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Recent research on Software Architecture has recovered its original emphasis on keeping track of 
design decisions and their rationales during software development, compiling them under the name 
of Architectural Knowledge (AK). This knowledge is composed of explicit, atomic decision assets, 
which relate to each other creating a decision network structure. We argue that relationships in these 
networks of AK contain valuable information, in particular when they describe negative semantics. 
We use reusable knowledge, in the form of antipatterns, to exploit and manage these negative 
semantic relationships systematically.  After examining and classifying the kinds of AK 
relationships, we describe a method that enriches this network by means of antipattern structures. To 
show the feasibility and suitability of this approach, we provide a proof-of-concept by applying it to 
an existing process, ATRIUM. A concrete example illustrates our approach in which we use the 
Excessive Dynamic Allocation performance antipattern against the classic Gas Station metaphor. 
Results of the use of the presented approach into three different projects with different complexities 
show both the feasibility and applicability of our method. The combination of this model-driven 
support and explicit AK makes it possible to go beyond traceability to a more proactive AK 
management system that may additionally trigger modifications in the final architecture. 

Keywords: software architecture, architectural knowledge, antipatterns, requirements engineering, 
model-driven development. 
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1 Introduction 

In a typical software development process, the rationale for the architecture and the intent 
behind the design decisions are lost in the pursuit of that final system artifact, code. If by 
chance the architecture and design is documented, the documents themselves are usually 
out of date or incorrect – in other words, probably at least as harmful as they are helpful.   

Given that architecture rationale [72] and design intent are critical in evolving 
software systems, it is imperative that they be captured in some useful form to aid that 
evolution process.  We claim that the rationale and intent, instead of being lost during the 
development process, can be captured as a byproduct of architecting and designing the 
system. Every decision is explicitly specified and included in the process of architecting 
the system and each decision becomes a part of a hyper-textual document that represents 
the network of architectural assets with their complex relationships.  The advantage of 
such an approach is that it provides traceability and, optionally, even backtracking for 
design decisions.  

The resulting structure, the architectural rationale, can be considered just 
documentation, the transcription of the thought process followed during design. 
However, in recent research it has acquired a more active role. It can be seen as a 
computational structure, composed of small assets, or artifacts, of design knowledge, 
tracing back to some requirements and forward towards an implementation.  As such, it 
can be considered the extended discourse of the system’s design, defining our 
architectural knowledge (AK). AK is therefore composed of architectural elements, 
requirements, and a number of design assets. There are several ways to represent them; 
we talk about Design Decisions (DDs) and Design Rationales (DRs), which comprise a 
concrete decision in the architecture process, and the reasoning behind it. This conception 
is consistent with the existing literature on design; indeed, design rationale is a topic with 
a long tradition on its own [53]. The purpose of research on AK is to incorporate this 
derivation of the architectural design in the architectural process – that is, include that 
derivation via design decisions and rationales as part of the architecture description. 
When only the final architecture is described, this derivation is lost and becomes 
unrepresented design knowledge [86].   

From the AK perspective, architecture is therefore better defined as “a set of design 
decisions” [34]. But it is indeed, not a set, but a network. DDs are related to some others, 
both forward and backwards, defining an intertwined chain of decisions. When the 
rationale is conceived as a network of AK assets, the network itself can subsume much of 
its structure. Moreover, these AK relationships (AKRs) can be either positive or negative. 
A positive AKR between two DDs determines that both of them should be made for the 
software architecture to be correctly specified, as one depends on the other. On the other 
hand, a negative AKR between two DDs establishes that there is a conflict between them, 
and that a compromise has to be achieved to resolve the conflict in the architecture. 
However, when trying to provide automatic (or at least, semi-automatic) support for this 
process, positive relationships are easy to deduce and, hence, to process.  However, 
negative relationships are not easy to deduce and process. A decision not taken, or 
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inhibited due to some other decision, is not visible (there are no traces of it) in the final 
architecture. This unrepresented knowledge [86], which cannot be deduced from the final 
design, must be introduced manually. This is perhaps the most important reason to 
introduce the distinction between positive and negative AK relationships. 

The main contribution presented in this work is the use of standard “negative” design 
knowledge, namely antipatterns, as a source of information that helps to identify 
potential negative relationships within the AK structure and suggest possible solutions. 
As a proof of concept, we have implemented this support in an existing model-driven 
methodology, ATRIUM [52], that already has the support for DDs [61]. This enables us 
to offer two secondary contributions: (i) the extension of ATRIUM with a new activity 
named Analysis that embodies the exploitation of antipatterns for AK management; and 
(ii) the definition of new AK relationships that are necessary both to change the AK to a 
network of AK and to weave antipatterns into this network. 

This paper is structured as follows. Section 2 describes the proposal presented in this 
work: the automation of the process of detecting negative relationships by exploiting 
antipatterns. Next, Section 3 describes the current approaches to AKRs, discussing their 
coverage and benefits, while Section 4 presents the related work about the exploitation of 
anti-patterns. Section 5 demonstrates, by means of a proof of concept, that our approach 
can be put into practice, describing its application by using the well-known gas station 
example in Section 5.4. Section 6 describes the most relevant results obtained from its 
application into three different projects of different complexities. Finally, Section 7 
presents our conclusions and suggestions for further research. 

2 Problem Statement: Antipatterns for AK Management 

As stated in the previous section, we can classify AKRs into two kinds: positive and 
negative AKRs. The former makes it possible to specify obligation semantics within the 
AK network. These kinds of relationships are specified to describe when some DDs need, 
constrain, etc., other DDs. The latter group implies negation semantics, such that specific 
conditions, situations, etc., cannot occur in the system-to-be. Usually, negative AKRs are 
used either to describe choices (DDs) which, if taken, would mean bad decisions for the 
system-to-be, or sets of DDs whose combination would result in architectural problems. 
Although both of them are very noteworthy for the design and the maintenance of 
software systems, the negative relationships are especially relevant as they can lead to 
faults, inconsistencies, conflicts or other design problems in the final system. Therefore, 
their early detection can avoid problems in terms of the quality of the final system.  

Usually, the detection of the positive relationships emerges naturally as part of the 
process of the description of the software architecture. However, the negative 
relationships must usually be detected by the architect without any automated support, 
relying on his previous architectural experience, or on his knowledge of the current 
system and its history. This happens because software development is a constructive 
design process, that is, for many decisions to be made it is mandatory that other ones 
already have been taken. However, when a decision is not taken, something is just not 
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done, and hence the corresponding negative relationship does not emerge naturally from 
the final result. Therefore this knowledge of what was not done is lost, unless we 
explicitly capture it.  

Manual analysis can become cumbersome and error-prone, especially when it is 
carried out by an inexpert architect. Therefore, the introduction of techniques that help in 
the automatic (or at least semi-automatic) detection of these negative AKRs would 
provide an initial advantage for creating higher quality specifications of software 
architectures, just a first step to bridge the gap between initial development and the 
evolution of a system. 

In order to meet this challenge, we propose the use of antipatterns. Brown et al. [9] 
defined an antipattern as “a literary form that describes a commonly occurring solution to 
a problem that generates decidedly negative consequences.” As can be observed, 
antipatterns describe very useful knowledge about ineffective software practices in terms 
of software development processes, software architecture, project management, etc. This 
is not a new concept in Software Engineering but has been applied over last decades, 
almost simultaneously with the introduction of design patterns [28] or software 
architecture patterns [11]. Unlike antipatterns, these do describe good practices in 
software development as they document good solutions to recurring problems. When 
software patterns are formally identified and specified, they enable us to reason about the 
architecture because they describe how and why the software architecture is as it is. This 
has motivated some proposals that have emerged in the AK management arena that 
promote the use of patterns as a way to detect and document DDs [30] automatically. 
However, as far as we know, there are no approaches that promote the use of antipatterns 
in the context of AK management, despite their utility to document bad DDs or bad 
combinations of DDs.  

As can be observed in Fig. 1, whenever an antipattern is detected, it involves one or 
more artifacts. It can also determine that either a bad decision was made during its 
specification or an improper combination of DDs led to such a condition. For instance, 
during the requirements stage, the antipattern Functional Decomposition of Use Cases 
(UCs) [22] can be detected if the architect made the decision of specifying a set of all too 
simple UCs instead of one unique and more comprehensive UC that can be more easily 
traceable and assignable during the software development process. One-Lane Bridge [78] 
is another example of an antipattern that can be found when the software architecture is 
being specified. It indicates that concurrency problems can arise whenever the architect 
decides that only one, or only a few, processes can proceed to execute in a concurrent 
way causing the other ones to wait. At the code or design level we can also find this 
relationship between bad decisions and antipatterns, as for example when the blob 
antipattern [9] is found. In this case, developers assign most of the responsibility for the 
system to a unique class. Therefore, we can establish a direct relationship between 
antipatterns and artifacts that we have represented as involves in Fig. 1. But we can also 
establish a direct relationship between antipatterns and bad DDs, described as affects in 
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Fig. 1, because the detection of an antipattern may suggest or cause a change in the 
decision network. 

Fig. 1. Elements affected/involved by an antipattern 

Most of the current approaches in AK management, such as [35][59][82], intend to 
provide solutions to maintain the relationship between the artifacts produced, the 
software development process, and the DDs that lead to its specification in their current 
form (shown as describedBy in Fig. 1). This relationship can be used during the software 
lifecycle to evaluate in advance the impact of changes; to help novice analysts to 
understand why the system is the way it is; etc. Therefore, they constitute a valuable asset 
during both the software development process and the maintenance stage.  

Our approach intends to exploit describedBy, involves and affects relationships to 
help the architect in the process of determining when bad DDs were made during the 
process and when negative relationships among them can arise. With this goal, our 
approach can be described as follows:  
• Let us consider an approach for AK management where clear relationships between

DDs and artifacts are defined – that is, a similar notation to describedBy exists;
• Apply the following process: (1) apply some of the existing algorithms for detection

of antipatterns; (2) whenever an antipattern involves an artifact, mark its related DDs
as potentially bad DDs and establish a suspicion on the relationships among them;
(3) analyze the potentially bad DDs and resolve possible conflicts, taking into
account the antipattern they are related to.

It should be noted that this process cannot be fully automated, as several steps could
require human intervention. However, our purpose is to provide as much automation as 
possible. This article focuses mainly on steps (2) and (3). The step (1), dealing with 
detection, will be based on the state-of-the-art research, and will make use of existing 
tools, but it is not the main concern of this paper. On the other hand, the step (3), related 
to the analysis of the situation, should not be automatic, as the architect has to evaluate 
what the problem actually is. The architect must always be the one who takes the final 
decision. However, we can provide semi-automatic support for this step: the architect 
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does have an automatic warning and helpful information to detect and solve a situation 
that perhaps he would not have come across otherwise. 

As can be observed, the proposal is not related to any existing approach to AK 
management and our primary requirement is that we should provide notations for AK 
relationships and clearly identify DDs.  

A proof of concept, described in Section 5, has been carried out to validate our 
proposal by modifying ATRIUM [52] to incorporate the above described process. In 
order to improve the understandability of our approach, first Section 3 presents a 
discussion about AKRs discussing their benefits and drawbacks and next Section 4 
provides a brief background on antipatterns. 

3 AKRs: Networking Architectural Knowledge 

The most natural way to think about a decision is to consider it in isolation, separately 
from the rest of the system by a process of abstraction. It is also the easiest way to 
document it, particularly when provided with a template defining its basic attributes. A 
set of such isolated decisions would provide basic knowledge about a system’s design, as 
they operate on the same substrate, namely the system architecture. However, such a 
view is necessarily incomplete and partial. Design decisions are connected, because they 
refer to each other, interact with, and affect each other. In fact, there is a complex fabric 
of relationships surrounding them: even the simplest model of DDs in the existing 
literature provides some structure. First, every decision is chosen on purpose: it can be 
traced back to some goal it achieves, or the requirement(s) it satisfies. Second, every 
decision is implemented by some design artifact, some architectural element. Apart from 
these two reifying relationships, any decision relates to other decisions at the same level 
in different ways. 

Design Decisions and Rationales (DDs & DRs) can be correctly considered as the 
basic assets that together comprise our design knowledge. As already noted, this is 
consistent with the existing practice on design rationale [53]. However, to provide a 
coherent system-wide rationale these assets have to be complemented with the 
information about their mutual inter-relations and connections. Therefore, their 
Architectural Knowledge Relationships (AKRs) present themselves as another invaluable 
basic asset, and transform the set of design decisions into a network of design knowledge. 
This point has already been noticed by other authors, such as [84]. 

Some authors [34][35] describe the network of decisions using a single (dependency) 
relationship, or perhaps several assimilated ones. Even this simple layout is useful and 
much more so than a simple “set” of decisions, as many details depend just on topology. 
However, these uniform links lose an essential feature: the direction, or type, of the 
semantic relationship. Indeed, there are positive and negative relationships, respectively 
exposing synergies and divergences within the design; it is obvious that their influence 
extends to the entire architecture.  

Many authors recognize the inherent complexity of managing and combining 
“knowledge assets”, and thus they advocate an ontological approach [1][23][25][44] [48] 
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to provide a solid basis for this reasoning. These ontologies are able to identify categories 
of DDs (such as ontocrises, diacrises and pericrises, dealing respectively with concepts, 
concrete features or system-wide constraints), and to enumerate the basic properties that 
describe the knowledge contained in an asset. And of course, they can also help to define 
the basic relationships between assets, and even a more complete metamodel of DDs. 

However, most of the work in this area, even that inspired by an ontological 
approach, has focused on the description of the (internal) structure of DDs. This includes, 
apart from most of the citations in the previous paragraph, many others [35][82][88]. 
Some of them are specifically concerned with documentation, which is their reason for 
providing a template [30]; some of them support their definition on a strong empirical 
basis [24]; and even some of them do both [86]; but for most of them, relationships play a 
secondary role, if any role at all.  

For example, Tang et al. [82] provide a structural model for their basic asset, the 
architectural rationale. This is defined as the composition of a quantitative and a 
qualitative rationale, plus scenarios describing special cases; and possibly some 
aggregations, defining an alternate DD for this, which in turn could be again a 
composite. Also, there are trace relationships to several views. Considered in isolation, 
such a complex structure is indeed useful, particularly for documentation, as it provides 
the required support for a full description of a decision, the rationale behind it and even 
potential alternatives. However, this model does not seem to scale well: first, every single 
decision is complex, including cases and alternates; and second, there is not support to 
relate a decision to any other, except for aggregation itself. Therefore, the resulting 
“global” rationale is defined as an unstructured discourse, which does not provide an 
organization for architectural knowledge. 

The exploitation of a network of design assets improves the situation significantly 
because it captures and structures much of the inherent complexity of those inter-related 
design assets. Of course, a “conventional” set of complex DDs, in which all relational 
information is captured by means of attributes, would be able to describe exactly the 
same information; i.e., there are equivalent descriptions which need not to take the form 
of a network. However, the “networked” version can be considered a more flexible 
representation: while it is just making explicit some implicit relationships, in doing so it 
also makes much easier to handle and manage them. 

As already mentioned, some authors have explored the issue of AKRs in some detail. 
Most of them identify only a few relationships, and these proposals converge mainly in 
two of them. The first one is constrains, which expresses the self-evident positive 
implication; and the second is alternative, probably the most cited one, which expresses 
variability. It provides the support to express a choice and refer to otherwise 
unrepresented, vaporized design knowledge [86]. It is also very useful in the context of 
product lines [77]. Apart from these, however, there are a number of additional proposals; 
some of them use also a significant semantic perspective. We will examine them more 
carefully in the following. 
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Table 1 summarizes most of the AKRs described by current research (column 
Relationship), providing their terminological equivalences (column Synonyms) and the 
references where they have been defined or used (column References). As can be 
observed, Kruchten [44] provides the most complete reference about this topic. He not 
only provides the definition for most existing AKRs, but also the way they relate to each 
other, emphasizing their ontological foundations. Other references, such as [1][25][45], 
basically use the same ontological framework.  

Of course, these equivalences are not always direct mappings, and therefore they do 
not actually define strict “synonyms”. In Table 1, two terms appear in the same row when 
they essentially describe the same information, i.e. when one of them can be derived from 
the other. Also, as aforementioned, they are not mutually exclusive: bound to, for 
instance, is defined in terms of constrains; this is also the case of enables and comprises, 
which are described respectively as weaker and stronger versions of it.  

Table 1. Evaluating proposed AKRs 

Relationship Synonyms References 

Alternative Alternate DD [44][23][25][82] 
Bound To [44][25]  
Comprises Made Of [44][25][82] 
Constrains Implies, Refines [44][23][25][34] 
Enables [44][25] 
Forbids Excludes [44][25] 
Not Complies [44][25] 
Related To [44][25][30]  
Overrides [44][25]  
Conflicts with (*) [44][25]  
ModelElementBinding (*) [41] 
Traces From/To Addresses, Implements (*) [44][23][25][30][82][83] 
Depends on (**) [34][45] 
Subsumes (**) [44][25]  

Al though the names of these relationships must be understood in terms of this 
particular context, it is obvious that some of them can be considered within a wider 
scope; these have been marked with a star (*) in Table 1. These can be seen as 
“extended” relationships, which should not be considered strictly AKRs, as they would 
be able to relate elements which are not DDs. 

This refers, in particular, to conflicts with relationship, along with traces from/to and 
ModelElementBinding. In a restricted sense, they obviously refer to marking conflicting 
decisions and keeping track in a chain of decisions. All of them can also be conceived as 
derived relationships (see Table 1) in the context of DDs, but there is also a general 
meaning out of this scope. In particular, the second relationship (traces from), can be 
read, in a general context, as the traditional traceability relationship (trace), which 
describes the history of every element in the architecture, and which is a basic element 
also for AK [61]. Meanwhile, the first one (conflicts with) could also refer to well-known 
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schemas of conflict between requirements, which combined with trace could also refer to 
some derived decisions. 

Another comment must be made about relationships which have been marked with a 
double star (**). These are in a similar situation, but generalization is the issue here. Both 
depends and subsumes can be considered as generic versions of the rest. As in many other 
contexts, dependency can be considered the basic relationship, by definition, so that 
every other inherits from it. Then every AKR is also a dependency [35]. On the other 
hand, subsumption is usually considered as the target relationship for ontologies [2], 
acting as the transitive closure for ontological relationships. In fact, it could be used to 
“flatten” a structure with several AKRs into a single-relationship model to apply basic 
analysis, provided that the model can be considered formalized enough.  

Considering all of the above, we can see that AKRs provide a particularly rich 
framework to capture design knowledge. As already stated, this enables us to capture or 
represent a richer set of AK with a smaller set of DDs. Also, the conceptual closeness 
between some of them makes it possible to apply simple analysis techniques. The 
potential of exploiting all this information remains still unexplored. To provide a fair 
comparison, just consider that Tang et al. use only one relationship (traces, indeed) in 
[83]. But as they extract every consequence, using Bayesian Networks analysis, they 
obtain quite complex and significant results. In summary, though not very frequently 
applied yet, AKRs provide a very useful framework to define, use and reuse architectural 
knowledge. 

Therefore, there are several additional arguments to support our preference for the 
networked version. First, it is true that an attribute-based presentation can include the 
same information; but in that case, the role of many arguments would be just to replace 
the relationship itself. Even worse, transitive relationships would be much harder to 
manage, and, if these were introduced as attributes, it would be much easier to introduce 
redundancies, which would ultimately cause the appearance of anomalies in the structure. 
These would be similar to classic data anomalies, i.e. insertion, deletion and updating 
issues. For instance, consider that a certain decision A implies (“constrains”) a decision 
B, and eventually decision A is removed, but B is not. In a networked representation, it 
would be obvious that B is a dangling thread, while in an attribute-based version this 
could pass unnoticed.  

Second, some AKRs must assume ontological features, which can be independent 
from DDs themselves, and therefore are more conveniently separated. And third, the 
structure of the network itself becomes significant. Indeed, the connections capture some 
essential facts, not only about the architecture itself, but also about the design and 
construction process. We are not only able to include information about decisions which 
were discarded during this process (the classic “unrepresented design knowledge”), but 
we are even able to capture the sequence of decisions which led to a certain choice. The 
AK network is a dynamic structure – it evolves as the architecture requires, while leaving 
a trace of the design process. For instance, let’s consider a decision A related to some 
component B. Now, if A is rejected, component B can be removed, but A still remains in 
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the network – related to a new decision C, which inhibits A. Growing this way, the 
resulting structure describes the design decision process, rather than just the architecture.  

This conclusion is not surprising, as it is something that often happens in the context 
of knowledge representation, which appears as a related area indeed. Therefore, a 
network of very simple DDs is able to capture perhaps even more information than a 
poorly structured set of complex DDs. 

Finally, there is an additional reason, and it has to do with performing analysis. When 
AKRs are provided in an explicit, relational form, it is quite simple to use network theory 
[5] to examine and analyze the resulting structure. Therefore, it will be much easier to 
identify key decisions in the proto-architecture, by detecting them as hubs in the network; 
and independent branches of the development would be also easily located by identifying 
the DDs which act as bridges for them. However, we will not deal with this topic further, 
as it is out of the scope of this article, and it will be considered for future work. 

Of course, all of this reasoning should not be confused with decisions about 
relationships or connectors in the target architecture, which are also described in, e.g. 
[31]; obviously, these are just described using regular DDs and do not affect the topic. 

4 Background on Antipatterns 

A pattern is a solution to a recurring problem [28]. They are high-quality experiences 
distilled into a form that facilitates their reuse and application in the design of different 
types of software. Antipatterns are similar in their definition to patterns as they also 
document solutions to recurring problems [9]. However, they differ from patterns in that 
their use produces negative consequences for the system. For instance, it has been 
empirically validated that they have a high impact on change and fault-proneness in 
object-oriented systems [39]. For this reason, the detection of antipatterns and the 
application of their related solutions constitute a valuable asset in terms of quality of the 
final product. However, they have not received as much attention as they deserve from 
either academia or industry.  

Most of the existing research has focused on the identification and specification of 
antipatterns. In the literature about antipatterns, the work by Brown et al. [9] is especially 
relevant. They have identified antipatterns that can be detected not only in the 
architecture and the design of systems but also in project management. In addition to this 
catalogue of antipatterns, other research [49] [79] has identified performance antipatterns 
as their main concerns because of its direct impact on the quality of the software product. 
These approaches have focused on identifying problematic situations, in terms of 
software architecture or design, that diminish response time, increase processing time, 
etc. Security has been another concern for which antipatterns have been defined. Kis [37] 
describes two antipatterns that clearly identify the impact of business contexts on the 
security policies to be implemented. Antipatterns have been also described related to 
testability. Baudry et al. [7] have defined a set of antipatterns and how they should be 
dealt with in order to reduce testing effort.  In addition, some research has been done to 
detect antipatterns in earlier stages of software development, such as those presented by 
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El-Attar and Miller [22]. They describe some antipatterns that can be detected in use case 
models, by using the Object Constraint Language (OCL) for their description and later 
identification. 

The exploitation of the antipatterns has been carried out from different perspectives. 
Most of the research has been related to the definition of techniques and tools for their 
identification. For instance, Moha et al. describe in [51] how formal concepts and metrics 
can be used to detect the Blob antipattern. Similarly, the methodology COMPAS [54] has 
been proposed to evaluate distributed component-oriented applications in terms of 
performance by detecting antipatterns for specific technologies, such as Enterprise Java 
Beans. COMPAS exploits a Model Driven Architecture approach to describe the 
necessary models for each step of the process: monitoring, modeling and prediction. 
Parsons and Murphy [64] describe a framework that detects performance antipatterns in 
Java EE architectures by monitoring component-based system to build a performance 
model used to detect EJB-specific performance antipatterns. Another related proposal is 
the Bayesian Detection Expert (BDE, [38]) that detects antipatterns by building Bayesian 
Belief Networks using the information extracted from the code by using the Goal 
Question Metric (GQM, [6]) methodology. SPARSE [76] and its extension [75] describe 
the detection of project management antipatterns from a different perspective that takes 
into account the fact that this kind of antipatterns do not emerge in isolation but jointly. 
With this aim, SPARSE defines project management antipatterns by means of ontologies 
for their detection and analysis.  

Some approaches go one step further, by dealing with antipatterns as one of the inputs 
for refactoring processes. Work presented by Cortellesa et al. [13][14][15][16] is 
especially relevant in this area. In a preliminary work, Cortellessa et al. [16] exploit 
antipatterns as part of a process that evaluates performance by using interpretation 
matrices and proposes architectural alternatives to improve the results. Later on, they 
present a proposal [15] that exploits model-driven techniques for the detection and 
resolution of antipatterns. Finally, they have also presented an alternative [14] that 
exploits logical predicates for the detection of antipatterns and a process [13] that guides 
the software designers in the analysis of performances measures, model entities and 
performance antipatterns to classify the level of guiltiness of each detected antipattern. In 
the same context, Martens and Koziolek [49] first explore the design space by using 
metaheuristic search techniques, and second evaluate the results to detect antipatterns. 
These antipatterns can be eliminated using the solutions attached to their descriptions. 
More recently, Trubiani and Koziolek [85] present an approach to automatically detect 
and solve specific software performance antipatterns of the Palladio Component Model 
(PCM). 

Antipatterns have drawn criticism for lack of formalism in their specifications. In 
order to solve such problems, research has been done that provides such techniques for 
their specifications. For example, Ballis et al. [3] have proposed a new visual language to 
describe antipatterns (and patterns). It has been defined by extending UML with some 
new graphical elements so that antipatterns can be specified in a more rigorous way. 
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Dietrich et al. [21] have defined an infrastructure using social networks and semantic web 
technology that, although initially developed to exploit patterns, can be used to describe 
antipatterns as well. More recently, Stamelos [81] has proposed the exploitation of 
Bayesian Belief Networks, Ontologies, Design Structure Matrices, and Social Networks 
as proper tools to formally represent Software Project Management anti-patterns.  

Thus, while antipattern approaches have been applied in various areas, there is no 
research exploiting antipatterns in the AK management area. As far as we know, the 
research presented by van Lamsweerde [47] is the only one that presents some 
similarities to our approach. His work describes a formal, iterative method for security 
requirements specification that exploits anti-models, derived from the goal model of the 
system-to-be [47], to show how elements of the system-to-be could be threatened. These 
anti-models are elaborated as a refinement process from the initial anti-goals obtained by 
negating security goals (Confidentiality, Privacy, Integrity and Availability) until anti-
requirements and vulnerabilities are determined, that is, anti-goals realizable by attacker 
agents or attackee agents, respectively. These anti-requirements are operationalized by 
describing the potential capabilities of their related attacker in order to generate 
countermeasures in the goal model. These countermeasures can determine a modification 
of the goal model - that is, the decisions in terms of the goals and requirements of the 
system-to-be must be made. This approach exhibits several advantages such as its 
applicability in early stages of development, or the exploitation of temporal logic to 
facilitate the generation and analysis of the anti-goal models. However, it does not deal 
with design decisions, and unfortunately, it cannot be generalized to other approaches. 

5 ATRIUM: A Methodological Proof of Concept 

In order to validate the approach presented in this paper, we have selected a methodology 
that allows us to deal with AK, and to manipulate its models in an easy way. With this 
goal in mind, we have selected ATRIUM. This methodology has been designed for the 
concurrent definition of requirements and software architecture, providing 
automatic/semi-automatic support for traceability throughout its application, and for the 
description and manipulation of AK at different abstraction levels [59]. As it follows a 
MDD (Model Driven Development [74]) paradigm, our approach can be easily put into 
practice. In the following section we briefly introduce ATRIUM, and present our 
approach in Sections 5.2 and 5.3. Finally, the Gas Station example is used in Section 5.4 
to illustrate the proposal. 

5.1 Describing ATRIUM extension 

Fig. 2 shows, using SPEM 1.1 [62], the main activities of ATRIUM. These activities 
must be iterated over to define and refine the different models. These activities are 
described as follows: 
• Modeling Requirements. This activity allows the architect to identify and specify the

requirements of the system-to-be by using the ATRIUM Goal Model, which is based
on KAOS [20] and the NFR Framework [12]. This activity uses as input both an
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informal description of the requirements stated by the stakeholders, and the 
25010:2011 Systems and software engineering - Systems and software Quality 
Requirements and Evaluation - System and software quality models (SQuaRE, [33]). 
The latter is used as framework of concerns for the system-to-be. In addition, the 
architectural style to be applied is selected during this activity. 

Fig. 2. ATRIUM and its extension: Analysis activity 

• Modeling Scenarios. This activity focuses on the specification of the ATRIUM
Scenario Model, that is, the set of Architectural Scenarios that describes the system’s
behavior under certain operationalization decisions [60]. Each ATRIUM Scenario
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identifies the architectural and environmental elements that interact to satisfy 
specific requirements and their level of responsibility.  

• Synthesize and Transform. This activity has been defined to generate the proto-
architecture of the specific system [59]. It synthesizes the architectural elements
from the ATRIUM scenario model that build up the system-to-be, along with its
structure. This proto-architecture is a first draft of the final description of the system
that can be refined in a later stage of the software development process. This activity
has been defined by applying Model-To-Model Transformation techniques (M2M,
[17]), specifically, using the QVT Relations language [63] to define the necessary
transformations. It must be pointed out that ATRIUM is independent of the
architectural metamodel used to describe the proto-architecture, because the architect
only has to describe the needed transformations to instantiate the architectural
metamodel he deems appropriate. Currently, the set of transformations [56] to
generate the proto-architecture instantiating the PRISMA architectural model [70]
has been defined. This activity resembles other works, [18][65], that also generate
the software architecture using M2M techniques.

We want to highlight that we have included in ATRIUM a new activity called
Analysis (see Fig. 2). Its main goal is to facilitate the integration of the approach 
presented in this paper, that is, to evaluate the architectural knowledge specified in the 
proto-architecture regarding the set of antipatterns. This activity will be detailed in 
section 5.3. Another advantage of ATRIUM is that a supporting tool, called MORPHEUS 
[58], has been developed to put into practice its different activities, whose extension to 
support the ATRIUM Analysis activity is described in section 5.4.  

Finally, it is worth noting that this extension of ATRIUM could seem similar to the 
use of architectural tactics as presented by Kim et al [40]. However, these authors exploit 
architectural tactics as a recommendation for the construction of the system, that is, they 
are used while the system is being built. However, the new activity of ATRIUM exploits 
antipatterns to analyze the already defined software architecture and determine which 
combination DDs carried out to problems of the system. Therefore, they are not identical 
but complementary.  

5.2 AK relationships in ATRIUM extension 

As presented in [59], the ATRIUM Goal Model is in charge of manipulating most of the 
AK.  The building blocks of this model are goal, requirement and operationalization (see 
section 5.4 for an example of a Goal Model). Goals constitute expectations that the 
system should meet. Requirements are services that the system should provide or 
constraints on these services. The main difference between requirements and goals is that 
the former can be validated, but we cannot really describe a test to validate the latter 
because it is really something we expect about the system-to-be. Finally, 
operationalizations describe both the DD and the DR and how they satisfy the 
established requirements. Goals are refined into sub-goals and finally into requirements 
by using AND (OR) relationships to determine if all (at least one) of the sub-goals must 
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be satisfied to satisfy the root. A seamless transition is performed from requirements to 
operationalizations by means of the contribution relationship, in order to specify how 
solutions contribute positively and/or negatively to meet the corresponding requirements.  

Fig. 3. Weaving antipatterns in ATRIUM Metamodels (partial view) 

One of the main advantages of AK management is the capability to explore the 
reasoning in the software architecture by exploiting the network of AK. In order to 
provide ATRIUM with this facility, several relationships were defined in its metamodel, 
to allow the architect to describe the AK as a network. As shown in Fig. 3, these 
relationships were first defined on operationalizations, as they are in charge of describing 
both the DDs and the DRs, but they are also applicable to DesignAssets with identical 
semantics. An analysis was performed in [57], considering the existing relationships in 
other proposals, which finally led to the identification of the following relationships: 
• constrains is a binary and unidirectional relationship with positive semantics. Let’s

consider A and B operationalizations, describing different design decisions. Having a
constrains relationship from A to B, means that B’s design decision cannot be made
unless A’s design decision is also made.

• inhibits is a binary and unidirectional relationship used to specify negative
semantics. Let’s consider A and B operationalizations, describing different design
decisions. Having an inhibits relationship from A to B, means that if A’s design
decision is made, it hinders B’s design decision to be made.
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• excludes is a binary and unidirectional relationship with stronger negative semantics
than inhibits. Let’s consider A and B operationalizations, describing different design
decisions. Having an excludes relationship from A to B, means that if A’s design
decision is made, it prevents B’s design decision to be made.

It was shown in [57] how the selection of these relationships provides us with the
necessary expressiveness to cover most of the existing approaches in the area. This 
analysis is summarized in Table 2. Essentially, it shows how every AKR, as proposed in 
the literature, can be translated or described in terms of some of these three “basic” 
relationships, or their combinations. Of course, semantic details are not always fully 
translated; but the relational description can be considered equivalent. 

Table 2. Translating AKRs within ATRIUM 

Relationship Constrains Inhibits Excludes DescribedBy 

Alternative Derived 
Bound To Derived 
Comprises Derived 
Constrains Equivalent 
Enables Opposite 
Forbids Equivalent 
Not Complies Derived Opposite 
Related to Derived 
Overrides Derived 
Conflicts with Derived 
ModelElementBinding Equivalent 
Traces From/To Derived + Trace 
Depends on Derived 
Subsumes Closure 

As can be seen, constrains and excludes were included in the list. Most of the AKRs 
can be seen as constraints on pure dependency, and therefore, as already noted in the 
discussion of Table 1, they can be seen as deriving from the first one. This is the case of 
relationships such as comprises, bound, related or not-complies identified. The most 
interesting cases are depends (dependency is the simpler constraint) and subsumes (which 
can be formally defined as the transitive closure of a constraint). 

The traces from/to relationship, which relates every element in the AK network with 
its predecessors and successors in a refinement graph, can also be considered as derived 
from constrains (the only direct dependency). In some cases, when some element is not a 
DD, it must be combined with trace, the conventional traceability relationship, which in 
ATRIUM is provided by the base MDD framework itself. Therefore, the traces from 
relationship is not directly included as it can be obtained by combining existing 
information. 

The other included relationship is inhibits. It is perhaps more subtle, as it is 
intrinsically negative, but it is not a pure negation as excludes. This form could seem less 
intuitive than its negation (enables) but it is in fact more useful, as it expresses easily 
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relational concepts such as conflicts or overrides. Structurally, it also provides alternative 
branches (any choice implies inhibiting the other branch). 

Fig. 3 includes another relationship, named ill-effects, which has been introduced in 
the Metamodels and, as far as we know, does not have a direct matching with other 
proposals, due to its different semantics. Let’s consider two operationalizations, A and B, 
describing different design decisions. Having an ill-effects relationship from A to B, 
means that A determines that B should be analyzed because a problem has been detected 
in the specification. This relationship is used during the analysis of the proto-architecture 
whenever an antipattern is detected, as shown in section 5.3. 

Fig. 3 also shows (part of) the Architectural metamodel (an extension of the PRISMA 
metamodel [70]) that is used to describe the proto-architecture generated as a result of the 
Synthesis and transform activity. It can be observed that every ArchitecturalElement is 
related to a set of DesignAssets that describe both its DDs and DRs by means of the 
DescribedBy relationship. These DesignAssets can be related by means of constrains, 
excludes and inhibits relationships in a similar way to the operationalizations in the Goal 
Metamodel.  

We would like to point out which the main difference is between operationalizations 
in the goal model and DesignAssets in the architectural model. The former are in charge 
of specifying all the DDs and DRs that were analyzed during the specification of the 
system, that is, they describe all the history of the DDs and DRs considered during the 
design of the system. The latter describe the reasoning behind the current specification of 
the system, that is, why the system has its current specification. For instance, a 
requirement REQ_X could be related to two different operationalizations, OPE_Y and 
OPE_Z. Both of them would be analyzed by the architect, but only one of them, OPE_Y 
for instance, would be finally chosen. However, both of them would be kept in the Goal 
Model because they describe the reasoning carried out to evaluate which was the best 
alternative for the system. This is the reason why only the operationalization OPE_Y 
would have a trace relationship to a DesignAsset DA_Y. This DesignAsset would reflect 
that this was the decision made, and has a direct influence onto the current architectural 
specification. There would not be a DesignAsset for OPE_Z, because this choice was not 
made. Therefore, both kinds of entities help to maintain AK from different perspectives.  

Given that the analysis of DDs and DRs is carried out during the ATRIUM Modeling 
Requirements activity, the re-introduction of negative relationships at the architectural 
level might seem confusing. However, the output of the process is a proto-architecture – 
that is, it must be refined in a later stage. During this refinement new relationships could 
be detected, thus making it necessary to provide the architect with such expressive power. 
In addition, the application of the MDD approach in ATRIUM allows us to trace 
relationships in an automatic way, by exploiting M2M transformations back to the goal 
model maintaining both models up-to-date. These M2M transformations provide us with 
another advantage, already presented in [59]. The DesignAssets are generated along with 
the proto-architecture, so that each architectural element is related to the set of DDs that 
motivated its specification and the DRs that justify those decisions. In addition, the 



18     Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González 

necessary traceability relationships are also generated from artifacts and relationships of 
the Goal Model to artifacts and relations of the proto-architecture in an automatic way as 
was described in [56]. 

5.3 Exploiting Antipatterns in ATRIUM extension 

As introduced in Section 2, the approach presented in this paper is the use of antipatterns 
in the process of detecting the likely negative relationships, and bad DDs. With this goal, 
every one of the identified concepts in Fig. 1 should be mapped on ATRIUM so that we 
can determine the feasibility of this approach.  

Fig. 3 shows how our approach was put into practice in ATRIUM considering the 
goal metamodel and the architectural metamodel. In this case, ArchitecturalElement is 
the artifact that can be affected by an antipattern. In the architectural metamodel, the DDs 
are specified by means of DesignAssets which are related to the different 
ArchitecturalElements they have described. Our intention is to determine the affects 
relationship (see Fig. 3) – that is, to identify which ones were the DesignAssets 
specifying bad DDs, or which combination of them resulted in an antipattern in the proto-
architecture. 

In order to put our approach into practice, ATRIUM was modified by defining a new 
activity called Analysis. As can be seen in Fig. 2, this activity has two inputs: the 
generated proto-architecture from the previous activity and the set of antipatterns to be 
detected in the proto-architecture. This set can be determined according to the specific 
needs of the system-to be – that is, they can be antipatterns related to security, 
performance, etc., depending on the specific goals that were defined in the goal model. 
Having as input this set of antipatterns (apSet) and the proto-architecture to be analyzed 
(am), the following DDChecker algorithm is applied: 

Algorithm 1 DDChecker algorithm 

DDChecker 

Step 1  Select the set of antipatterns aappSSeett to be checked .  

For each Antipattern aapp included  in aappSSeett:  

Step 2 Detect aappII instances of the Antipattern aapp in the 
Architectural Model aamm.  

Step 3  For each aappII instance of the Antipattern aapp:  

Step 3.a Create a new DesignAsset ddaaCCrreeaatteedd and set 
its attributes: 
daCreated.designDecision = 

  “Modify current network of DD”; 
daCreated.designRationale= 

“Detected Antipattern”+  ap.name;  

Step 3.b For each ArchitecturalElement aaee affected 
by the apI instance of the Antipattern aapp: 
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i.  Relate each of its DesignAssets ddaa to 
the DesignAsset ddaaCCrreeaatteedd by means of
ill-effects relationships:

da.ill-effects=daCreated 
ii.  Set the attribute ssttaattee of each of its 

DesignAssets ddaa to dirty:
da.sate=dirty  

Therefore, the output of the DDChecker algorithm is a new version of the proto-
architecture where the likely bad DDs are marked and the necessary relationships are 
included. Once the DDChecker algorithm has been applied, and as part of the activity 
Analysis, the architect evaluates the DesignAssets set to dirty to determine which ones are 
the sources of the problem. Therefore, it is the architect who ultimately takes the decision 
about whether the foreseen ill-effects of some antipattern actually occur in the software 
architecture description, using as input the information generated by the DDChecker 
algorithm and the specified DDs and DRs. We cannot consider such an algorithm as an 
“oracle” able to detect any conceivable antipattern, but just as a tool that the architect can 
use in the process of detecting likely antipatterns and their effects on the architecture. 
Unfortunately, this process cannot be fully automatic, as the detected antipattern could 
even contradict the involved DDs and DRs.  

As a result of the analysis carried out, the architect modifies the network of AK by 
rewriting the DDs and DRs or the DesignAsset daCreated to describe which decision is 
made to avoid the problem and creating the necessary excludes and/or inhibits 
relationships between these DesignAssets and the dirty DesignAssets. Once the new 
network of AK is obtained, the architect modifies the architecture so that it follows the 
recommendations described by the network. Section 5.4 describes, by means of an 
example, how the Analysis activity is performed. 

However, several issues should be taken into account about the DDChecker algorithm 
related to both how the described steps should be performed and how they are supported 
which are described in Sections 5.3.1, 5.3.2 and 5.3.3. 

5.3.1 DDChecker: step 1 

It is worth noting that the set of antipatterns to be detected (apSet) is described as a list of 
codes that identifies the antipatterns to be detected. These codes are used as indexes to 
retrieve the information of the different antipatterns. They have been described in a 
catalogue where each antipattern is specified by means of a code, name, description, 
name of the file that describes the rules for its detection, and the different refactoring 
solutions that can be applied to eliminate or palliate the antipattern. Moreover, the 
antipatterns have been structured according to their kind as performance, security, etc. 
This facilitates the selection of the proper antipatterns framework to be used, as explained 
in the following section. As can be observed in the following, this catalogue has been 
encoded as an xml file: 
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<?xml version="1.0" encoding="ASCII"?> 
<AntipatternMM:AntipatternCatalogue xmi:version="2.0" 
xmlns:xmi="http://www.omg.org/XMI" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:AntipatternMM="http://es.uclm/AntipatternMM" 
xsi:schemaLocation="http://es.uclm/AntipatternMM 
AntipatternMM.ecore" name="ATRIUMCatalogue"> 

 <kind name="Performance"> 
 <antipattern code="P001" 

name="Excessive Dynamic Allocation"  
description="The overhead for dynamic allocation 

increases as the number of calls increases" 
rule_file_name="excessive-dynamic-allocation.clp"> 

 <refactoring="To recycle objects rather than create 
new ones each time they are needed. This approach 
pre-allocates a pool of objects and stores them in 
a collection. New instances of the object are 
requested from the pool, and unneeded instances 
are returned to it. This approach is useful for 
systems that continually need many short-lived 
objects (like the call processing application). 
You pay for pre-allocating the objects at system 
initialization but reduce the run-time overhead to 
simply passing a pointer to the pre-allocated 
object."/> 

 <refactoring="To share objects rather than create new 
ones."/> 

 </antipattern> 
… 

 </kind> 
… 
</AntipatternMM:AntipatternCatalogue> 

It has to be emphasized that the architect is the one who makes the final decision 
about what antipatterns should be checked and dealt with. However, the architect should 
always include in this set those antipatterns that have been already detected in previous 
iterations of the analysis. In this way, the architect will follow similar guidelines to those 
applied in testing, when regression tests are re-run to detect whether old bugs have come 
back and/or the new developed code collides with the previously existing code. In this 
case, the architect will try to detect whether the previously detected antipatterns have 
been eliminated and/or the introduced changes have reintroduced previously eliminated 
antipatterns.  
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Finally, another relevant issue to be considered regarding to the antipatterns selection 
is the importance of the order in its detection and resolution. As software design greatly 
depends on the requirements prioritization for its final description, the software 
architecture specification will depend on which order antipatterns are detected and 
solved. Consequently, the architect should detect and resolve first those antipatterns that 
are a greater threat to the system. As far as we know, it remains an open issue the 
classification of antipatterns regarding their impact. The only related work is that 
presented by Settas et al. [76], already mentioned in Section 4, that analyses synergies 
and divergences among project management antipatterns by using ontologies. Therefore, 
any proposal in this sense would be of interest to help the architect in this task. 

5.3.2 DDChecker: step 2 

A critical issue when the DDChecker algorithm is applied is how to detect the antipattern 
instances. Unfortunately, there is no generic framework that can be used to detect every 
antipattern that could be relevant; therefore, this detection must execute all the adequate 
frameworks, depending on the kinds of antipatterns that the architect wants to detect. 
This was the reason why the antipatterns catalogue, described in Section 5.3.1, has been 
structured in terms of kinds of antipatterns. 

In order to explain how this step can be performed, performance antipatterns are used 
in the following as an example. As aforementioned in Section 4, these are the kind of 
antipatterns more widely studied and analyzed in the literature. Several proposals have 
emerged in recent years trying to detect this kind of antipatterns, but unfortunately there 
is a lot still left to be explored, at least in terms of automation. Among the existing 
approaches, we have selected the framework called Performance Booster (PB) proposed 
by Xu [87] for several reasons. The main one is that it is a rule-based system that can be 
easily extended with new rules to describe new kinds of antipatterns. Moreover, in order 
to be selected, this framework must satisfy a pre-condition and two post-conditions. The 
pre-condition requires that the framework uses LQNs models as input, because of two 
reasons: first, LQN models are widely used for performance analysis and LQN models, 
and second, we have already established the necessary mappings between the 
architectural models. The two post-conditions establish that the framework identifies 
clearly the detected antipattern and which architectural elements are affected by that 
antipattern. PB is mainly made up of two components:  
(1) Layered Queuing Network Solver (LQNS, [27]). This component is in charge of 

solving the performance model, specified as a kind of extended queueing network 
called a Layered Queuing Network (LQN), to extract the necessary performances 
measures. Xu [87] recommends the exploitation of the LQNs models for this goal, 
because they have the advantage of representing resource and bottleneck aspects of 
software servers, and their solution process scales up well for large systems. 
Moreover, other interesting approaches, such as that described by Cortellessa et al. 
[16], have used the LQNS to detect performance antipatterns. 



22     Elena Navarro, Carlos E. Cuesta, Dewayne E. Perry, Pascual González 

(2) Inference Engine. This component carries out the detection of the instances of each 
antipattern selected in the previous step of the process (see section 5.3.1). It is worth 
noting that not only Xu’s but also other works, such as [14], have promoted the use of 
a rule-based approach for the detection of antipatterns. Xu [87] recommends the use 
of Jess [8], because of the facilities it provides. For each antipattern defined in the 
catalogue, a file with its corresponding rules has been defined, that is used by Jess to 
carry out its detection. In this way, new antipatterns can be detected simply by 
defining new rules. A detailed explanation about how to define these rules is 
presented in [87]. 
Moreover, Xu exploits an additional component named PUMA [73] to transform the 

design model specified using UML into a LQN performance model. Therefore, we also 
suggest using PUMA when an UML-based design model is used, to put into practice the 
work presented in this paper. However, since ATRIUM has been used for this proof of 
concept, ATRIUM Scenario models and PRISMA Architectural models [56] have had to 
be used as input for the generation of the performance model. This led us to the 
development of the ATRIUM2LQN component by using the model-to-text 
transformation language, XPAND. No more details are provided about this issue, 
although interested readers are referred to previous work [4][42] in this area, to select the 
toolset more appropriate depending on their architectural model.  

Therefore, when the step 2 of the DDChecker algorithm is carried out to detect the 
instances of performance antipatterns, the following tasks are performed:  
(1) The ATRIUM Scenario model and the PRISMA Architectural model are 

transformed to a LQN model, using the ATRIUM2LQN component. 
(2) The LQN model is used as input to the LQN Solver to simulate the execution of the 

system and generate the necessary performance measures related to the architectural 
elements. 

(3) The Inference Engine is executed using as input both the results of the previous 
task and the name of the file where the rules to detect the antipattern apI have been 
described. It generates a list aeSet of ArchitecturalElements for each instance of the 
detected antipattern that will be used as input for the following step (Section 5.3.3).  
Moreover, we would like to emphasize that there are other approaches, such as 

[13][15][64], which offer other alternatives for the detection of performance antipatterns. 
Interested readers are referred to these proposals to select the most appropriate one 
according to the architectural model they are using. In the following, we will not provide 
more details about this issue, as the specific method of detecting performance antipatterns 
is out of the scope of this paper. 

5.3.3 DDChecker: step 3 

As previously mentioned, the step 3 of the DDChecker algorithm focuses mainly on the 
change of the architectural model by modifying the state of the DesignAssets affected by 
the instances of the selected Antipatterns, and establishing the necessary relationships. 
Therefore, for every detected instance of antipattern apI two main tasks are performed: 
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(1) A new DesignAsset, daCreated, is created. It is in charge of notifying that the 
network of AK must be modified. It lets the architect know both which DDs should 
be reviewed and which antipatterns they are related to. With this intent, the DD is 
established as “Modify current network of DD”, and the related DR with the 
information of the detected antipattern (“Detected Antipattern” + ap.name). 

(2) As Fig. 3 shows, every time an antipattern is detected, it involves a set of 
ArchitecturalElements whose DDs are probably the source of a problem in the proto-
architecture. This is why every one of these DesignAssets should be analyzed by the 
architect to evaluate if they are affected by an antipattern. With this intent, the 
previous step described in Section 5.3.2 returns the set of ArchitecturalElements 
aeSet that can be affected by the instance of antipattern apI being dealt with. Every 
DesignAsset related to an ArchitecturalElement contained in the set aeSet that 
describes a decision is marked as dirty in order to advise the architect about a likely 
problem. These DesignAssets also have ill-effects relationships with the daCreated 
just created, to let the architect know that they are affected by the instance of 
antipattern apI. As all the DesignAssets affected by the same instance of the 
antipattern will be related to the same DesignAsset daCreated, the architect would be 
able to jointly analyze them, in order to determine which one of them or which 
combination is the source of the problem. 
It is worth noting that the evaluation of the dirty DesignAssets can be performed not 

only at the architectural level but also at the requirements level. As shown in Fig. 3, 
DesignAsset has a traceFrom relationship with Operationalization. This relationship can 
be exploited to perform the decision process at the requirements level. This facility is 
very helpful, as it allows the architect to analyze dirty DesignAssets in the context where 
they were described – that is, considering the goals and requirements they are related to. 
With this purpose in mind, the application of M2M transformations is again a valuable 
resource. Similarly to the way that the proto-architecture is generated, a M2M 
transformation can be applied to modify the state of the operationalizations whose related 
DesignAssets are dirty. This is why the process of ATRIUM iterates from the Analysis 
activity to the Define Goals activity. However, it is out of the scope of this paper to 
provide more details about how these M2M transformations are specified. 

5.4 The Gas Station Example in ATRIUM extension 

Once the AKRs defined in ATRIUM has been described in section 5.2 and the process 
for exploiting Antipatterns in the detection of negative AKRs has been specified in 
section 5.3, in the following it is presented by means of an example how the proposal is 
put into practice. As was described in Section 4, although we can find antipatterns almost 
in any stage and context of software development, perhaps in the area of performance is 
where most researchers have focused their efforts and more formally antipatterns have 
been described. In terms of performance, dynamic allocation is perhaps one of the most 
expensive processes at run time. This is why several antipatterns have been proposed that 
try to avoid this problematic situation.  
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Smith and Williams identified the antipattern excessive dynamic allocation [80] that 
has been graphically illustrated in Fig. 4. It shows a typical behavior of several software 
systems (specially certain graphical applications) which is particularly inefficient but 
often remains unnoticed. To illustrate clearly the poor performance of this practice, the 
authors use the metaphor of a gas station. Incidentally, this is also a well-known 
metaphor (in a different context) within the field of software architecture [55].  

Fig. 4. Adaptation of the Excessive Dynamic Allocation Antipattern to the gas station case study  

In this example, whenever a car needs gas, it pulls over to a gas station and asks for 
fueling. Then the gas station creates a pump with the gas, and a cashier to control the 
fueling. Once the tank is filled, the pump and the cashier notify the gas station they 
require to be released, and it destroys both of them. Obviously, this approach only works 
if the owner of the gas station is not worried about the money – i.e. the performance. 

This simple antipattern has been detected, unfortunately, more frequently than it 
should be. For instance, it is frequently found in the context of Service Oriented 
Applications. According to our experience, especially when we have worked with junior 
developers, we have detected a tendency to think that resources and time are unlimited 
because they repeatedly create a new proxy or a new connection to the database every 
time a service is requested. This means the system has an increased response time as the 
number of requests increases, reducing the confidence of customers about the system. 
This is why these kinds of decisions should be detected as soon as possible. 

In the following, we will use the example of the gas station to exemplify how 
ATRIUM has been used to put into practice the approach presented in this paper. With 
this aim, and according to the process described in Fig. 2, we first perform the modeling 
activity, having as a result a goal model where the goals, requirements and 
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operationalizations are described. Fig. 5 shows (part of) the goal model of a transport 
system. As can be observed, one of the primary goals (GOA.1) is that the car should be 
able to work. This goal has been refined in a requirement that establishes that the car 
must have a power source, being refined into two optional requirements to allow a car to 
have an electric engine or a gas engine. If the car has a gas engine it must be fueled, and 
thus, two alternative design decisions (operationalizations) could be made: first it is 
OPE1.2.1.1 that recommends searching for an existing gas pump and second, it is 
OPE1.2.1.2 that recommends building a gas pump. The last alternative was finally 
selected because it allows customers not to wait for a free gas pump.  

Fig. 5. ATRIUM Requirement Model (partial view) 

Once the goal model has been defined, we can proceed to apply the next activity of 
ATRIUM, the Modeling scenarios activity (see Fig. 2). It establishes that we have to 
specify the scenarios associated to each operationalization finally selected to be applied 
in the final system, that is, to describe the scenario model. In this case, we could use a 
scenario similar to the one presented in Fig. 4, where every one of the architectural 
elements is identified along with its interactions.  

The scenario model is used as input for the Synthesis and Transform ATRIUM 
activity to generate the proto-architecture, which does not only describe the architectural 
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elements but also their corresponding describedBy relationships with the DesignAssets 
that describe why they have been specified. These DesignAssets are generated as a trace 
from the operationalizations described in the goal model (the reader is referred to [59] for 
more details about how this generation is carried out). Fig. 6 shows the generated proto-
architecture of the example of the gas station at run-time. Although it is not shown in the 
figure, the gas station has a relationship with the DesignAsset DA1.2.1.2, which is traced 
from the operationalization OPE1.2.1.2, that is, the one that establishes that a pump and a 
cashier should be created whenever a request is made. In a similar way, the others 
architectural elements generated using the scenario of the Fig. 4; that is, every pump, 
cashier, etc., also have this relationship. 

Fig. 6. The gas station system at run time 

Once we have generated the proto-architecture, we can proceed with the ATRIUM 
Analysis activity. As was stated in the previous section, first we apply the DDChecker 
algorithm which is in charge of analyzing the proto-architecture to detect antipatterns, 
described in section 5.3. In order to run this algorithm, the first step was to select the set 
of antipatterns to be detected (apSet), as was stated in section 5.3.1. This set was 
described in an xml file, whose content is shown in the following.  
<?xml version="1.0" encoding="UTF-8" > 

<apSet> 
 <antipattern code=“P001” name=“Excessive Dynamic 

Allocation”/> 
<antipattern code=“P002” name=“Extensive Processing”/> 
<antipattern code=“P003” name=“Empty Semi Trucks”/> 
<antipattern code=“P004” name=“Circuitous Treasure 

Hunt”/> 
 <antipattern code=“P005” name=“Concurrent Processing 

Systems”/> 
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<antipattern code=“P006” name=“Blob”/> 
<antipattern code=“P007” name=“One-Lane Bridge”/> 
<antipattern code=“P008” name=“Ramp”/> 

</apSet> 

Regarding the example of Fig. 6, the process helped the architect to detect an 
excessive allocation problem, as every time a request is received on port p, a new pump 
n+1 and a new cashier n+1 are created instead of using some of the existing pumps and 
cashiers, as the one used by a car, that is, the system performance degrades as the 
number of cars gets very high.  As we detected that this antipattern affects to the gas 
station, everyone of its related DesignAssets should be marked as dirty. This means that, 
as Fig. 7 illustrates, DA1.2.1.2, the one related to the gas station is marked as dirty 
(symbolized by means of forbidden sign in the figure), a new DesignAsset, DA1.2.1.3, is 
created to notify that the network should be modified to avoid the excessive dynamic 
allocation antipattern, and a ill-effects relationship is established between both 
DesignAssets.  

Fig. 7. Applying DDChecker on the existing DesignAsset 

In the next step of the Analysis activity, the architect modifies this new network of 
AK to resolve the problem introduced by the antipattern. A likely solution could be the 
one described in Fig. 8. In this case, the architect has decided to establish a new way of 
managing the creation of pumps and cashiers, by providing the system with two options. 
First, cars must search for an existing pump whenever they need to be fueled. Second, 
whenever there are no free pumps for a car, a new pump will be created if their number is 
less than an established bound. It allows the system to fuel several cars simultaneously 
but avoiding being overloaded by the number of pumps. The architect also introduces an 
excludes relationship to avoid the previous decision DA1.2.1.2. As Fig. 8 shows two 
constrains relationships have been defined between DA1.2.1.3 and the DesignAssets 
DA1.2.1.1 and DA1.2.1.4, because whenever a new resource is created these two options 
have to be included in the system. An excludes relationship has been defined as well, as 
DA1.2.1.3 has been defined to avoid that DA1.2.1.2 is in the system as it means a 
problem for the specification of the system. 
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Fig. 8. Modifying the AK network 

As can be observed in Fig. 8, every one of the DesignAssets is traced from an 
operationalization. These relationships could be exploited to perform this analysis at the 
requirements level, taking into account the requirements that determined the current 
specification of the system. These relationships, along with the new operationalizations, 
can be created by means of M2M transformations in an automatic way, as was described 
in [59]. 

In addition, we should point out that the identification of these new alternatives for 
the system will mean a new refinement of the system. This refinement will determine that 
the scenario model should be modified and the proto-architecture should be generated, 
but this issue is more related to ATRIUM itself, rather than to the goal of the approach 
presented here; this is why no more details are provided about it. 

However, can the proto-architecture be considered free of antipatterns once it has 
been modified? Certainly not. This is why every time an antipattern has been detected 
and dealt with, the analysis should be applied again in order to determine if it has been 
solved and/or the modification has introduced a new antipattern. Just consider again the 
gas station example. Once the DDChecker algorithm is run again, the unbalanced 
processing antipattern [78] is detected, specifically the manifestation called extensive 
processing. This means that the modification just carried out has introduced a new 
antipattern.  
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Fig. 9. Scenario to request an invoice: adaptation of the unbalanced processing antipattern 

To explain where this new antipattern appears, it is better to focus on one of the 
requirements included in Fig. 5; specifically REQ2.1.1. “The customer can ask for an 
invoice”, whose operationalization is OPE2.1.1.1. “Provide cashier with invoice service”. 
This operationalization is related to the scenario depicted in Fig. 9, which describes how 
the customer and the cashier collaborate throughout the payment process, considering 
that he (the customer) can ask for an invoice. As can be seen, this means that a new 
customer must be added to the system if it does not already exist within it. Obviously, 
this can be a heavyweight task. Note that this situation emerged when the system was 
modified. The initial description of the proto-architecture was defined to create a new 
cashier whenever a new customer requests the service, so that the customer did not have 
to wait for payment. However, with the new proto-architecture description, whenever a 
customer requests the payment he has to wait for one of the existing cashiers in order to 
be attended, and in case he needs an invoice, he can monopolize that cashier for a long 
time, causing the other customers to wait. This is particularly problematic and disturbing, 
as one of the goals to be achieved is the customer satisfaction by shortening waits (see 
Fig. 5).  

As a result of applying the DDChecker algorithm, the network of AK must be 
modified again. As can be observed in Fig. 10 (a) all the DA related to the cashier are 
marked as dirty except for DA1.2.1.2, that has not been marked because it is a decision 
that was not finally made in the system (as the excludes relationship and its attribute state 
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indicate). Thanks to the information contained in these decisions, when the architect is 
trying to solve the new problem, he is unlikely to make the same mistakes as before. For 
instance, he could decide to create a local gas pump and its associated cashier, whenever 
it is requested; but then he realizes that it would lead to a problem, specifically, to the 
dynamic allocation antipattern described in the DA1.2.1.3. This is exactly the reason why 
AK must be preserved; and here it actually serves its main purpose. 

Instead of that, the architect decides to follow the recommendation of the unbalanced 
antipattern, that is, to create alternative paths for those steps that slow down the process. 
Specifically, the alternative was to create two kinds of cashiers: (1) those in charge of 
carrying out the payment, either in cash or money, and (2) those designed to issue 
invoices. This means that the proto-architecture and its network of architectural 
knowledge must be modified again to reflect the new decision made by the architect. As 
can be observed in Fig. 10 (b), DA1.2.1.5 is rewritten to describe the decision just made. 
It is related with DA1.2.1.3 by means of an excludes relationship, to specify that it is 
replacing this old decision, which was not finally made in the system. In addition, the 
architect changes the attribute state of DA1.2.1.3 to describe that this decision is not 
applicable to the system anymore. 

(a) after DDChecker algorithm 



 Antipatterns for Architectural Knowledge Management     31 

(b) after architect evaluation 

Fig. 10. Reevaluating the existing DesignAssets: (a) after DDChecker; (b) after architect evaluation  

This process will be iterated over and over again until no more antipatterns are 
detected, or the existing ones can be considered as “acceptable” for the system 
development team, according to their expectations and available resources. 

6 Validation 

A very important step performed once our approach was defined was its validation by 
applying it to different projects. For this purpose, we selected three different projects in 
which we have been involved. The selected systems were the following: 
• Power plant system. This system was initially developed to evaluate two alternative

methods for deriving a software architecture specification from requirements [36].
The main goal of this system is to monitor the performance of a power plant to detect
and to remedy faults in its stem condenser or its cooling circuit. This system was
simple enough to validate the preliminary ideas we had.

• MORPHEUS. This system has been developed [58] as a novel tool that takes
advantage of meta-modelling and modelling to offer flexibility and customization by
providing analysts with a graphical environment for the specification and verification
of the different ATRIUM models as well as the necessary transformations.

• EFTCoR. The proposal has been also validated in a real case study associated to the
European project EFTCoR (Environmental Friendly and cost-effective Technology
for Coating Removal) [29] and the national project DYNAMICA [19]. These
projects aimed at designing a family of robots capable of performing maintenance
operations for ship hulls. The system includes operations such as coating removal,
cleaning and re-painting of the hull. Among the subsystems constituting the EFTCoR
platform, our case study focused on the Robotic Devices Control Unit (RDCU),
which interacts with other robotic devices to obtain the required information to
control the different devices (positioning systems and cleaning tools) to be used for
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maintenance tasks. The RDCU is in charge of commanding and controlling, in a 
coordinated way, the positioning of devices together with the tools attached to them. 
It is worth noting that the performance requirements were especially important for 
this system to facilitate a proper management of the robotic devices. 

It is especially remarkable, as Table 3 shows, that they were selected because of the 
increasing complexity in terms of number of requirements provided, number of 
DesignAssets specified, number of components, and average number of operations 
provided per component. 

Table 3. System Complexity of the systems used for the evaluation 

System Requirements DesignAssets Components Operations provided  

Power plant  39 52 3,4 
Morpheus 122 143 22,5 
EFTCoR 161 212 14,7 

We carried out the Analysis activity described in section 5 by using the specifications 
of these three systems. This led us to detect and solve the antipatterns identified in Table 
4. This table also shows the number of detected instances of each antipattern along with
the number of DAs and AKRs that had to be added. The Analysis activity was carried out 
in different iterations for each system: 

Table 4. Results of the Analysis activity  

System Antipattern Instances Added DAs  Added positive AKRs Added negative AKRs 

Power plant - - - - - 

Morpheus 
Excessive Dynamic 
Allocation 

1 2 1 1 

One-Lane Bridge 1 2 2 3 

EFTCoR 
Excessive Dynamic 
Allocation 

1 2 1 1 

One-Lane Bridge  2 3 2 3 
Empty Semi Trucks 4 5 4 6 

• For the Power Plant system, just one iteration was carried out as no antipatterns were
detected.

• For the MORPHEUS system, three iterations were performed. In the first iteration,
two antipatterns were detected, and it was decided to solve the Excessive Dynamic
Allocation antipattern, as both antipatterns have the same number of instances. As
was already stated in section 5.4, the analysis activity was iterated over again to detect
if the solution was appropriate. It was concluded that now, only the One-Lane Bridge
remained in the system. This antipattern was solved, and in the final iteration it was
concluded that none of the analyzed antipatterns were in the proto-architecture.
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• For the EFTCoR system, four iterations were carried out in a similar way to the
previous systems. The three antipatterns (Excessive Dynamic Allocation, One-Lane
Bridge and Empty Semi Trucks) were detected at the first iteration. Then, similarly to
the previous case, one of the antipatterns was solved in each new iteration, and it was
checked again at the next iteration. Moreover, we decided to solve first, in each
iteration, the antipattern with the highest number of instances. This decision was made
because the number of instances is usually related to the number of components
affected by the antipattern and, therefore, affected by the solution to be applied. Like
in the previous system, at the end of the fourth iteration none of the analyzed
antipatterns was in the proto-architecture.

It is important to note that the treatment of the detected antipatterns does not imply a 
notable increase of the AK networks regarding to their previous definition. Taking into 
account these results, it can be stated that, as a rule of thumb, the minimum number of 
DAs to be added to the network, in case of detection, will be 2: a DA to specify that an 
antipattern was detected and solved and an additional DA to specify the decision that 
solves the antipattern. We can also infer that the maximum number of DAs could become 
1+number of instances of the detected antipattern, and this would only happen if the 
architect decides to specify a different solution for every instance of the detected 
antipattern. Indeed, the number of added DAs will be high only if we already had a very 
high number of instances. However, this would also mean that the system would have a 
high number of components and DAs so that, relatively, the number of new DAs would 
not be so significant. Moreover, we note that the results of the analyzed systems indicate 
that this situation is not very likely: the number of detected instances was always close to 
one. In this sense, we should also remark that despite the expertise of the architects who 
specified the analyzed systems they made errors in their specifications. Therefore, our 
approach helps to identify and solve them in early stages of the software development 
process. 

The number of antipattern instances could at first seem reduced, but it has a clear 
justification; it should be taken into account that we are already working with software 
architecture specifications. When software architects have to specify large systems, they 
rely on layering techniques to manage their complexity. This implies that not only 
components but also their related decisions are layered, so that decisions leading to 
antipatterns will be usually confined to specific layers. We have noticed this situation in 
the analyzed systems Morpheus and EFTCoR.  

We also note that a general rule can be determined regarding the number of AKRs 
relative to antipattern instances. The minimum number of AKRs will be 2: a positive and 
a negative AKR linking the DA that informs about the detected antipattern to the new 
decision and to the rejected decision, respectively. The maximum number of AKRs would 
be the number of DAs involved in each antipattern instance plus the number of 
antipattern instances, assuming again that a new DA is created for each instance. One 
might think that the number of relationships could be very high but, as noticed in Table 4, 
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we did not need a large number of relationships. Moreover, the use of an adequate tool 
that helps the architect to show and hide positive and negative relationships helps to 
manage properly the information added to the network. 

Despite the previous arguments, it still might be questioned whether the advantages 
of maintaining this information is overcome by the overhead it imposes. In this sense, we 
consider especially relevant the results we have obtained in the analyzed projects, as it 
has helped us to understand why the systems were the way they were. This idea has been 
also emphasized by other experimental studies, such as that presented by Bratthall et al. 
[10]. They carried out an experiment with 17 subjects from both industry and academia, 
and concluded that most of the interviewed architects stated that by using AK they could 
shorten the time necessary to carry out the change-tasks. Interviewed subjects also 
concluded that the quality of the results was better using AK when they had to predict 
changes on unknown real-time systems. Therefore, there are compelling arguments for 
using the rationale while the SA is being changed. 

Finally, we would like to highlight that few antipatterns were detected during the 
analysis of the systems. For instances, no antipatterns were detected for the Power plant 
system. In this sense, it is worth noting that the method we propose is not conceived for 
synthezing new architectures, but for analyzing those which have been already designed. 
This means that we cannot begin with some unstructured design, and start iterating over 
it, detecting antipatterns once and again until we reach a good design. In practice, this 
would probably result in marking every decision as dirty, and further progress would be 
inhibited. The whole system would be probably detected as the blob antipattern, which 
implies that a full redesign is required. 

Instead of that, we consider that the proto-architecture to be examined is reasonably 
good already in the initial iteration. That is, we have tried to create or evolve a good 
design and we just want to check to see if there are some mistakes. In this case, every 
antipattern would appear almost in isolation, and therefore its detection should be 
relatively simple. But even then, if the system is complex and the elements are strongly 
related, a bad DD could affect a lot of the elements, giving the impression that 
“everything is dirty” again. In this kind of situation, however, those difficulties are just 
reflecting the actual complexity of the system; and our approach is still valid and still can 
be used to separate affected from unaffected elements. 

Also, this is handled by means of syntactic tools, but we have not considered 
semantic aspects. It is obvious that once several elements have been marked as dirty, it is 
the architect himself who must decide, considering the semantics of the affected 
elements, which ones are truly important for the system’s design. For instance, if we have 
detected a performance antipattern, we can simply ignore those dirty elements which do 
not affect performance. The architect could even decide that the DAs involved in the 
detection of an antipattern should be kept because they contribute to achieve other quality 
attributes more important to the system. As previously noted, this is the main reason why 
the process is never considered to be fully automatic. It is always the architect who makes 
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the final decision; the automatic support has been designed to assist him by exposing 
possible problems. 

To conclude, it is important to discuss the implications of the presented approach with 
regard to the quality of the development process of the previous systems, and more 
concretely regarding to its effectiveness. Revising the definition provided by the ISO/IEC 
25010:2011 standard[33], we consider effectiveness as the degree to which architects can 
achieve their goals with accuracy and completeness in the context of software 
architecture specification. Basically these goals were:  
(1) To increase defect containment. As the analysis activity is carried out during the 

early stages of the development process, the number of faults that would have 
otherwise escaped (and would have been found during subsequent phases) was 
reduced. In this sense, Table 4 provides clear evidence about the number of instances 
of antipatterns detected and ultimately eliminated from analyzed systems. Moreover, 
this reduction of faults has a direct impact on the reduction of cost as the cost of 
eliminating defects at this early stage of the development process is much lesser than 
during the coding stages. Therefore, this reduction of cost soon rewards the overhead 
of carrying out the analysis activity. 

(2) To improve the quality of the developed software. As the detected antipatterns were 
related to performance, and this is a software quality attribute, the time devoted to 
their proper handling has a direct impact on the quality of the developed software.  As 
suggested in our definition, these goals were achieved with accuracy and 

completeness, as the analysis activity provided us with all the relevant information to 
eliminate the antipatterns from the analyzed systems. 

7 Conclusions and further Research 

In conclusion, there are several consequences that can be extracted from the experience 
and results exposed in our approach. First, the degree of sophistication which is being 
achieved by Architectural Knowledge management is both illustrating and increasing its 
interest and relevance. Second, the importance of its inner relationships – and especially 
negative ones – is becoming clearer, as it defines a complex structure of previously 
unrepresented information. Third, our work shows the actual usefulness of antipatterns in 
this context – they might play a central role in AK, even more important than in more 
traditional applications. Fourth, the use of a model-driven engineering support makes it 
possible to be able to deal with these complex structures, emphasizing again the interest 
of combining model-driven and architecture-centric approaches. In fact, though 
ATRIUM is just provided as a proof-of-concept, it has an interest of its own. And finally, 
the combination of this model-driven support and explicit architectural knowledge makes 
possible to go beyond traceability, to the extent that AK management might trigger 
modifications in the final architecture. Even our simple example provides a clear 
perspective of the usefulness and applicability of these techniques as part of the basic 
toolset of a software architect. 
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These conclusions can be examined in some more detail. First, about the relevance of 
Architectural Knowledge management itself. It has evolved from the inspiration of initial 
efforts in Software Architecture, to the current emphasis on capturing unrepresented 
design knowledge and integrating it with architecture. Our approach provides a glimpse 
of the complexity of the resulting AK network, showing the need for automated support; 
but also highlights the usefulness of this structure –beyond “simple documentation”–, 
which could directly influence the structure of the final architecture itself. 

Second, the influence of relationships in AK and the structure they define. What 
originally was a set of small-sized design decisions is now a complex decision network. 
In fact, once these relationships have been included, the network of AK can get as 
complex as the architecture itself; comparatively, even more so as the final architecture is 
just a part of the rationale. Now architecting becomes what we could define as literate 
architecting: instead of simply constructing the architecture, and losing valuable 
contextual knowledge in every decision, the process becomes that of writing the 
architectural rationale. Two complex structures are obtained: the architecture and the 
rationale; but being closely intertwined, they are represented as just one structure. The act 
of building the first is also the act of writing the second. 

In fact, the resulting complexity of this structure can also be considered as an issue: if 
the rationale (i.e. the AK network) is more complex than the architecture itself, it is 
legitimate to question if it has become unmanageable. In summary, to what extent can our 
approach scale? There are three points to consider here. First, our approach is essentially 
constructive. This means that the information is provided as the development process 
itself happens: decisions must be taken before being included in the network. Therefore, 
we are not introducing artificial complexity of any kind. Second, our approach is 
providing automatic or semi-automatic support in every step. Hence, it should be easier 
to handle than existing approaches, which either lose this information or have to deal 
with it “by hand”. Moreover, our solution uses a model-driven approach, and this should 
make automation easier: its models have been specifically designed to be automatically 
processed. Their use should have, at least in theory, two different consequences: first, the 
performance of these models should be reasonably good, considering their origin; and 
second, by providing what essentially is a “neutral” core model, they should be able to 
interact with many existing techniques and ADLs, even serving as a bridge between 
them.  

Finally, when considering the scalability of this solution, we should consider that it is 
still an architectural approach. When dealing with large-scale systems, architecture 
practice usually relies in layering. The system is described as an abstract, prescriptive 
architecture at the top layer, and then every component is unfolded as an increasingly 
concrete sub-architecture in the next layers. These layers will be maintained at every 
level of abstraction; hence, our design decisions will be equally layered. Therefore, the 
AK network will be complex as a whole, but simple enough to manage at every layer. 

The third conclusion was about using antipatterns as the way of semi-automating the 
detection and the management of negative relationships, whose importance has also been 
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emphasized. Our solution, based on antipatterns, is able to semi-automatically detect 
conflicting decisions, mark then as dirty, and trigger an analysis which begins by marking 
ill-effects relationships, and ends with the architect proposing a modification of the proto-
architecture. As far as we know, our approach is one of the first in partially automating 
this part of the process; it does not provide a full automation, but it does provide 
automated support. Also, this approach gives antipatterns a significant role in the 
architectural process, analogous to some extent to the one already played by patterns 
[82]. 

The fourth conclusion is about the technological context. Our methodology (and even 
the proof-of-concept provided by ATRIUM and its associated tool, MORPHEUS), is 
another example of the benefits of combining architecture-centric and model driven 
approaches. Architecture provides the capability to adapt to different scales; a model-
driven perspective provides flexibility and automation. Consequently, it is quite simple to 
extend, either in size or scope, this hybrid approach. For instance, our preliminary work, 
shown in [61], already provided the basic infrastructure for AK. We had just to extend 
this to include relationships and antipattern detection; the initial support was not 
modified.   

Apart from the simpler automation, and the intrinsic flexibility just mentioned, the 
main merit of the hybrid approach, as already emphasized in [59], is to make explicit the 
traceability relationship, which becomes the “spine” of the architectural process. MDD 
needs every stage in the development to be explicitly described and modeled; traceability 
makes it possible to connect these descriptions. Hence, we obtain the proto-architecture 
as the final result of a complex process, in which every decision has been recorded and 
can be traced forward and backwards. 

Now, within the current version of the MORPHEUS environment, relationships 
(including traceability) are easily composed with each other, and their consequences can 
be fully exploited – including such diverse concerns and questions as finding the scope of 
a requirement, the implementation of a decision, or using finer strategies for network 
analysis, as mentioned below. 

We consider that the work presented in this paper is the first step towards a thorough 
analysis that could be called meta-analysis. The detection of anti-patterns is just one of 
the tasks that this meta-analysis should carry out, but other interesting and challenging 
facilities should also be provided, such as exploitation of a quality model and/or a metric 
model [46]. For instance, consider the importance of validating whether the architecture 
of the different products of a Software Product Line conform to a given reference 
architecture [50][71]. It could be of interest to execute during the meta-analysis that 
another process, similar to DDChecker, would determine if the proto-architecture has any 
problem with regards to the reference architecture. The implications of this new facility 
would have to be analyzed in order to determine how the inputs provided by those DDs 
and DRs involved in the definition of the reference architecture could be exploited as 
well. We consider that this meta-analysis should be a necessity for any proposal, 
hopefully in the near future. 
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Another direction of our work includes the definition of special decisions, which 
could provide a better structure to describe AND/OR relationships, similar to those found 
at requirements level, in the goal model. As already noted in section 2, we also intend to 
exploit the decision network using standard techniques for network analysis [5], which 
would lead to the identification of special nodes, critical decisions, or even separate 
process development branches. Another interesting future work will be the exploitation of 
data mining and knowledge discovery (DMKD, [68]) to extract useful information from 
the decision network. We also plan to provide more sophisticated methods to visualize 
the information contained in the structure, and to complete this knowledge with the 
definition, and even local implementation, of several adequate metrics, which will be also 
used for our detailed analysis. In summary, the AK structure will be further enriched and 
analyzed, and the consequences of its use during software development will be carefully 
examined. 

Another interesting work in progress is related to the industrial exploitation of this 
knowledge. Indeed the architectural knowledge generated throughout different software 
projects is an important and essential resource for industrial competitiveness, its suitable 
flow throughout organizations will facilitate that this knowledge could transferred from 
one project to another. Therefore, we plan to study the implications that the introduction 
of knowledge management systems, such as [32] or [69], could have in terms of 
efficiency and/or effectiveness for software development, as well as the introduction of 
classification algorithms, such as [43][67], that help us to rank applicable solutions to 
solve antipatterns.  
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