves, or the requirement(s) it satisfies. Second, every
decision is implemented by some design artifact, some architectural element. Apart from
these two reifying relationships, any decision relates to other decisions at the same level
in different ways.

Design Decisions and Rationales (DDs & DRs) can be correctly considered as the
basic assets that together comprise our design knowledge. As already noted, this is
consistent with the existing practice on design rationale [53]. However, to provide a
coherent system-wide rationale these assets have to be complemented with the
information about their mutual inter-relations and connections. Therefore, their
Architectural Knowledge Relationships (AKRs) present themselves as another invaluable
basic asset, and transform the set of design decisions into a network of design knowledge.
This point has already been noticed by other authors, such as [84].

Some authors [34][35] describe the network of decisions using a single (dependency)
relationship, or perhaps several assimilated ones. Even this simple layout is useful and
much more so than a simple “set” of decisions, as many details depend just on topology.
However, these uniform links lose an essential feature: the direction, or type, of the
semantic relationship. Indeed, there are positive and negative relationships, respectively
exposing synergies and divergences within the design; it is obvious that their influence
extends to the entire architecture.

Many authors recognize the inherent complexity of managing and combining
“knowledge assets”, and thus they advocate an ontological approach [1][23][25][44] [48]

 Antipatterns for Architectural Knowledge Management 7

to provide a solid basis for this reasoning. These ontologies are able to identify categories
of DDs (such as ontocrises, diacrises and pericrises, dealing respectively with concepts,
concrete features or system-wide constraints), and to enumerate the basic properties that
describe the knowledge contained in an asset. And of course, they can also help to define
the basic relationships between assets, and even a more complete metamodel of DDs.

However, most of the work in this area, even that inspired by an ontological
approach, has focused on the description of the (internal) structure of DDs. This includes,
apart from most of the citations in the previous paragraph, many others [35][82][88].
Some of them are specifically concerned with documentation, which is their reason for
providing a template [30]; some of them support their definition on a strong empirical
basis [24]; and even some of them do both [86]; but for most of them, relationships play a
secondary role, if any role at all.

For example, Tang et al. [82] provide a structural model for their basic asset, the
architectural rationale. This is defined as the composition of a quantitative and a
qualitative rationale, plus scenarios describing special cases; and possibly some
aggregations, defining an alternate DD for this, which in turn could be again a
composite. Also, there are trace relationships to several views. Considered in isolation,
such a complex structure is indeed useful, particularly for documentation, as it provides
the required support for a full description of a decision, the rationale behind it and even
potential alternatives. However, this model does not seem to scale well: first, every single
decision is complex, including cases and alternates; and second, there is not support to
relate a decision to any other, except for aggregation itself. Therefore, the resulting
“global” rationale is defined as an unstructured discourse, which does not provide an
organization for architectural knowledge.

The exploitation of a network of design assets improves the situation significantly
because it captures and structures much of the inherent complexity of those inter-related
design assets. Of course, a “conventional” set of complex DDs, in which all relational
information is captured by means of attributes, would be able to describe exactly the
same information; i.e., there are equivalent descriptions which need not to take the form
of a network. However, the “networked” version can be considered a more flexible
representation: while it is just making explicit some implicit relationships, in doing so it
also makes much easier to handle and manage them.

As already mentioned, some authors have explored the issue of AKRs in some detail.
Most of them identify only a few relationships, and these proposals converge mainly in
two of them. The first one is constrains, which expresses the self-evident positive
implication; and the second is alternative, probably the most cited one, which expresses
variability. It provides the support to express a choice and refer to otherwise
unrepresented, vaporized design knowledge [86]. It is also very useful in the context of
product lines [77]. Apart from these, however, there are a number of additional proposals;
some of them use also a significant semantic perspective. We will examine them more
carefully in the following.

8 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

Table 1 summarizes most of the AKRs described by current research (column
Relationship), providing their terminological equivalences (column Synonyms) and the
references where they have been defined or used (column References). As can be
observed, Kruchten [44] provides the most complete reference about this topic. He not
only provides the definition for most existing AKRs, but also the way they relate to each
other, emphasizing their ontological foundations. Other references, such as [1][25][45],
basically use the same ontological framework.

Of course, these equivalences are not always direct mappings, and therefore they do
not actually define strict “synonyms”. In Table 1, two terms appear in the same row when
they essentially describe the same information, i.e. when one of them can be derived from
the other. Also, as aforementioned, they are not mutually exclusive: bound to, for
instance, is defined in terms of constrains; this is also the case of enables and comprises,
which are described respectively as weaker and stronger versions of it.

Table 1. Evaluating proposed AKRs

Relationship Synonyms References

Alternative Alternate DD [44][23][25][82]
Bound To [44][25]
Comprises Made Of [44][25][82]
Constrains Implies, Refines [44][23][25][34]
Enables [44][25]
Forbids Excludes [44][25]
Not Complies [44][25]
Related To [44][25][30]
Overrides [44][25]
Conflicts with (*) [44][25]
ModelElementBinding (*) [41]
Traces From/To Addresses, Implements (*) [44][23][25][30][82][83]
Depends on (**) [34][45]
Subsumes (**) [44][25]

Al though the names of these relationships must be understood in terms of this
particular context, it is obvious that some of them can be considered within a wider
scope; these have been marked with a star (*) in Table 1. These can be seen as
“extended” relationships, which should not be considered strictly AKRs, as they would
be able to relate elements which are not DDs.

This refers, in particular, to conflicts with relationship, along with traces from/to and
ModelElementBinding. In a restricted sense, they obviously refer to marking conflicting
decisions and keeping track in a chain of decisions. All of them can also be conceived as
derived relationships (see Table 1) in the context of DDs, but there is also a general
meaning out of this scope. In particular, the second relationship (traces from), can be
read, in a general context, as the traditional traceability relationship (trace), which
describes the history of every element in the architecture, and which is a basic element
also for AK [61]. Meanwhile, the first one (conflicts with) could also refer to well-known

 Antipatterns for Architectural Knowledge Management 9

schemas of conflict between requirements, which combined with trace could also refer to
some derived decisions.

Another comment must be made about relationships which have been marked with a
double star (**). These are in a similar situation, but generalization is the issue here. Both
depends and subsumes can be considered as generic versions of the rest. As in many other
contexts, dependency can be considered the basic relationship, by definition, so that
every other inherits from it. Then every AKR is also a dependency [35]. On the other
hand, subsumption is usually considered as the target relationship for ontologies [2],
acting as the transitive closure for ontological relationships. In fact, it could be used to
“flatten” a structure with several AKRs into a single-relationship model to apply basic
analysis, provided that the model can be considered formalized enough.

Considering all of the above, we can see that AKRs provide a particularly rich
framework to capture design knowledge. As already stated, this enables us to capture or
represent a richer set of AK with a smaller set of DDs. Also, the conceptual closeness
between some of them makes it possible to apply simple analysis techniques. The
potential of exploiting all this information remains still unexplored. To provide a fair
comparison, just consider that Tang et al. use only one relationship (traces, indeed) in
[83]. But as they extract every consequence, using Bayesian Networks analysis, they
obtain quite complex and significant results. In summary, though not very frequently
applied yet, AKRs provide a very useful framework to define, use and reuse architectural
knowledge.

Therefore, there are several additional arguments to support our preference for the
networked version. First, it is true that an attribute-based presentation can include the
same information; but in that case, the role of many arguments would be just to replace
the relationship itself. Even worse, transitive relationships would be much harder to
manage, and, if these were introduced as attributes, it would be much easier to introduce
redundancies, which would ultimately cause the appearance of anomalies in the structure.
These would be similar to classic data anomalies, i.e. insertion, deletion and updating
issues. For instance, consider that a certain decision A implies (“constrains”) a decision
B, and eventually decision A is removed, but B is not. In a networked representation, it
would be obvious that B is a dangling thread, while in an attribute-based version this
could pass unnoticed.

Second, some AKRs must assume ontological features, which can be independent
from DDs themselves, and therefore are more conveniently separated. And third, the
structure of the network itself becomes significant. Indeed, the connections capture some
essential facts, not only about the architecture itself, but also about the design and
construction process. We are not only able to include information about decisions which
were discarded during this process (the classic “unrepresented design knowledge”), but
we are even able to capture the sequence of decisions which led to a certain choice. The
AK network is a dynamic structure – it evolves as the architecture requires, while leaving
a trace of the design process. For instance, let’s consider a decision A related to some
component B. Now, if A is rejected, component B can be removed, but A still remains in

10 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

the network – related to a new decision C, which inhibits A. Growing this way, the
resulting structure describes the design decision process, rather than just the architecture.

This conclusion is not surprising, as it is something that often happens in the context
of knowledge representation, which appears as a related area indeed. Therefore, a
network of very simple DDs is able to capture perhaps even more information than a
poorly structured set of complex DDs.

Finally, there is an additional reason, and it has to do with performing analysis. When
AKRs are provided in an explicit, relational form, it is quite simple to use network theory
[5] to examine and analyze the resulting structure. Therefore, it will be much easier to
identify key decisions in the proto-architecture, by detecting them as hubs in the network;
and independent branches of the development would be also easily located by identifying
the DDs which act as bridges for them. However, we will not deal with this topic further,
as it is out of the scope of this article, and it will be considered for future work.

Of course, all of this reasoning should not be confused with decisions about
relationships or connectors in the target architecture, which are also described in, e.g.
[31]; obviously, these are just described using regular DDs and do not affect the topic.

4 Background on Antipatterns

A pattern is a solution to a recurring problem [28]. They are high-quality experiences
distilled into a form that facilitates their reuse and application in the design of different
types of software. Antipatterns are similar in their definition to patterns as they also
document solutions to recurring problems [9]. However, they differ from patterns in that
their use produces negative consequences for the system. For instance, it has been
empirically validated that they have a high impact on change and fault-proneness in
object-oriented systems [39]. For this reason, the detection of antipatterns and the
application of their related solutions constitute a valuable asset in terms of quality of the
final product. However, they have not received as much attention as they deserve from
either academia or industry.

Most of the existing research has focused on the identification and specification of
antipatterns. In the literature about antipatterns, the work by Brown et al. [9] is especially
relevant. They have identified antipatterns that can be detected not only in the
architecture and the design of systems but also in project management. In addition to this
catalogue of antipatterns, other research [49] [79] has identified performance antipatterns
as their main concerns because of its direct impact on the quality of the software product.
These approaches have focused on identifying problematic situations, in terms of
software architecture or design, that diminish response time, increase processing time,
etc. Security has been another concern for which antipatterns have been defined. Kis [37]
describes two antipatterns that clearly identify the impact of business contexts on the
security policies to be implemented. Antipatterns have been also described related to
testability. Baudry et al. [7] have defined a set of antipatterns and how they should be
dealt with in order to reduce testing effort. In addition, some research has been done to
detect antipatterns in earlier stages of software development, such as those presented by

 Antipatterns for Architectural Knowledge Management 11

El-Attar and Miller [22]. They describe some antipatterns that can be detected in use case
models, by using the Object Constraint Language (OCL) for their description and later
identification.

The exploitation of the antipatterns has been carried out from different perspectives.
Most of the research has been related to the definition of techniques and tools for their
identification. For instance, Moha et al. describe in [51] how formal concepts and metrics
can be used to detect the Blob antipattern. Similarly, the methodology COMPAS [54] has
been proposed to evaluate distributed component-oriented applications in terms of
performance by detecting antipatterns for specific technologies, such as Enterprise Java
Beans. COMPAS exploits a Model Driven Architecture approach to describe the
necessary models for each step of the process: monitoring, modeling and prediction.
Parsons and Murphy [64] describe a framework that detects performance antipatterns in
Java EE architectures by monitoring component-based system to build a performance
model used to detect EJB-specific performance antipatterns. Another related proposal is
the Bayesian Detection Expert (BDE, [38]) that detects antipatterns by building Bayesian
Belief Networks using the information extracted from the code by using the Goal
Question Metric (GQM, [6]) methodology. SPARSE [76] and its extension [75] describe
the detection of project management antipatterns from a different perspective that takes
into account the fact that this kind of antipatterns do not emerge in isolation but jointly.
With this aim, SPARSE defines project management antipatterns by means of ontologies
for their detection and analysis.

Some approaches go one step further, by dealing with antipatterns as one of the inputs
for refactoring processes. Work presented by Cortellesa et al. [13][14][15][16] is
especially relevant in this area. In a preliminary work, Cortellessa et al. [16] exploit
antipatterns as part of a process that evaluates performance by using interpretation
matrices and proposes architectural alternatives to improve the results. Later on, they
present a proposal [15] that exploits model-driven techniques for the detection and
resolution of antipatterns. Finally, they have also presented an alternative [14] that
exploits logical predicates for the detection of antipatterns and a process [13] that guides
the software designers in the analysis of performances measures, model entities and
performance antipatterns to classify the level of guiltiness of each detected antipattern. In
the same context, Martens and Koziolek [49] first explore the design space by using
metaheuristic search techniques, and second evaluate the results to detect antipatterns.
These antipatterns can be eliminated using the solutions attached to their descriptions.
More recently, Trubiani and Koziolek [85] present an approach to automatically detect
and solve specific software performance antipatterns of the Palladio Component Model
(PCM).

Antipatterns have drawn criticism for lack of formalism in their specifications. In
order to solve such problems, research has been done that provides such techniques for
their specifications. For example, Ballis et al. [3] have proposed a new visual language to
describe antipatterns (and patterns). It has been defined by extending UML with some
new graphical elements so that antipatterns can be specified in a more rigorous way.

12 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

Dietrich et al. [21] have defined an infrastructure using social networks and semantic web
technology that, although initially developed to exploit patterns, can be used to describe
antipatterns as well. More recently, Stamelos [81] has proposed the exploitation of
Bayesian Belief Networks, Ontologies, Design Structure Matrices, and Social Networks
as proper tools to formally represent Software Project Management anti-patterns.

Thus, while antipattern approaches have been applied in various areas, there is no
research exploiting antipatterns in the AK management area. As far as we know, the
research presented by van Lamsweerde [47] is the only one that presents some
similarities to our approach. His work describes a formal, iterative method for security
requirements specification that exploits anti-models, derived from the goal model of the
system-to-be [47], to show how elements of the system-to-be could be threatened. These
anti-models are elaborated as a refinement process from the initial anti-goals obtained by
negating security goals (Confidentiality, Privacy, Integrity and Availability) until anti-
requirements and vulnerabilities are determined, that is, anti-goals realizable by attacker
agents or attackee agents, respectively. These anti-requirements are operationalized by
describing the potential capabilities of their related attacker in order to generate
countermeasures in the goal model. These countermeasures can determine a modification
of the goal model - that is, the decisions in terms of the goals and requirements of the
system-to-be must be made. This approach exhibits several advantages such as its
applicability in early stages of development, or the exploitation of temporal logic to
facilitate the generation and analysis of the anti-goal models. However, it does not deal
with design decisions, and unfortunately, it cannot be generalized to other approaches.

5 ATRIUM: A Methodological Proof of Concept

In order to validate the approach presented in this paper, we have selected a methodology
that allows us to deal with AK, and to manipulate its models in an easy way. With this
goal in mind, we have selected ATRIUM. This methodology has been designed for the
concurrent definition of requirements and software architecture, providing
automatic/semi-automatic support for traceability throughout its application, and for the
description and manipulation of AK at different abstraction levels [59]. As it follows a
MDD (Model Driven Development [74]) paradigm, our approach can be easily put into
practice. In the following section we briefly introduce ATRIUM, and present our
approach in Sections 5.2 and 5.3. Finally, the Gas Station example is used in Section 5.4
to illustrate the proposal.

5.1 Describing ATRIUM extension

Fig. 2 shows, using SPEM 1.1 [62], the main activities of ATRIUM. These activities
must be iterated over to define and refine the different models. These activities are
described as follows:
• Modeling Requirements. This activity allows the architect to identify and specify the

requirements of the system-to-be by using the ATRIUM Goal Model, which is based
on KAOS [20] and the NFR Framework [12]. This activity uses as input both an

 Antipatterns for Architectural Knowledge Management 13

informal description of the requirements stated by the stakeholders, and the
25010:2011 Systems and software engineering - Systems and software Quality
Requirements and Evaluation - System and software quality models (SQuaRE, [33]).
The latter is used as framework of concerns for the system-to-be. In addition, the
architectural style to be applied is selected during this activity.

Fig. 2. ATRIUM and its extension: Analysis activity

• Modeling Scenarios. This activity focuses on the specification of the ATRIUM
Scenario Model, that is, the set of Architectural Scenarios that describes the system’s
behavior under certain operationalization decisions [60]. Each ATRIUM Scenario

Modelling

Requirements

ATRIUM Goal
Model

Modelling
Scenarios

Synthesize and

Transform

proto-
architecture

Scenario
Model

SQuaRE
Informal

Requirements

Selected

Architectural Style

Design Patterns

Transformation

rules

Analysis

Set of Anti-

patterns

14 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

identifies the architectural and environmental elements that interact to satisfy
specific requirements and their level of responsibility.

• Synthesize and Transform. This activity has been defined to generate the proto-
architecture of the specific system [59]. It synthesizes the architectural elements
from the ATRIUM scenario model that build up the system-to-be, along with its
structure. This proto-architecture is a first draft of the final description of the system
that can be refined in a later stage of the software development process. This activity
has been defined by applying Model-To-Model Transformation techniques (M2M,
[17]), specifically, using the QVT Relations language [63] to define the necessary
transformations. It must be pointed out that ATRIUM is independent of the
architectural metamodel used to describe the proto-architecture, because the architect
only has to describe the needed transformations to instantiate the architectural
metamodel he deems appropriate. Currently, the set of transformations [56] to
generate the proto-architecture instantiating the PRISMA architectural model [70]
has been defined. This activity resembles other works, [18][65], that also generate
the software architecture using M2M techniques.

We want to highlight that we have included in ATRIUM a new activity called
Analysis (see Fig. 2). Its main goal is to facilitate the integration of the approach
presented in this paper, that is, to evaluate the architectural knowledge specified in the
proto-architecture regarding the set of antipatterns. This activity will be detailed in
section 5.3. Another advantage of ATRIUM is that a supporting tool, called MORPHEUS
[58], has been developed to put into practice its different activities, whose extension to
support the ATRIUM Analysis activity is described in section 5.4.

Finally, it is worth noting that this extension of ATRIUM could seem similar to the
use of architectural tactics as presented by Kim et al [40]. However, these authors exploit
architectural tactics as a recommendation for the construction of the system, that is, they
are used while the system is being built. However, the new activity of ATRIUM exploits
antipatterns to analyze the already defined software architecture and determine which
combination DDs carried out to problems of the system. Therefore, they are not identical
but complementary.

5.2 AK relationships in ATRIUM extension

As presented in [59], the ATRIUM Goal Model is in charge of manipulating most of the
AK. The building blocks of this model are goal, requirement and operationalization (see
section 5.4 for an example of a Goal Model). Goals constitute expectations that the
system should meet. Requirements are services that the system should provide or
constraints on these services. The main difference between requirements and goals is that
the former can be validated, but we cannot really describe a test to validate the latter
because it is really something we expect about the system-to-be. Finally,
operationalizations describe both the DD and the DR and how they satisfy the
established requirements. Goals are refined into sub-goals and finally into requirements
by using AND (OR) relationships to determine if all (at least one) of the sub-goals must

 Antipatterns for Architectural Knowledge Management 15

be satisfied to satisfy the root. A seamless transition is performed from requirements to
operationalizations by means of the contribution relationship, in order to specify how
solutions contribute positively and/or negatively to meet the corresponding requirements.

Fig. 3. Weaving antipatterns in ATRIUM Metamodels (partial view)

One of the main advantages of AK management is the capability to explore the
reasoning in the software architecture by exploiting the network of AK. In order to
provide ATRIUM with this facility, several relationships were defined in its metamodel,
to allow the architect to describe the AK as a network. As shown in Fig. 3, these
relationships were first defined on operationalizations, as they are in charge of describing
both the DDs and the DRs, but they are also applicable to DesignAssets with identical
semantics. An analysis was performed in [57], considering the existing relationships in
other proposals, which finally led to the identification of the following relationships:
• constrains is a binary and unidirectional relationship with positive semantics. Let’s

consider A and B operationalizations, describing different design decisions. Having a
constrains relationship from A to B, means that B’s design decision cannot be made
unless A’s design decision is also made.

• inhibits is a binary and unidirectional relationship used to specify negative
semantics. Let’s consider A and B operationalizations, describing different design
decisions. Having an inhibits relationship from A to B, means that if A’s design
decision is made, it hinders B’s design decision to be made.

G
o
a
lM
e
ta
m
o
d
e
l

A
rc
h
it
e
ct
u
ra
lM
e
ta
m
o
d
e
l

traceFrom describedBy

Anti-pattern

involvesaffects

16 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

• excludes is a binary and unidirectional relationship with stronger negative semantics
than inhibits. Let’s consider A and B operationalizations, describing different design
decisions. Having an excludes relationship from A to B, means that if A’s design
decision is made, it prevents B’s design decision to be made.

It was shown in [57] how the selection of these relationships provides us with the
necessary expressiveness to cover most of the existing approaches in the area. This
analysis is summarized in Table 2. Essentially, it shows how every AKR, as proposed in
the literature, can be translated or described in terms of some of these three “basic”
relationships, or their combinations. Of course, semantic details are not always fully
translated; but the relational description can be considered equivalent.

Table 2. Translating AKRs within ATRIUM

Relationship Constrains Inhibits Excludes DescribedBy

Alternative Derived
Bound To Derived
Comprises Derived
Constrains Equivalent
Enables Opposite
Forbids Equivalent
Not Complies Derived Opposite
Related to Derived
Overrides Derived
Conflicts with Derived
ModelElementBinding Equivalent
Traces From/To Derived + Trace
Depends on Derived
Subsumes Closure

As can be seen, constrains and excludes were included in the list. Most of the AKRs
can be seen as constraints on pure dependency, and therefore, as already noted in the
discussion of Table 1, they can be seen as deriving from the first one. This is the case of
relationships such as comprises, bound, related or not-complies identified. The most
interesting cases are depends (dependency is the simpler constraint) and subsumes (which
can be formally defined as the transitive closure of a constraint).

The traces from/to relationship, which relates every element in the AK network with
its predecessors and successors in a refinement graph, can also be considered as derived
from constrains (the only direct dependency). In some cases, when some element is not a
DD, it must be combined with trace, the conventional traceability relationship, which in
ATRIUM is provided by the base MDD framework itself. Therefore, the traces from
relationship is not directly included as it can be obtained by combining existing
information.

The other included relationship is inhibits. It is perhaps more subtle, as it is
intrinsically negative, but it is not a pure negation as excludes. This form could seem less
intuitive than its negation (enables) but it is in fact more useful, as it expresses easily

 Antipatterns for Architectural Knowledge Management 17

relational concepts such as conflicts or overrides. Structurally, it also provides alternative
branches (any choice implies inhibiting the other branch).

Fig. 3 includes another relationship, named ill-effects, which has been introduced in
the Metamodels and, as far as we know, does not have a direct matching with other
proposals, due to its different semantics. Let’s consider two operationalizations, A and B,
describing different design decisions. Having an ill-effects relationship from A to B,
means that A determines that B should be analyzed because a problem has been detected
in the specification. This relationship is used during the analysis of the proto-architecture
whenever an antipattern is detected, as shown in section 5.3.

Fig. 3 also shows (part of) the Architectural metamodel (an extension of the PRISMA
metamodel [70]) that is used to describe the proto-architecture generated as a result of the
Synthesis and transform activity. It can be observed that every ArchitecturalElement is
related to a set of DesignAssets that describe both its DDs and DRs by means of the
DescribedBy relationship. These DesignAssets can be related by means of constrains,
excludes and inhibits relationships in a similar way to the operationalizations in the Goal
Metamodel.

We would like to point out which the main difference is between operationalizations
in the goal model and DesignAssets in the architectural model. The former are in charge
of specifying all the DDs and DRs that were analyzed during the specification of the
system, that is, they describe all the history of the DDs and DRs considered during the
design of the system. The latter describe the reasoning behind the current specification of
the system, that is, why the system has its current specification. For instance, a
requirement REQ_X could be related to two different operationalizations, OPE_Y and
OPE_Z. Both of them would be analyzed by the architect, but only one of them, OPE_Y
for instance, would be finally chosen. However, both of them would be kept in the Goal
Model because they describe the reasoning carried out to evaluate which was the best
alternative for the system. This is the reason why only the operationalization OPE_Y
would have a trace relationship to a DesignAsset DA_Y. This DesignAsset would reflect
that this was the decision made, and has a direct influence onto the current architectural
specification. There would not be a DesignAsset for OPE_Z, because this choice was not
made. Therefore, both kinds of entities help to maintain AK from different perspectives.

Given that the analysis of DDs and DRs is carried out during the ATRIUM Modeling
Requirements activity, the re-introduction of negative relationships at the architectural
level might seem confusing. However, the output of the process is a proto-architecture –
that is, it must be refined in a later stage. During this refinement new relationships could
be detected, thus making it necessary to provide the architect with such expressive power.
In addition, the application of the MDD approach in ATRIUM allows us to trace
relationships in an automatic way, by exploiting M2M transformations back to the goal
model maintaining both models up-to-date. These M2M transformations provide us with
another advantage, already presented in [59]. The DesignAssets are generated along with
the proto-architecture, so that each architectural element is related to the set of DDs that
motivated its specification and the DRs that justify those decisions. In addition, the

18 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

necessary traceability relationships are also generated from artifacts and relationships of
the Goal Model to artifacts and relations of the proto-architecture in an automatic way as
was described in [56].

5.3 Exploiting Antipatterns in ATRIUM extension

As introduced in Section 2, the approach presented in this paper is the use of antipatterns
in the process of detecting the likely negative relationships, and bad DDs. With this goal,
every one of the identified concepts in Fig. 1 should be mapped on ATRIUM so that we
can determine the feasibility of this approach.

Fig. 3 shows how our approach was put into practice in ATRIUM considering the
goal metamodel and the architectural metamodel. In this case, ArchitecturalElement is
the artifact that can be affected by an antipattern. In the architectural metamodel, the DDs
are specified by means of DesignAssets which are related to the different
ArchitecturalElements they have described. Our intention is to determine the affects
relationship (see Fig. 3) – that is, to identify which ones were the DesignAssets
specifying bad DDs, or which combination of them resulted in an antipattern in the proto-
architecture.

In order to put our approach into practice, ATRIUM was modified by defining a new
activity called Analysis. As can be seen in Fig. 2, this activity has two inputs: the
generated proto-architecture from the previous activity and the set of antipatterns to be
detected in the proto-architecture. This set can be determined according to the specific
needs of the system-to be – that is, they can be antipatterns related to security,
performance, etc., depending on the specific goals that were defined in the goal model.
Having as input this set of antipatterns (apSet) and the proto-architecture to be analyzed
(am), the following DDChecker algorithm is applied:

Algorithm 1 DDChecker algorithm

DDChecker

Step 1 Select the set of antipatterns aappSSeett to be checked .

For each Antipattern aapp included in aappSSeett:

Step 2 Detect aappII instances of the Antipattern aapp in the
Architectural Model aamm.

Step 3 For each aappII instance of the Antipattern aapp:

Step 3.a Create a new DesignAsset ddaaCCrreeaatteedd and set
its attributes:
daCreated.designDecision =

 “Modify current network of DD”;
daCreated.designRationale=

“Detected Antipattern”+ ap.name;

Step 3.b For each ArchitecturalElement aaee affected
by the apI instance of the Antipattern aapp:

 Antipatterns for Architectural Knowledge Management 19

i. Relate each of its DesignAssets ddaa to
the DesignAsset ddaaCCrreeaatteedd by means of
ill-effects relationships:

da.ill-effects=daCreated
ii. Set the attribute ssttaattee of each of its

DesignAssets ddaa to dirty:
da.sate=dirty

Therefore, the output of the DDChecker algorithm is a new version of the proto-
architecture where the likely bad DDs are marked and the necessary relationships are
included. Once the DDChecker algorithm has been applied, and as part of the activity
Analysis, the architect evaluates the DesignAssets set to dirty to determine which ones are
the sources of the problem. Therefore, it is the architect who ultimately takes the decision
about whether the foreseen ill-effects of some antipattern actually occur in the software
architecture description, using as input the information generated by the DDChecker
algorithm and the specified DDs and DRs. We cannot consider such an algorithm as an
“oracle” able to detect any conceivable antipattern, but just as a tool that the architect can
use in the process of detecting likely antipatterns and their effects on the architecture.
Unfortunately, this process cannot be fully automatic, as the detected antipattern could
even contradict the involved DDs and DRs.

As a result of the analysis carried out, the architect modifies the network of AK by
rewriting the DDs and DRs or the DesignAsset daCreated to describe which decision is
made to avoid the problem and creating the necessary excludes and/or inhibits
relationships between these DesignAssets and the dirty DesignAssets. Once the new
network of AK is obtained, the architect modifies the architecture so that it follows the
recommendations described by the network. Section 5.4 describes, by means of an
example, how the Analysis activity is performed.

However, several issues should be taken into account about the DDChecker algorithm
related to both how the described steps should be performed and how they are supported
which are described in Sections 5.3.1, 5.3.2 and 5.3.3.

5.3.1 DDChecker: step 1

It is worth noting that the set of antipatterns to be detected (apSet) is described as a list of
codes that identifies the antipatterns to be detected. These codes are used as indexes to
retrieve the information of the different antipatterns. They have been described in a
catalogue where each antipattern is specified by means of a code, name, description,
name of the file that describes the rules for its detection, and the different refactoring
solutions that can be applied to eliminate or palliate the antipattern. Moreover, the
antipatterns have been structured according to their kind as performance, security, etc.
This facilitates the selection of the proper antipatterns framework to be used, as explained
in the following section. As can be observed in the following, this catalogue has been
encoded as an xml file:

20 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

<?xml version="1.0" encoding="ASCII"?>
<AntipatternMM:AntipatternCatalogue xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:AntipatternMM="http://es.uclm/AntipatternMM"
xsi:schemaLocation="http://es.uclm/AntipatternMM
AntipatternMM.ecore" name="ATRIUMCatalogue">

 <kind name="Performance">
 <antipattern code="P001"

name="Excessive Dynamic Allocation"
description="The overhead for dynamic allocation

increases as the number of calls increases"
rule_file_name="excessive-dynamic-allocation.clp">

 <refactoring="To recycle objects rather than create
new ones each time they are needed. This approach
pre-allocates a pool of objects and stores them in
a collection. New instances of the object are
requested from the pool, and unneeded instances
are returned to it. This approach is useful for
systems that continually need many short-lived
objects (like the call processing application).
You pay for pre-allocating the objects at system
initialization but reduce the run-time overhead to
simply passing a pointer to the pre-allocated
object."/>

 <refactoring="To share objects rather than create new
ones."/>

 </antipattern>
…

 </kind>
…
</AntipatternMM:AntipatternCatalogue>

It has to be emphasized that the architect is the one who makes the final decision
about what antipatterns should be checked and dealt with. However, the architect should
always include in this set those antipatterns that have been already detected in previous
iterations of the analysis. In this way, the architect will follow similar guidelines to those
applied in testing, when regression tests are re-run to detect whether old bugs have come
back and/or the new developed code collides with the previously existing code. In this
case, the architect will try to detect whether the previously detected antipatterns have
been eliminated and/or the introduced changes have reintroduced previously eliminated
antipatterns.

 Antipatterns for Architectural Knowledge Management 21

Finally, another relevant issue to be considered regarding to the antipatterns selection
is the importance of the order in its detection and resolution. As software design greatly
depends on the requirements prioritization for its final description, the software
architecture specification will depend on which order antipatterns are detected and
solved. Consequently, the architect should detect and resolve first those antipatterns that
are a greater threat to the system. As far as we know, it remains an open issue the
classification of antipatterns regarding their impact. The only related work is that
presented by Settas et al. [76], already mentioned in Section 4, that analyses synergies
and divergences among project management antipatterns by using ontologies. Therefore,
any proposal in this sense would be of interest to help the architect in this task.

5.3.2 DDChecker: step 2

A critical issue when the DDChecker algorithm is applied is how to detect the antipattern
instances. Unfortunately, there is no generic framework that can be used to detect every
antipattern that could be relevant; therefore, this detection must execute all the adequate
frameworks, depending on the kinds of antipatterns that the architect wants to detect.
This was the reason why the antipatterns catalogue, described in Section 5.3.1, has been
structured in terms of kinds of antipatterns.

In order to explain how this step can be performed, performance antipatterns are used
in the following as an example. As aforementioned in Section 4, these are the kind of
antipatterns more widely studied and analyzed in the literature. Several proposals have
emerged in recent years trying to detect this kind of antipatterns, but unfortunately there
is a lot still left to be explored, at least in terms of automation. Among the existing
approaches, we have selected the framework called Performance Booster (PB) proposed
by Xu [87] for several reasons. The main one is that it is a rule-based system that can be
easily extended with new rules to describe new kinds of antipatterns. Moreover, in order
to be selected, this framework must satisfy a pre-condition and two post-conditions. The
pre-condition requires that the framework uses LQNs models as input, because of two
reasons: first, LQN models are widely used for performance analysis and LQN models,
and second, we have already established the necessary mappings between the
architectural models. The two post-conditions establish that the framework identifies
clearly the detected antipattern and which architectural elements are affected by that
antipattern. PB is mainly made up of two components:
(1) Layered Queuing Network Solver (LQNS, [27]). This component is in charge of

solving the performance model, specified as a kind of extended queueing network
called a Layered Queuing Network (LQN), to extract the necessary performances
measures. Xu [87] recommends the exploitation of the LQNs models for this goal,
because they have the advantage of representing resource and bottleneck aspects of
software servers, and their solution process scales up well for large systems.
Moreover, other interesting approaches, such as that described by Cortellessa et al.
[16], have used the LQNS to detect performance antipatterns.

22 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

(2) Inference Engine. This component carries out the detection of the instances of each
antipattern selected in the previous step of the process (see section 5.3.1). It is worth
noting that not only Xu’s but also other works, such as [14], have promoted the use of
a rule-based approach for the detection of antipatterns. Xu [87] recommends the use
of Jess [8], because of the facilities it provides. For each antipattern defined in the
catalogue, a file with its corresponding rules has been defined, that is used by Jess to
carry out its detection. In this way, new antipatterns can be detected simply by
defining new rules. A detailed explanation about how to define these rules is
presented in [87].
Moreover, Xu exploits an additional component named PUMA [73] to transform the

design model specified using UML into a LQN performance model. Therefore, we also
suggest using PUMA when an UML-based design model is used, to put into practice the
work presented in this paper. However, since ATRIUM has been used for this proof of
concept, ATRIUM Scenario models and PRISMA Architectural models [56] have had to
be used as input for the generation of the performance model. This led us to the
development of the ATRIUM2LQN component by using the model-to-text
transformation language, XPAND. No more details are provided about this issue,
although interested readers are referred to previous work [4][42] in this area, to select the
toolset more appropriate depending on their architectural model.

Therefore, when the step 2 of the DDChecker algorithm is carried out to detect the
instances of performance antipatterns, the following tasks are performed:
(1) The ATRIUM Scenario model and the PRISMA Architectural model are

transformed to a LQN model, using the ATRIUM2LQN component.
(2) The LQN model is used as input to the LQN Solver to simulate the execution of the

system and generate the necessary performance measures related to the architectural
elements.

(3) The Inference Engine is executed using as input both the results of the previous
task and the name of the file where the rules to detect the antipattern apI have been
described. It generates a list aeSet of ArchitecturalElements for each instance of the
detected antipattern that will be used as input for the following step (Section 5.3.3).
Moreover, we would like to emphasize that there are other approaches, such as

[13][15][64], which offer other alternatives for the detection of performance antipatterns.
Interested readers are referred to these proposals to select the most appropriate one
according to the architectural model they are using. In the following, we will not provide
more details about this issue, as the specific method of detecting performance antipatterns
is out of the scope of this paper.

5.3.3 DDChecker: step 3

As previously mentioned, the step 3 of the DDChecker algorithm focuses mainly on the
change of the architectural model by modifying the state of the DesignAssets affected by
the instances of the selected Antipatterns, and establishing the necessary relationships.
Therefore, for every detected instance of antipattern apI two main tasks are performed:

 Antipatterns for Architectural Knowledge Management 23

(1) A new DesignAsset, daCreated, is created. It is in charge of notifying that the
network of AK must be modified. It lets the architect know both which DDs should
be reviewed and which antipatterns they are related to. With this intent, the DD is
established as “Modify current network of DD”, and the related DR with the
information of the detected antipattern (“Detected Antipattern” + ap.name).

(2) As Fig. 3 shows, every time an antipattern is detected, it involves a set of
ArchitecturalElements whose DDs are probably the source of a problem in the proto-
architecture. This is why every one of these DesignAssets should be analyzed by the
architect to evaluate if they are affected by an antipattern. With this intent, the
previous step described in Section 5.3.2 returns the set of ArchitecturalElements
aeSet that can be affected by the instance of antipattern apI being dealt with. Every
DesignAsset related to an ArchitecturalElement contained in the set aeSet that
describes a decision is marked as dirty in order to advise the architect about a likely
problem. These DesignAssets also have ill-effects relationships with the daCreated
just created, to let the architect know that they are affected by the instance of
antipattern apI. As all the DesignAssets affected by the same instance of the
antipattern will be related to the same DesignAsset daCreated, the architect would be
able to jointly analyze them, in order to determine which one of them or which
combination is the source of the problem.
It is worth noting that the evaluation of the dirty DesignAssets can be performed not

only at the architectural level but also at the requirements level. As shown in Fig. 3,
DesignAsset has a traceFrom relationship with Operationalization. This relationship can
be exploited to perform the decision process at the requirements level. This facility is
very helpful, as it allows the architect to analyze dirty DesignAssets in the context where
they were described – that is, considering the goals and requirements they are related to.
With this purpose in mind, the application of M2M transformations is again a valuable
resource. Similarly to the way that the proto-architecture is generated, a M2M
transformation can be applied to modify the state of the operationalizations whose related
DesignAssets are dirty. This is why the process of ATRIUM iterates from the Analysis
activity to the Define Goals activity. However, it is out of the scope of this paper to
provide more details about how these M2M transformations are specified.

5.4 The Gas Station Example in ATRIUM extension

Once the AKRs defined in ATRIUM has been described in section 5.2 and the process
for exploiting Antipatterns in the detection of negative AKRs has been specified in
section 5.3, in the following it is presented by means of an example how the proposal is
put into practice. As was described in Section 4, although we can find antipatterns almost
in any stage and context of software development, perhaps in the area of performance is
where most researchers have focused their efforts and more formally antipatterns have
been described. In terms of performance, dynamic allocation is perhaps one of the most
expensive processes at run time. This is why several antipatterns have been proposed that
try to avoid this problematic situation.

24 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

Smith and Williams identified the antipattern excessive dynamic allocation [80] that
has been graphically illustrated in Fig. 4. It shows a typical behavior of several software
systems (specially certain graphical applications) which is particularly inefficient but
often remains unnoticed. To illustrate clearly the poor performance of this practice, the
authors use the metaphor of a gas station. Incidentally, this is also a well-known
metaphor (in a different context) within the field of software architecture [55].

Fig. 4. Adaptation of the Excessive Dynamic Allocation Antipattern to the gas station case study

In this example, whenever a car needs gas, it pulls over to a gas station and asks for
fueling. Then the gas station creates a pump with the gas, and a cashier to control the
fueling. Once the tank is filled, the pump and the cashier notify the gas station they
require to be released, and it destroys both of them. Obviously, this approach only works
if the owner of the gas station is not worried about the money – i.e. the performance.

This simple antipattern has been detected, unfortunately, more frequently than it
should be. For instance, it is frequently found in the context of Service Oriented
Applications. According to our experience, especially when we have worked with junior
developers, we have detected a tendency to think that resources and time are unlimited
because they repeatedly create a new proxy or a new connection to the database every
time a service is requested. This means the system has an increased response time as the
number of requests increases, reducing the confidence of customers about the system.
This is why these kinds of decisions should be detected as soon as possible.

In the following, we will use the example of the gas station to exemplify how
ATRIUM has been used to put into practice the approach presented in this paper. With
this aim, and according to the process described in Fig. 2, we first perform the modeling
activity, having as a result a goal model where the goals, requirements and

The car The gas station

The pump The cashierfuel

«create»

«create»

Pump gas

release

release

«destroy»

«destroy»

 Antipatterns for Architectural Knowledge Management 25

operationalizations are described. Fig. 5 shows (part of) the goal model of a transport
system. As can be observed, one of the primary goals (GOA.1) is that the car should be
able to work. This goal has been refined in a requirement that establishes that the car
must have a power source, being refined into two optional requirements to allow a car to
have an electric engine or a gas engine. If the car has a gas engine it must be fueled, and
thus, two alternative design decisions (operationalizations) could be made: first it is
OPE1.2.1.1 that recommends searching for an existing gas pump and second, it is
OPE1.2.1.2 that recommends building a gas pump. The last alternative was finally
selected because it allows customers not to wait for a free gas pump.

Fig. 5. ATRIUM Requirement Model (partial view)

Once the goal model has been defined, we can proceed to apply the next activity of
ATRIUM, the Modeling scenarios activity (see Fig. 2). It establishes that we have to
specify the scenarios associated to each operationalization finally selected to be applied
in the final system, that is, to describe the scenario model. In this case, we could use a
scenario similar to the one presented in Fig. 4, where every one of the architectural
elements is identified along with its interactions.

The scenario model is used as input for the Synthesis and Transform ATRIUM
activity to generate the proto-architecture, which does not only describe the architectural

+
+

+
+

+
+

+
+

26 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

elements but also their corresponding describedBy relationships with the DesignAssets
that describe why they have been specified. These DesignAssets are generated as a trace
from the operationalizations described in the goal model (the reader is referred to [59] for
more details about how this generation is carried out). Fig. 6 shows the generated proto-
architecture of the example of the gas station at run-time. Although it is not shown in the
figure, the gas station has a relationship with the DesignAsset DA1.2.1.2, which is traced
from the operationalization OPE1.2.1.2, that is, the one that establishes that a pump and a
cashier should be created whenever a request is made. In a similar way, the others
architectural elements generated using the scenario of the Fig. 4; that is, every pump,
cashier, etc., also have this relationship.

Fig. 6. The gas station system at run time

Once we have generated the proto-architecture, we can proceed with the ATRIUM
Analysis activity. As was stated in the previous section, first we apply the DDChecker
algorithm which is in charge of analyzing the proto-architecture to detect antipatterns,
described in section 5.3. In order to run this algorithm, the first step was to select the set
of antipatterns to be detected (apSet), as was stated in section 5.3.1. This set was
described in an xml file, whose content is shown in the following.
<?xml version="1.0" encoding="UTF-8" >

<apSet>
 <antipattern code=“P001” name=“Excessive Dynamic

Allocation”/>
<antipattern code=“P002” name=“Extensive Processing”/>
<antipattern code=“P003” name=“Empty Semi Trucks”/>
<antipattern code=“P004” name=“Circuitous Treasure

Hunt”/>
 <antipattern code=“P005” name=“Concurrent Processing

Systems”/>

A car

The gas station

Pump N

Cashier N

My car

Pump N+1

Cashier N+1

System

P

 Antipatterns for Architectural Knowledge Management 27

<antipattern code=“P006” name=“Blob”/>
<antipattern code=“P007” name=“One-Lane Bridge”/>
<antipattern code=“P008” name=“Ramp”/>

</apSet>

Regarding the example of Fig. 6, the process helped the architect to detect an
excessive allocation problem, as every time a request is received on port p, a new pump
n+1 and a new cashier n+1 are created instead of using some of the existing pumps and
cashiers, as the one used by a car, that is, the system performance degrades as the
number of cars gets very high. As we detected that this antipattern affects to the gas
station, everyone of its related DesignAssets should be marked as dirty. This means that,
as Fig. 7 illustrates, DA1.2.1.2, the one related to the gas station is marked as dirty
(symbolized by means of forbidden sign in the figure), a new DesignAsset, DA1.2.1.3, is
created to notify that the network should be modified to avoid the excessive dynamic
allocation antipattern, and a ill-effects relationship is established between both
DesignAssets.

Fig. 7. Applying DDChecker on the existing DesignAsset

In the next step of the Analysis activity, the architect modifies this new network of
AK to resolve the problem introduced by the antipattern. A likely solution could be the
one described in Fig. 8. In this case, the architect has decided to establish a new way of
managing the creation of pumps and cashiers, by providing the system with two options.
First, cars must search for an existing pump whenever they need to be fueled. Second,
whenever there are no free pumps for a car, a new pump will be created if their number is
less than an established bound. It allows the system to fuel several cars simultaneously
but avoiding being overloaded by the number of pumps. The architect also introduces an
excludes relationship to avoid the previous decision DA1.2.1.2. As Fig. 8 shows two
constrains relationships have been defined between DA1.2.1.3 and the DesignAssets
DA1.2.1.1 and DA1.2.1.4, because whenever a new resource is created these two options
have to be included in the system. An excludes relationship has been defined as well, as
DA1.2.1.3 has been defined to avoid that DA1.2.1.2 is in the system as it means a
problem for the specification of the system.

28 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

Fig. 8. Modifying the AK network

As can be observed in Fig. 8, every one of the DesignAssets is traced from an
operationalization. These relationships could be exploited to perform this analysis at the
requirements level, taking into account the requirements that determined the current
specification of the system. These relationships, along with the new operationalizations,
can be created by means of M2M transformations in an automatic way, as was described
in [59].

In addition, we should point out that the identification of these new alternatives for
the system will mean a new refinement of the system. This refinement will determine that
the scenario model should be modified and the proto-architecture should be generated,
but this issue is more related to ATRIUM itself, rather than to the goal of the approach
presented here; this is why no more details are provided about it.

However, can the proto-architecture be considered free of antipatterns once it has
been modified? Certainly not. This is why every time an antipattern has been detected
and dealt with, the analysis should be applied again in order to determine if it has been
solved and/or the modification has introduced a new antipattern. Just consider again the
gas station example. Once the DDChecker algorithm is run again, the unbalanced
processing antipattern [78] is detected, specifically the manifestation called extensive
processing. This means that the modification just carried out has introduced a new
antipattern.

 Antipatterns for Architectural Knowledge Management 29

Fig. 9. Scenario to request an invoice: adaptation of the unbalanced processing antipattern

To explain where this new antipattern appears, it is better to focus on one of the
requirements included in Fig. 5; specifically REQ2.1.1. “The customer can ask for an
invoice”, whose operationalization is OPE2.1.1.1. “Provide cashier with invoice service”.
This operationalization is related to the scenario depicted in Fig. 9, which describes how
the customer and the cashier collaborate throughout the payment process, considering
that he (the customer) can ask for an invoice. As can be seen, this means that a new
customer must be added to the system if it does not already exist within it. Obviously,
this can be a heavyweight task. Note that this situation emerged when the system was
modified. The initial description of the proto-architecture was defined to create a new
cashier whenever a new customer requests the service, so that the customer did not have
to wait for payment. However, with the new proto-architecture description, whenever a
customer requests the payment he has to wait for one of the existing cashiers in order to
be attended, and in case he needs an invoice, he can monopolize that cashier for a long
time, causing the other customers to wait. This is particularly problematic and disturbing,
as one of the goals to be achieved is the customer satisfaction by shortening waits (see
Fig. 5).

As a result of applying the DDChecker algorithm, the network of AK must be
modified again. As can be observed in Fig. 10 (a) all the DA related to the cashier are
marked as dirty except for DA1.2.1.2, that has not been marked because it is a decision
that was not finally made in the system (as the excludes relationship and its attribute state

opt

opt

The car The cashier

request payment

amount

pay (amount)

request invoice (customer)

[customer does not exist]

check(customer)

fill_in_invoice

request customer data

data

add_customer(data)

issue_invoice

30 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

indicate). Thanks to the information contained in these decisions, when the architect is
trying to solve the new problem, he is unlikely to make the same mistakes as before. For
instance, he could decide to create a local gas pump and its associated cashier, whenever
it is requested; but then he realizes that it would lead to a problem, specifically, to the
dynamic allocation antipattern described in the DA1.2.1.3. This is exactly the reason why
AK must be preserved; and here it actually serves its main purpose.

Instead of that, the architect decides to follow the recommendation of the unbalanced
antipattern, that is, to create alternative paths for those steps that slow down the process.
Specifically, the alternative was to create two kinds of cashiers: (1) those in charge of
carrying out the payment, either in cash or money, and (2) those designed to issue
invoices. This means that the proto-architecture and its network of architectural
knowledge must be modified again to reflect the new decision made by the architect. As
can be observed in Fig. 10 (b), DA1.2.1.5 is rewritten to describe the decision just made.
It is related with DA1.2.1.3 by means of an excludes relationship, to specify that it is
replacing this old decision, which was not finally made in the system. In addition, the
architect changes the attribute state of DA1.2.1.3 to describe that this decision is not
applicable to the system anymore.

(a) after DDChecker algorithm

 Antipatterns for Architectural Knowledge Management 31

(b) after architect evaluation

Fig. 10. Reevaluating the existing DesignAssets: (a) after DDChecker; (b) after architect evaluation

This process will be iterated over and over again until no more antipatterns are
detected, or the existing ones can be considered as “acceptable” for the system
development team, according to their expectations and available resources.

6 Validation

A very important step performed once our approach was defined was its validation by
applying it to different projects. For this purpose, we selected three different projects in
which we have been involved. The selected systems were the following:
• Power plant system. This system was initially developed to evaluate two alternative

methods for deriving a software architecture specification from requirements [36].
The main goal of this system is to monitor the performance of a power plant to detect
and to remedy faults in its stem condenser or its cooling circuit. This system was
simple enough to validate the preliminary ideas we had.

• MORPHEUS. This system has been developed [58] as a novel tool that takes
advantage of meta-modelling and modelling to offer flexibility and customization by
providing analysts with a graphical environment for the specification and verification
of the different ATRIUM models as well as the necessary transformations.

• EFTCoR. The proposal has been also validated in a real case study associated to the
European project EFTCoR (Environmental Friendly and cost-effective Technology
for Coating Removal) [29] and the national project DYNAMICA [19]. These
projects aimed at designing a family of robots capable of performing maintenance
operations for ship hulls. The system includes operations such as coating removal,
cleaning and re-painting of the hull. Among the subsystems constituting the EFTCoR
platform, our case study focused on the Robotic Devices Control Unit (RDCU),
which interacts with other robotic devices to obtain the required information to
control the different devices (positioning systems and cleaning tools) to be used for

32 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

maintenance tasks. The RDCU is in charge of commanding and controlling, in a
coordinated way, the positioning of devices together with the tools attached to them.
It is worth noting that the performance requirements were especially important for
this system to facilitate a proper management of the robotic devices.

It is especially remarkable, as Table 3 shows, that they were selected because of the
increasing complexity in terms of number of requirements provided, number of
DesignAssets specified, number of components, and average number of operations
provided per component.

Table 3. System Complexity of the systems used for the evaluation

System Requirements DesignAssets Components Operations provided

Power plant 39 52 3,4
Morpheus 122 143 22,5
EFTCoR 161 212 14,7

We carried out the Analysis activity described in section 5 by using the specifications
of these three systems. This led us to detect and solve the antipatterns identified in Table
4. This table also shows the number of detected instances of each antipattern along with
the number of DAs and AKRs that had to be added. The Analysis activity was carried out
in different iterations for each system:

Table 4. Results of the Analysis activity

System Antipattern Instances Added DAs Added positive AKRs Added negative AKRs

Power plant - - - - -

Morpheus
Excessive Dynamic
Allocation

1 2 1 1

One-Lane Bridge 1 2 2 3

EFTCoR
Excessive Dynamic
Allocation

1 2 1 1

One-Lane Bridge 2 3 2 3
Empty Semi Trucks 4 5 4 6

• For the Power Plant system, just one iteration was carried out as no antipatterns were
detected.

• For the MORPHEUS system, three iterations were performed. In the first iteration,
two antipatterns were detected, and it was decided to solve the Excessive Dynamic
Allocation antipattern, as both antipatterns have the same number of instances. As
was already stated in section 5.4, the analysis activity was iterated over again to detect
if the solution was appropriate. It was concluded that now, only the One-Lane Bridge
remained in the system. This antipattern was solved, and in the final iteration it was
concluded that none of the analyzed antipatterns were in the proto-architecture.

 Antipatterns for Architectural Knowledge Management 33

• For the EFTCoR system, four iterations were carried out in a similar way to the
previous systems. The three antipatterns (Excessive Dynamic Allocation, One-Lane
Bridge and Empty Semi Trucks) were detected at the first iteration. Then, similarly to
the previous case, one of the antipatterns was solved in each new iteration, and it was
checked again at the next iteration. Moreover, we decided to solve first, in each
iteration, the antipattern with the highest number of instances. This decision was made
because the number of instances is usually related to the number of components
affected by the antipattern and, therefore, affected by the solution to be applied. Like
in the previous system, at the end of the fourth iteration none of the analyzed
antipatterns was in the proto-architecture.

It is important to note that the treatment of the detected antipatterns does not imply a
notable increase of the AK networks regarding to their previous definition. Taking into
account these results, it can be stated that, as a rule of thumb, the minimum number of
DAs to be added to the network, in case of detection, will be 2: a DA to specify that an
antipattern was detected and solved and an additional DA to specify the decision that
solves the antipattern. We can also infer that the maximum number of DAs could become
1+number of instances of the detected antipattern, and this would only happen if the
architect decides to specify a different solution for every instance of the detected
antipattern. Indeed, the number of added DAs will be high only if we already had a very
high number of instances. However, this would also mean that the system would have a
high number of components and DAs so that, relatively, the number of new DAs would
not be so significant. Moreover, we note that the results of the analyzed systems indicate
that this situation is not very likely: the number of detected instances was always close to
one. In this sense, we should also remark that despite the expertise of the architects who
specified the analyzed systems they made errors in their specifications. Therefore, our
approach helps to identify and solve them in early stages of the software development
process.

The number of antipattern instances could at first seem reduced, but it has a clear
justification; it should be taken into account that we are already working with software
architecture specifications. When software architects have to specify large systems, they
rely on layering techniques to manage their complexity. This implies that not only
components but also their related decisions are layered, so that decisions leading to
antipatterns will be usually confined to specific layers. We have noticed this situation in
the analyzed systems Morpheus and EFTCoR.

We also note that a general rule can be determined regarding the number of AKRs
relative to antipattern instances. The minimum number of AKRs will be 2: a positive and
a negative AKR linking the DA that informs about the detected antipattern to the new
decision and to the rejected decision, respectively. The maximum number of AKRs would
be the number of DAs involved in each antipattern instance plus the number of
antipattern instances, assuming again that a new DA is created for each instance. One
might think that the number of relationships could be very high but, as noticed in Table 4,

34 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

we did not need a large number of relationships. Moreover, the use of an adequate tool
that helps the architect to show and hide positive and negative relationships helps to
manage properly the information added to the network.

Despite the previous arguments, it still might be questioned whether the advantages
of maintaining this information is overcome by the overhead it imposes. In this sense, we
consider especially relevant the results we have obtained in the analyzed projects, as it
has helped us to understand why the systems were the way they were. This idea has been
also emphasized by other experimental studies, such as that presented by Bratthall et al.
[10]. They carried out an experiment with 17 subjects from both industry and academia,
and concluded that most of the interviewed architects stated that by using AK they could
shorten the time necessary to carry out the change-tasks. Interviewed subjects also
concluded that the quality of the results was better using AK when they had to predict
changes on unknown real-time systems. Therefore, there are compelling arguments for
using the rationale while the SA is being changed.

Finally, we would like to highlight that few antipatterns were detected during the
analysis of the systems. For instances, no antipatterns were detected for the Power plant
system. In this sense, it is worth noting that the method we propose is not conceived for
synthezing new architectures, but for analyzing those which have been already designed.
This means that we cannot begin with some unstructured design, and start iterating over
it, detecting antipatterns once and again until we reach a good design. In practice, this
would probably result in marking every decision as dirty, and further progress would be
inhibited. The whole system would be probably detected as the blob antipattern, which
implies that a full redesign is required.

Instead of that, we consider that the proto-architecture to be examined is reasonably
good already in the initial iteration. That is, we have tried to create or evolve a good
design and we just want to check to see if there are some mistakes. In this case, every
antipattern would appear almost in isolation, and therefore its detection should be
relatively simple. But even then, if the system is complex and the elements are strongly
related, a bad DD could affect a lot of the elements, giving the impression that
“everything is dirty” again. In this kind of situation, however, those difficulties are just
reflecting the actual complexity of the system; and our approach is still valid and still can
be used to separate affected from unaffected elements.

Also, this is handled by means of syntactic tools, but we have not considered
semantic aspects. It is obvious that once several elements have been marked as dirty, it is
the architect himself who must decide, considering the semantics of the affected
elements, which ones are truly important for the system’s design. For instance, if we have
detected a performance antipattern, we can simply ignore those dirty elements which do
not affect performance. The architect could even decide that the DAs involved in the
detection of an antipattern should be kept because they contribute to achieve other quality
attributes more important to the system. As previously noted, this is the main reason why
the process is never considered to be fully automatic. It is always the architect who makes

 Antipatterns for Architectural Knowledge Management 35

the final decision; the automatic support has been designed to assist him by exposing
possible problems.

To conclude, it is important to discuss the implications of the presented approach with
regard to the quality of the development process of the previous systems, and more
concretely regarding to its effectiveness. Revising the definition provided by the ISO/IEC
25010:2011 standard[33], we consider effectiveness as the degree to which architects can
achieve their goals with accuracy and completeness in the context of software
architecture specification. Basically these goals were:
(1) To increase defect containment. As the analysis activity is carried out during the

early stages of the development process, the number of faults that would have
otherwise escaped (and would have been found during subsequent phases) was
reduced. In this sense, Table 4 provides clear evidence about the number of instances
of antipatterns detected and ultimately eliminated from analyzed systems. Moreover,
this reduction of faults has a direct impact on the reduction of cost as the cost of
eliminating defects at this early stage of the development process is much lesser than
during the coding stages. Therefore, this reduction of cost soon rewards the overhead
of carrying out the analysis activity.

(2) To improve the quality of the developed software. As the detected antipatterns were
related to performance, and this is a software quality attribute, the time devoted to
their proper handling has a direct impact on the quality of the developed software. As
suggested in our definition, these goals were achieved with accuracy and

completeness, as the analysis activity provided us with all the relevant information to
eliminate the antipatterns from the analyzed systems.

7 Conclusions and further Research

In conclusion, there are several consequences that can be extracted from the experience
and results exposed in our approach. First, the degree of sophistication which is being
achieved by Architectural Knowledge management is both illustrating and increasing its
interest and relevance. Second, the importance of its inner relationships – and especially
negative ones – is becoming clearer, as it defines a complex structure of previously
unrepresented information. Third, our work shows the actual usefulness of antipatterns in
this context – they might play a central role in AK, even more important than in more
traditional applications. Fourth, the use of a model-driven engineering support makes it
possible to be able to deal with these complex structures, emphasizing again the interest
of combining model-driven and architecture-centric approaches. In fact, though
ATRIUM is just provided as a proof-of-concept, it has an interest of its own. And finally,
the combination of this model-driven support and explicit architectural knowledge makes
possible to go beyond traceability, to the extent that AK management might trigger
modifications in the final architecture. Even our simple example provides a clear
perspective of the usefulness and applicability of these techniques as part of the basic
toolset of a software architect.

36 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

These conclusions can be examined in some more detail. First, about the relevance of
Architectural Knowledge management itself. It has evolved from the inspiration of initial
efforts in Software Architecture, to the current emphasis on capturing unrepresented
design knowledge and integrating it with architecture. Our approach provides a glimpse
of the complexity of the resulting AK network, showing the need for automated support;
but also highlights the usefulness of this structure –beyond “simple documentation”–,
which could directly influence the structure of the final architecture itself.

Second, the influence of relationships in AK and the structure they define. What
originally was a set of small-sized design decisions is now a complex decision network.
In fact, once these relationships have been included, the network of AK can get as
complex as the architecture itself; comparatively, even more so as the final architecture is
just a part of the rationale. Now architecting becomes what we could define as literate
architecting: instead of simply constructing the architecture, and losing valuable
contextual knowledge in every decision, the process becomes that of writing the
architectural rationale. Two complex structures are obtained: the architecture and the
rationale; but being closely intertwined, they are represented as just one structure. The act
of building the first is also the act of writing the second.

In fact, the resulting complexity of this structure can also be considered as an issue: if
the rationale (i.e. the AK network) is more complex than the architecture itself, it is
legitimate to question if it has become unmanageable. In summary, to what extent can our
approach scale? There are three points to consider here. First, our approach is essentially
constructive. This means that the information is provided as the development process
itself happens: decisions must be taken before being included in the network. Therefore,
we are not introducing artificial complexity of any kind. Second, our approach is
providing automatic or semi-automatic support in every step. Hence, it should be easier
to handle than existing approaches, which either lose this information or have to deal
with it “by hand”. Moreover, our solution uses a model-driven approach, and this should
make automation easier: its models have been specifically designed to be automatically
processed. Their use should have, at least in theory, two different consequences: first, the
performance of these models should be reasonably good, considering their origin; and
second, by providing what essentially is a “neutral” core model, they should be able to
interact with many existing techniques and ADLs, even serving as a bridge between
them.

Finally, when considering the scalability of this solution, we should consider that it is
still an architectural approach. When dealing with large-scale systems, architecture
practice usually relies in layering. The system is described as an abstract, prescriptive
architecture at the top layer, and then every component is unfolded as an increasingly
concrete sub-architecture in the next layers. These layers will be maintained at every
level of abstraction; hence, our design decisions will be equally layered. Therefore, the
AK network will be complex as a whole, but simple enough to manage at every layer.

The third conclusion was about using antipatterns as the way of semi-automating the
detection and the management of negative relationships, whose importance has also been

 Antipatterns for Architectural Knowledge Management 37

emphasized. Our solution, based on antipatterns, is able to semi-automatically detect
conflicting decisions, mark then as dirty, and trigger an analysis which begins by marking
ill-effects relationships, and ends with the architect proposing a modification of the proto-
architecture. As far as we know, our approach is one of the first in partially automating
this part of the process; it does not provide a full automation, but it does provide
automated support. Also, this approach gives antipatterns a significant role in the
architectural process, analogous to some extent to the one already played by patterns
[82].

The fourth conclusion is about the technological context. Our methodology (and even
the proof-of-concept provided by ATRIUM and its associated tool, MORPHEUS), is
another example of the benefits of combining architecture-centric and model driven
approaches. Architecture provides the capability to adapt to different scales; a model-
driven perspective provides flexibility and automation. Consequently, it is quite simple to
extend, either in size or scope, this hybrid approach. For instance, our preliminary work,
shown in [61], already provided the basic infrastructure for AK. We had just to extend
this to include relationships and antipattern detection; the initial support was not
modified.

Apart from the simpler automation, and the intrinsic flexibility just mentioned, the
main merit of the hybrid approach, as already emphasized in [59], is to make explicit the
traceability relationship, which becomes the “spine” of the architectural process. MDD
needs every stage in the development to be explicitly described and modeled; traceability
makes it possible to connect these descriptions. Hence, we obtain the proto-architecture
as the final result of a complex process, in which every decision has been recorded and
can be traced forward and backwards.

Now, within the current version of the MORPHEUS environment, relationships
(including traceability) are easily composed with each other, and their consequences can
be fully exploited – including such diverse concerns and questions as finding the scope of
a requirement, the implementation of a decision, or using finer strategies for network
analysis, as mentioned below.

We consider that the work presented in this paper is the first step towards a thorough
analysis that could be called meta-analysis. The detection of anti-patterns is just one of
the tasks that this meta-analysis should carry out, but other interesting and challenging
facilities should also be provided, such as exploitation of a quality model and/or a metric
model [46]. For instance, consider the importance of validating whether the architecture
of the different products of a Software Product Line conform to a given reference
architecture [50][71]. It could be of interest to execute during the meta-analysis that
another process, similar to DDChecker, would determine if the proto-architecture has any
problem with regards to the reference architecture. The implications of this new facility
would have to be analyzed in order to determine how the inputs provided by those DDs
and DRs involved in the definition of the reference architecture could be exploited as
well. We consider that this meta-analysis should be a necessity for any proposal,
hopefully in the near future.

38 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

Another direction of our work includes the definition of special decisions, which
could provide a better structure to describe AND/OR relationships, similar to those found
at requirements level, in the goal model. As already noted in section 2, we also intend to
exploit the decision network using standard techniques for network analysis [5], which
would lead to the identification of special nodes, critical decisions, or even separate
process development branches. Another interesting future work will be the exploitation of
data mining and knowledge discovery (DMKD, [68]) to extract useful information from
the decision network. We also plan to provide more sophisticated methods to visualize
the information contained in the structure, and to complete this knowledge with the
definition, and even local implementation, of several adequate metrics, which will be also
used for our detailed analysis. In summary, the AK structure will be further enriched and
analyzed, and the consequences of its use during software development will be carefully
examined.

Another interesting work in progress is related to the industrial exploitation of this
knowledge. Indeed the architectural knowledge generated throughout different software
projects is an important and essential resource for industrial competitiveness, its suitable
flow throughout organizations will facilitate that this knowledge could transferred from
one project to another. Therefore, we plan to study the implications that the introduction
of knowledge management systems, such as [32] or [69], could have in terms of
efficiency and/or effectiveness for software development, as well as the introduction of
classification algorithms, such as [43][67], that help us to rank applicable solutions to
solve antipatterns.

Acknowledgments

This work has been funded in part by the Spanish Ministry of Science and Innovation
under the National R&D&I Program, within Projects DESACO TIN2008-06596-C02-01,
and Agreement Technologies, CONSOLIDER CSD2007-0022; by the grant PEII09-
0054-9581 from the Junta de Comunidades de Castilla-La Mancha; and also in part by
NSF CISE SRS Grant CCF-0820251.

References

[1] A. Akerman, J. Tyree, Using Ontology to Support Development of Software Architectures,
IBM Systems J., 45(4), 2006, 813-826.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider, The Description Logic
Handbook (Cambridge University Press, Cambridge, 2003).

[3] D. Ballis, A. Baruzzo, M. Comini, A Minimalist Visual Notation for Design Patterns and
Antipatterns, Proc. 5th Int. Conf. on Information Technology: New Generations, IEEE
Computer Society, Los Alamitos, 2008, pp.51-56.

[4] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, Model-Based Performance Prediction in
Software Development: A Survey, IEEE Transactions on Software Engineering, 30(5) (2004)
295-310.

[5] A.L. Barabási, M. Newman, D.J. Watts. The Structure and Dynamics of Networks (Princeton
University Press, Princeton, 2006).

 Antipatterns for Architectural Knowledge Management 39

[6] R. Basili, D.M. Weiss, A methodology for collecting valid software engineering data, IEEE
Transactions on Software Engineering, 10 (6) (1984) 728–738

[7] B. Baudry, Y. Le Traon, Measuring design testability of a UML class diagram, Information &
Software Technology, 47(13) (2005) 859-879.

[8] M. Bernardo, V. Cortellessa, M. Flamminj, TwoEagles: A Model Transformation Tool from
Architectural Descriptions to Queueing Networks, Proc. 8th European Performance
Engineering Workshop, Springer, Berlin, 2011, pp. 265-279.

[9] W. Brown, R. Malveau, H. McCormick, T. Mowbray, AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis (John Wiley & Sons, New York, 1998).

[10] L. Bratthall, E. Johansson, and B. Regnell, Is a Design Rationale Vital when Predicting
Change Impact? – A Controlled Experiment on Software, Proc. 2nd International Conference
on Product Focused Software Process Improvement, 2000, Springer, Berlin, pp. 126-139.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software
Architecture, Volume 1, A System of Patterns (Wiley, Chichester, 1996).

[12] L. Chung, B. A. Nixon, E. Yu, J. Mylopoulos, Non-Functional Requirements in Software
Engineering (Kluwer Academic Publishing, Boston, 2000).

[13] V. Cortellessa, A. Martens, R. Reussner, C. Trubiani, A Process to Effectively Identify
"Guilty" Performance Antipatterns, Proc. 13th Int. Conf., Fundamental Approaches to
Software Engineering, LNCS 6013, Springer, Berlin, pp. 368-382.

[14] V. Cortellessa, A. Di Marco, C. Trubiani, Performance Antipatterns as Logical Predicates,
Proc. 15th IEEE International Conference on Engineering of Complex Computer Systems,
IEEE Computer Society, pp. 146-156.

[15] V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, C. Trubiani, Approaching the model-
driven generation of feedback to remove software performance flaws. Proc. 35th Euromicro
Conference on Software Engineering and Advanced Applications, IEEE Press, New York,
2009, pp. 162–169.

[16] V. Cortellessa, L. Frittella, A Framework for Automated Generation of Architectural
Feedback from Software Performance Analysis, Proc. 4th European Performance
Engineering Workshop, Springer, Berlin, 2007, pp. 171-1.

[17] K. Czarnecki, S. Helsen, Classification of Model Transformation Approaches, IBM Systems
Journal, 45(3) (2006) 621-645.

[18] J. Cubo, C. Canal, E. Pimentel, Context-Aware Composition and Adaptation based on Model
Transformation, J. UCS, 17(5) (2011) 777-806.

[19] CICYT TIC2003-07804-C05-01, DYNAMICA, DYNamic and Aspect-Oriented Modeling for
Integrated Component-based Architectures, 2003- 2006.

[20] A. Dardenne, A. van Lamsweerde, S. Fickas, “Goal-directed Requirements Acquisition,”
Science of Computer Programming, 20(1-2) (1993) 3-50.

[21] J. Dietrich, N. Jones, J. Wright, Using social networking and semantic web technology in
software engineering – Use cases, patterns, and a case study, Journal of Systems and Software,
81(12) (2008) 2183-2193.

[22] M. El-Attar, J. Miller, Matching Antipatterns to Improve the Quality of Use Case Models,
Proc. 14th IEEE Int. Requirements Engineering Conference, IEEE Computer Society, Los
Alamitos, pp. 99-108.

[23] A. Erfanian, F.S. Aliee, An Ontology-Driven Software Architecture Evaluation Method, Proc.
Workshop Sharing and Reusing Architectural Knowledge, ACM Computing, ACM New
York, 2008, pp. 79-86.

[24] D. Falessi, G. Cantone, P. Kruchten, Value-Based Design Decision Rationale Documentation:
Principles and Empirical Feasibility Study, Proc. 7th Working IEEE/IFIP Conf. Software
Architecture, IEEE Computer Society, Los Alamitos, 2008, pp. 189-198.

[25] R. Farenhorst, R.C de Boer, Core Concepts of an Ontology of Architectural Design Decisions,
Technical Report IR-IMSE-002, Dept. Computer Science, Vrije Universiteit Amsterdam,
2006.

40 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

[26] G. Franks, Performance analysis of distributed server systems, Ph.D. Thesis, Dept. of Systems
and Computer Engineering, Carleton University, Ottawa, Canada, 2000.

[27] E. Friedman-Hill, Jess in Action, Rule-Based Systems in Java, Manning Publications, 2003.
[28] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software (Addison Wesley, Boston, 1993).
[29] GROWTH G3RD-CT-00794: EFTCOR: Environmental Friendly and cost-effective

Technology for Coating Removal. European Project, 5th Framework Program, 2003.
[30] N.B. Harrison, P. Avgeriou, U. Zdun, Using Patterns to Capture Architectural Decisions, IEEE

Software, 24(4) (2007) 38-45.
[31] S.A. Hendrickson, S. Subramanian, A. van der Hoek, Multi-Tiered Design Rationale for

Change Set Based Product Line Architectures, Proc. 3rd Work. Sharing and Reusing
Architectural Knowledge, ACM Computing, ACM New York, 2008, pp. 41-44.

[32] C. Hirai, Y. Uchida, T. Fujinami, A Knowledge Management System for Dynamic
Organizational Knowledge Circulation, International Journal of Information Technology and
Decision Making, 6(3) (2007) 509-522.

[33] ISO/IEC ISO/IEC 25010:2011, Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software quality models, 2011.

[34] A. Jansen, J. Bosch, Software Architecture as a Set of Architectural Design Decisions, Proc
5th Working IEEE/IFIP Conf. Software Architecture, IEEE Computer Society, Los Alamitos,
2005, pp. 109-120.

[35] A. Jansen, J. Bosch, P. Avgeriou, Documenting After the Fact: Recovering Architectural
Design Decisions, Journal of Systems and Software, 81(4) (2008) 536-557.

[36] D. Jani, D. Vanderveken, D. Perry, Deriving Architecture Specifications from KAOS
Specifications: a Research Case Study, Proc. 2nd European Conference on Software
Architecture, Springer, Berlin, 2005, pp. 185-202.

[37] M. Kis, Information Security Antipatterns in Software Requirements Engineering, Proc. 9th
Conference on Pattern Language of Programs, 2002.

[38] F. Khomh, S. Vaucher, Y.G. Guéhéneuc, H. A. Sahraoui, BDTEX: A GQM-based Bayesian
approach for the detection of antipatterns. Journal of Systems and Software, 84(4) (2011) 559-
572.

[39] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, G. Antoniol, An exploratory study of the impact of
antipatterns on class change- and fault-proneness, Empirical Software Engineering, 17(3)
(2012) 243-275.

[40] S. Kim, D. K. Kim, L. Lu, S. Park, Quality-driven architecture development using
architectural tactics, The Journal of Systems and Software, 82 (2009) 1211–1231.

[41] P. Könemann, O. Zimmermann: Linking Design Decisions to Design Models in Model-Based
Software Development, Proc. 4th European Conference Software Architecture, Springer,
Berlin, 2010, pp. 246-262.

[42] H. Koziolek, Performance evaluation of component-based software systems: A survey.
Performance Evaluation, 67(8) (2010) 634-658.

[43] G. Kou, Y. Lu, Y. Peng, Y. Shi, Evaluation of Classification Algorithms Using MCDM and
Rank Correlation, International Journal of Information Technology and Decision Making,
11(1) (2012) 197-225.

[44] P. Kruchten, An Ontology of Architectural Design Decisions, Proc. 2nd Workshop of Soft.
Variability Man., Groningen, 2004, pp. 54-61.

[45] P. Kruchten, P. Lago, H. van Vliet, Building Up and Reasoning About Architectural
Knowledge, Proc. 2nd Intl. Conf. Quality of Software Architectures, LNCS 4214, Springer,
Berlin, 2006, pp. 43-58.

[46] O. Lamouchi, A. Ramdane-Cherif, N. Lévy, Evaluation Approach for Software Architecture,
Proc. International Conference on Software Engineering Research & Practice, CSREA Press,
2009, pp. 320-326.

 Antipatterns for Architectural Knowledge Management 41

[47] A van Lamsweerde, Elaborating Security Requirements by Construction of Intentional Anti-
Models, Proc. 26th Int. Conf. on Software Engineering, IEEE Comp. Society, Los Alamitos,
2004, pp.148-157

[48] T. Lenin Babu, M. Seetha Ramaiah, T.V. Prabhakar, D. Rambabu, ArchVoc – Towards an
Ontology for Software Architecture, Proc. 2nd Workshop Sharing and Reusing Architectural
Knowledge, IEEE Computer Society, Los Alamitos, 2007, pp. 5.

[49] A. Martens, and H. Koziolek, Performance-oriented Design Space Exploration, Components
in a World of Mobile and Distributed Computing, Proc. 30th Int. Work. on Component-
Oriented Programming, 2008.

[50] T. Mikkonen, A. Salminen: Towards a Reference Architecture for Mashups. Proc. OTM
Workshops: Workshop on Variability, Adaptation and Dynamism in Software Systems and
Services, 2011 pp. 647-656

[51] N. Moha, Y.-G. Guéhéneuc, On the Automatic Detection and Correction of Software
Architectural Defects in Object-Oriented Designs, Proc. 6th ECOOP Work. on Object-
Oriented Reengineering, 2005.

[52] F. Montero, E. Navarro, ATRIUM: Software Architecture Driven by Requirements, Proc.
14th IEEE International Conference on Engineering of Complex Computer Systems, IEEE
Computer Society, Los Alamitos, 2009, pp.230-239.

[53] T.P. Moran, J.M. Carroll. Design Rationale: Concepts, Techniques and Use. Routledge, 1996.
[54] A. Mos, J. Murphy, Performance management in component-oriented systems using a Model

Driven Architecture™ approach, Proc. 6th Int. Enterprise Distributed Object Computing
Conf., IEEE Computer Society, Los Alamitos, 2002, pp. 227-237.

[55] G. Naumovich, G.S. Avrunin, L.A. Clarke, L.J. Osterweil, Applying Static Analysis to
Software Architectures, Proc. 6th European Software Engineering Conference Software
Engineering / 5th ACM SIGSOFT Symposium on Foundations of Software Engineering, ACM
Computing, ACM New York, 1997, pp. 77-93.

[56] E. Navarro, C. E. Cuesta, D. E. Perry, C. Roda, Using Model Transformation Techniques for
the Superimposition of Architectural Styles, Proc. 5th European Conference on Software
Architecture, LNCS 6903, Springer, Berlin, 2011, pp. 379–387.

[57] E. Navarro, C. E. Cuesta, D. E. Perry, Weaving a Network of Architectural Knowledge, Proc.
Joint Working IEEE/IFIP Conf. on Software Architecture 2009 & European Conference on
Software Architecture, IEEE Computer Society, Los Alamitos, 2009, pp. 241-244.

[58] E. Navarro, A. Gómez, P. Letelier, I. Ramos, MORPHEUS: a supporting tool for MDD, Proc.
18th International Conference on Information Systems Development, Springer, Berlin, 2009,
pp. 255-267.

[59] E. Navarro, C. E. Cuesta, Automating the Trace of Architectural Design Decisions and
Rationales Using a MDD Approach, Proc. 2nd European Conference Software Architecture,
LNCS 5292, Springer, Berlin, 2008, pp. 114-130.

[60] E. Navarro, P. Letelier, I. Ramos, Requirements and Scenarios: playing Aspect Oriented
Software Architectures, Proc. 6th IEEE/IFIP Conf. on Software Architecture, IEEE Computer
Society, Los Alamitos, 2007, n. 23.

[61] E. Navarro, P. Letelier, J. Jaén, I. Ramos, Supporting the Automatic Generation of Proto-
Architectures, Proc. 1st European Conf. on Software Architecture, LNCS 4758, Springer
Verlag, Heidelberg, 2007, pp. 43-58, (Best poster award).

[62] OMG, Software Process Engineering Metamodel (SPEM), Version 1.1 formal/05-01-06, 2005.
[63] OMG document ptc/05-11-01, QVT, MOF Query/ Views/Transformations. Final adopted

spec., 2005.
[64] T. Parsons, J. Murphy, Detecting performance antipatterns in component based enterprise

systems, Journal of Object Technology 7(3) (2008) 55–90.
[65] O. Pastor, J. C. Molina, Model-driven architecture in practice - a software production

environment based on conceptual modeling (Springer, Berlin, 2007).

42 Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González

[66] Y. Peng, G. Kou, G. Wang, W. Wu, Y. Shi, Ensemble of software defect predictors: An AHP-
based evaluation method, International Journal of Information Technology and Decision
Making, 10(1) (2011) 187-206.

[67] Y. Peng, G. Kou, G. Wang, H. Wang, F. I. S. Ko, Empirical Evaluation of Classifiers for
Software Risk Management. International Journal of Information Technology and Decision
Making, 8(4) (2009) 749-767.

[68] Y. Peng, G. Kou, Y. Shi, Z. Chen, A Descriptive Framework for the Field of Data Mining and
Knowledge Discovery, International Journal of Information Technology and Decision
Making, 7(4) (2008) 639-682.

[69] P. Peng-Kiat, K. L. Poh, Making decisions in an intelligent tutoring system, International
Journal of Information Technology and Decision Making, 4(2) (2005) 207-233.

[70] J. Pérez, N. Ali, J. A. Carsí, I. Ramos, Designing Software Architectures with an Aspect-
Oriented Architecture Description Language, Proc. 3rd European Workshop on Soft.
Architecture, LNCS 4063, Springer, Berlin, 2006, pp. 123-138.

[71] D. E. Perry, Generic Architecture Descriptions for Product Lines, Proc. Development and
Evolution of Software Architectures for Product Families, LNCS, 1429, Springer, Berlin,
1998, pp. 51-56.

[72] D. E. Perry and Alexander L Wolf, Foundations for the Study of Software Architecture, ACM
SIGSOFT Software Engineering Notes, 17(4) (1992) 40-52.

[73] D. B. Petriu, C. M. Woodside, Software performance models from system scenarios,
Performance Evaluation, 61(1) (2005) 65-89.

[74] B. Selic. The Pragmatics of Model-Driven Development, IEEE Software, 20(5) (2003) 19-25.
[75] D. Settas, A. Cerone, S. F., Enhancing ontology-based antipattern detection using Bayesian

networks, Expert Systems with Applications, 39(10) (2012) 9041-9053.
[76] D. Settas, G. Meditskos, I. Stamelos, N. Bassiliades, SPARSE: A symptom-based antipattern

retrieval knowledge-based system using Semantic Web technologies, Expert Systems with
Applications, 38(6) (2011) 7633-7646.

[77] M. Sinnema, S. Deelstra, Classifying Variability Modeling Techniques, Journal on
Information and Software Technology, 49(7) (2007) 717-739.

[78] C. U. Smith, L. G. Williams, New Software Performance AntiPatterns: More Ways to Shoot
Yourself in the Foot, Proc. 28th Int. Computer Measurement Group Conf., Computer
Measurement Group, Reno, 2002, pp. 667-674

[79] C. U. Smith, L. G. Williams, Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software (Addison-Wesley, 2001).

[80] C. U. Smith, L. G. Williams: Software Performance AntiPatterns; Common Performance
Problems and their Solutions, Proc. 27th Int. Computer Measurement Group Conf., 2001, pp.
797-806.

[81] I. Stamelos, Software project management anti-patterns, Journal of Systems and Software
83(1) (2010) 52-59

[82] A. Tang, J. Han, Architecture Rationalization: A Methodology for Architecture Verifiability,
Traceability and Completeness, Proc. 12th IEEE Intl. Conf. Engineering of Computer Based
Systems, IEEE Computer Society, Los Alamitos, 2005, pp. 135-144.

[83] A. Tang, Y. Jin, J. Han, A. Nicholson, Predicting Change Impact in Architecture Design with
Bayesian Belief Networks, Proc. 5th Work. IEEE/IFIP Conf. Software Architecture, IEEE
Computer Society, Los Alamitos, 2005, pp. 67-76.

[84] M. T. Su, Capturing exploration to improve software architecture documentation. Proc. 4th
European Conference Software Architecture, Companion Volume, ACM Computing, ACM
New York, 2010, pp. 17-21.

[85] C. Trubiani, A. Koziolek, Detection and solution of software performance antipatterns in
palladio architectural models, Proc. Second Joint WOSP/SIPEW International Conference on
Performance Engineering, 2011, pp. 19-30.

[86] J. Tyree, A. Akerman, Architecture Decisions: Demystifying Architecture, IEEE Software
22(2) (2005) 19-27.

 Antipatterns for Architectural Knowledge Management 43

[87] J. Xu, Rule-based automatic software performance diagnosis and improvement, Performance
Evaluation, 67(8) (2010) 585-611.

[88] L. Zhu, I. Gorton, UML Profiles for Design Decisions and Non-Functional Requirements,
Proc. 2nd Workshop Sharing and Reusing Architectural Knowledge, IEEE CS, Los Alamitos,
2007, pp. 8.

