
Exploring Issues in Software Systems Used and
Developed by Domain Experts

Jette Henderson
Institute for Computational Engineering and Sciences

The University of Texas at Austin
jette@ices.utexas.edu

Dewayne E. Perry
Electrical and Computer Engineering

The University of Texas at Austin
perry@mail.utexas.edu

Abstract—Software engineering researchers have paid a good
deal of attention to fault cause, discovery, and repair in software
systems developed by software professionals. Yet, not all software
is developed by software professionals, and consequently, not as
much research has been conducted that explores fault cause,
discovery, and repair in software systems developed by domain
experts. In this exploratory paper, we outline research plans
for studying the types of faults that domain experts encounter
when developing software for their own research. To attain this
goal we propose a multiple case study that will allow us to
explore questions about domain expert software use, needs, and
development.

I. INTRODUCTION

In the past, software engineering empirical researchers have
paid a good deal of attention to analyzing fault detection,
repair, and causes in software engineered by software pro-
fessionals. Our own studies in this area point to lack of
domain knowledge as a major root cause of faults [1], and in
conjunction with lack of domain knowledge, lack of software
system knowledge also causes many faults [2] [3]. Yet, as
researchers from many different disciplines have come to rely
on software more and more to perform their research, software
development has become not solely the domain of software
engineers. Instead, domain experts have developed software
tailored to the specific needs of their research, and with the
nascency of domain-expert-developed software, we propose to
study the type of faults that domain experts encounter.

Currently, domain experts in engineering disciplines seeking
to apply computation to their research have two options when
it comes to software. Either they can use software developed
by a third party, or they can develop the software themselves.
There are complementary strengths and weaknesses for each
option. Using third-party-developed software might increase
the risk of faults due to lack of domain knowledge, and
developing software in-house may increase the risk of faults
due to lack of software system building knowledge. In systems
built by domain experts, we expect domain knowledge faults
to be significantly less frequent, and instead, lack of software
system knowledge to cause most faults.

In this paper we will lay the foundation for research
concerning the issues domain experts encounter when building
software systems for their research. We propose to lay this
foundation by using multiple case studies to construct a picture
of the domain experts’ point of view when it comes to using

software in their research. To begin our work we draw on
our community, the Institute for Computational Engineering
and Science (ICES) and Texas Advanced Computing Center
(TACC) at The University of Texas at Austin.

A. Background

ICES is a research center that fosters the interdisciplinary
collaboration between faculty members from different scien-
tific and engineering fields on computational and engineering
problems. ICES supports eleven research centers and alliances
and six research groups drawn from five schools and colleges
and eighteen academic departments. There are 93 faculty
members, including 42 core faculty members. These ICES
researchers strive to combine theory, experimentation, and
computation to explore modern scientific and engineering
problems. From biological research like simulating the cardio-
vascular system in order to aid in prevention and treatment of
cardiovascular diseases to studying flow in social networks to
simulating and modeling vehicle reentry into the atmosphere,
ICES contains a wide spectrum of research questions and
applications. It is one of the largest centers of its kind in the
world. This fact, combined with the variety of the types of
problems researchers consider, make it a very interesting place
to study domain-expert-developed software.

TACC is an advanced computing resource at the University
of Texas at Austin. TACC operates many of the high per-
formance computers in the world, and among other things,
they offer computational support, education, and software to
help the researchers from many disciplines. Many members of
ICES work closely with TACC to perform their computational
research.

B. Overview

In this position paper, we formulate a research plan to
explore software use at ICES with the initial aim of exam-
ining the types of faults that domain experts encounter when
developing software. To this end, we propose an empircal
approach that takes the form of multiple, individualized case
studies focusing on the ICES core faculty. ICES is one of
the few major, large interdisciplinary computational research
centers in the world. The broad spectrum and variety of
projects at ICES will help us gain a better understanding of
domain expert software building methods, use, and issues. Our



main hypothesis is that domain experts encounter fewer faults
resulting from lack of domain knowledge and more faults
from lack of software engineering domain knowledge. Our
overarching goal is to gain a better understanding of software
needs at ICES and how researchers meet these needs.

For the remainder of the paper, we will state and discuss
our research questions, elaborate on the multiple case study
and data analysis plans, and outline future work and research
directions. This research will give us insight into the types of
problems domain knowledge experts encounter and whether or
not this group of domain experts tends to develop their own
software or use third party software.

II. RESEARCH QUESTIONS

We have developed the following three categories of re-
search questions:

A. Questions about the State of Domain Expert Software Use

These research questions are intended to build a clearer
picture of the software needs and practices of domain experts.
We would like to know what kinds of software needs these
domain experts have, and how they go about fulfilling them.
We would like to assess whether domain experts in ICES
mostly develop their own software for their research or turn to
third-party-developed software, and we would like to examine
the motivation for such choices. We are specifically interested
the following:

• What types of software do domain experts use, and why
do they use it?

• What percentage of domain experts use third party devel-
oped software, and what percentage develop their own?

• In general, what kind of problems do domain experts
making data-intensive computations encounter? What
kind of problems do they have in getting their research
done from a computational point of view? What are their
software needs, and what is their motivation for picking
third-party-developed software or developing their own?

B. Questions about Domain Expert Software Development

These questions are pointed toward domain experts de-
veloping their own software. The individualized case studies
will allow us to study, from the perspective of the domain
expert, the types of faults domain experts developing software
encounter and how they resolve them. We would like to know
what kind of conceptual issues they have when they develop
software. In addition, we would like to know about their
software development process, and what kind of design goes
into the development process. Finally, we would like to know
about the backgrounds of those developing the software, and
what types of methods (informal or formal) they use to report
and resolve faults.

C. Questions about Third-Party-Developed Software

While we expect third-party-developed software users to be
in the minority, we are interested in the needs, motivations,
and experiences of these users as well. First of all, we are

interested in the source of the third-party software–does it
come from a university lab, enterprise, etc? Secondly, we are
interested in the kinds of problems domain experts encounter
when using third party software–and from their perspective,
where and how these problems arise. Once we know the source
of the software, we can examine whether the software is also
developed by domain experts. Thirdly, we are interested in
the usability and documentation of the third-party software.
Finally, we are interested in whether or not the domain experts
integrate the third-party software with other software they use.
To this end, we would like to know if they are integrating
multiple platforms and tools, how hard these packages are to
interface and integrate.

III. PROPOSED INTERVIEW QUESTIONNAIRE

We have composed the following questionnaire that we will
administer during interviews with ICES researchers.

1) Name of the project
2) Brief description of the project
3) What software do you primarily use during this project?
4) Is the software developed in-house, or do you obtain it

from a third party?
5) Note to the interviewer: the following questions are for

those who develop their own software
a) What motivated you to develop the software in-

house?
b) Who is developing it? (e.g., graduate students,

researchers, post docs, etc)
c) When developing software, what languages does

your team use?
d) When developing software, what environments

does your team use?
e) What tools does your team use to test and debug?
f) What version management system does your team

use, if any?
g) What kind of change management or bug tracking

tool (eg, Bugzilla) does your team use, or are bugs
handled using informal means (e.g., email)?

h) Do you know what types of bugs are the most
common?

i) What are the underlying causes of these types of
bugs?

j) What do you think will enable you to detect or
even eliminate these kinds of problems?

6) Note to the interviewer: the following questions are for
those who obtain the software from a third party

a) What is the source of the software?
b) What motivated you to use software developed by

a third party?
c) Do you use multiple third party developed software

packages, and if you do, have you had issues
constructing interfaces between the software pack-
ages?

d) What are the benefits to using this software?
e) What are the software’s main shortcomings?



f) Have you found faults in the software through its
use?

7) Have you ever utilized TACC?
8) If you have utilized TACC, what facilities or tools have

you used?
9) Are your programs designed to run in parallel?

IV. CASE STUDY DESIGN AND JUSTIFICATION

As stated above, the multiple case studies will take the form
of a questionnaire administered during interviews between
one or two interviewers and one ICES core faculty member.
We will send the questionnaire to the participants before the
interviews take place. Our population consists of 42 ICES core
faculty members, and we expect to interview a sizable subset
of this population. Our goal is to limit each interview to at
most one hour.

We propose two phases for the multiple case study. The
first proposed phase is a pilot phase where we will interview
three or four researchers. The second phase will integrate the
insights gained from the pilot phase and consist of interview-
ing the rest of the participants using the refinements from the
pilot phase.

The goal of the pilot phase is to make the interviews more
consistent. After conducting these first interviews, we will
evaluate the responses, the questionnaire, and our protocol
for administering the questionnaire. We will not only examine
the responses of the participants against one another, we will
also examine the responses against our expectations of the
interview and the protocol. We will then refine our protocol
and possibly the questionnaire with the goal of making the
interview process more consistent and ensure that we are
executing the interviews in a timely fashion. The second phase
will integrate the changes suggested from the pilot phase, and
we will administer the refined questionnaire and protocol to
the rest of the participants.

We chose to administer the questionnaire through an inter-
view in order to make it more feasible for the interview partic-
ipants. Since all of the participants are very busy, structured
interviews are more manageable than each faculty member
filling out the questionnaire on his or her own time. In addition,
this format will also allow us, as interviewers, to obtain a level
of detail and consistency that does not usually come from
people filling out questionnaires by themselves. We will be
able to ask the researchers to elaborate or clarify statements, so
the body of responses is more consistent and detailed. Further,
giving the interviewees the questionnaire in advance will allow
them to prepare useful, detailed answers to those questions that
may require more than just touching on the surface of those
issues. Since this phase of our research is highly exploratory,
we are seeking to gain as much software use information as
possible in order to plan the next part of our research.

V. DATA ANALYSIS PLAN

After conducting the interviews, we will perform appro-
priate quantitative and qualitative analyses of the question-
naire answers. Some of the answers to the questionnaire

will lend themselves to quantitative analysis (e.g., the split
of researchers who use third party software and those that
develop software themselves), while other answers will require
us to examine the body of responses and create categories that
appropriately encapsulate the responses. The goal of the data
analysis will be to explore and refine our research questions
as well as hone in on the best direction in which to take our
research.

VI. RESEARCH PLANS BEYOND THE QUESTIONNAIRE

Since this first phase of our research is exploratory, it
is difficult to make exact plans for the steps following the
execution of interviews and analysis, but our goal for the first
phase is that the results from the individual case studies will
lay a foundation for a more objective analysis of the issues
that domain experts face when using and developing software.

One of the strengths of earlier fault studies [1] [2] [3] was
that the researchers drew on preexisting fault documentation
to make their analyses. This is a far more objective approach
to the one we are proposing because we are asking the
researchers themselves about what they perceive about their
software use and development. In the future we would like
to take a more objective approach to issues in domain expert
software use. For example, while we expect that most of the
core faculty members who develop their own software to use a
more informal means of tracking and fixing faults, we propose
working with a faculty member to implement a formal means
of tracking and fixing faults, which will give us more objective
data to analyze.

VII. CONCLUSION

The main goal of this paper is to outline a research plan that
studies the types of software issues that domain experts en-
counter when utilizing software in their research and develop-
ing software for their research. Through individual interviews
with the domain experts at the Institute for Computational
Engineering and Science, we plan to gain an understanding
of domain expert software landscape. The aim of our case
studies is to explore to what degree these experts use software
in their research, and if they do develop their own, for what
purpose and what issues they encounter. The individualized
case studies will just be snapshot of domain expert computing,
but the variety of domain experts we will interview will give a
good cursory view of domain expert computational needs and
software use.

ACKNOWLEDGMENT

We would like to thank the ICES faculty for their cooper-
ation in our research.

REFERENCES

[1] D. E. Perry and C. Steig, “Software Faults in Evolving a Large, Real-Time
System: a Case Study”, 4th European Software Eng. Conf. – ESEC93,
Garmisch, Sept 1993.

[2] M. Leszak, D. E. Perry and D. Stoll. “A Case in Root Cause Defect
Analysis”, Int. Conf. on Software Eng. 2000, Limerick, June 2000.



[3] M. Leszak, D. E. Perry and D. Stoll. “Classification and Evaluation of
Defects in a Project Retrospective”, J. of Syst. and Software, vol. 61, pp.
173-187, April, 2002.

[4] R. Yin. Case Study Research: Design and Method, 2nd ed (Applied Social
Research Methods Series, vol. 5). Thousand Oaks, CA: Sage, 1994.

[5] R. E. Stake. The Art of Case Study Research. Thousand Oaks, CA: Sage,
1995.


