
Lightweight Tool Coordination
Path* - a minimal framework for tool coordination

Reid D. McKenzie
Computer Science

The University of Texas at Austin
Austin, TX

reid@cs.utexas.edu

Dewayne E. Perry
Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX

perry@mail.utexas.edu

Abstract—We present a lightweight tool for coordinating tool
usage in a structured and unobtrusive manner allowing for the
formal description and implementation of development cycles with
minimal human intervention. This tool, here and after referred to as
``Path*'' seeks to provide a minimal yet powerful framework for tool
coordination by scripting actions to be triggered on events such as
disk writes to a project directory and version control system commits.
These events execute user-defined scripts for the purpose of
automating tasks such as partial rebuilds and style checking in an
IDE and platform independent framework.

Index Terms—Tool Coordination, Process Guidance, Process
Automation, Process Scripting. Plug-in.

I. INTRODUCTION
In the late 1980s and early 1990s, one of the leading

process research ideas was that of process centered
environments (PCEs). The desire to use defined processes as
means for systematic and consistent software developments
was the main driver underlying this idea. "Among the many
benefits touted for process-centered environments are the
ability to automate various aspects of a process and the ability
to monitor the progress of a process in order to guide, enforce,
or measure that process." [5] Among the various approaches to
this idea were Kaiser's Marvel System [3] and Minsky's Law-
Governed Systems [4]. Both approaches used descriptive rules
as the basis for governing the development and evolution of
software systems. Minsky went further and used his
declarative laws to cover the structure and characteristics of the
product as well.

What has become the de facto approach instead has been
the integrated development environment (IDE) framework that
is individualized and/or customized with the extensive use of
plug-ins, such as Eclipse [1].

The question we want to consider is how to provide a useful
process mechanism that can be used in this context (for
example, a plugin), provide guidance, automation, and
enforcement, and that is both light-weight and useful enough to
avoid the adoption problems of Marvel and LGS.

An approach, but less expressive approach, is suggested by
path expressions [2]. Path expressions are regular expressions
that define the allowed sequence of operations on shared
protected data. We believe that path expressions can be used to
serve a useful purpose in providing lightweight definitions of

desired or allowed sequences of, or policies about, developer
actions relative to tools and tool commands being used.

Here, we propose and argue for a lightweight tool, Path*",
in seeks to offer unintelligent yet useful assistance to
developers by automating menial tasks such as rebuilding and
style checking, while simultaneously providing for the
definition and enforcement of development workflows using a
path-expression derived formalism for defining legal editing
and work patterns.

II. UTILITY OF AUTOMATED HOOKS
Many IDEs such as Eclipse and Netbeans provide

automated partial recompilation of code bases at edit time so
that syntax and type errors may be indicated to the programmer
as quickly as possible, even before she has progressed beyond
the point of error in editing. However such automated
rebuilding and checking support is extremely environment
dependent and not extensible to other languages. Path* would
provide a simple and extremely extensible structure under
which all file writes in the monitored directories would trigger
an "on-edit" script which could use simple policies based on
the path of the changed file and its file type to determine the
appropriate compiler and chain-load such operations as the
developer may deem appropriate.

By implementing this extended hooks structure in terms of
shell scripts rather than some more domain-specific scripting
language we explicitly and deliberately leave open the
possibility of Path* hooks being used to chain-load other user-
defined tools such as file and repository permission policies,
manager authorization requests/checks and so forth.

This would be a cleaner and more flexible alternative to the
rebuild scripts used in some development projects which
simply continuously invoke the appropriate compiler until the
script is terminated wasting both CPU time and programmer
time in devising such once-off spinning scripts.

III. UTILITY OF REGULAR HISTORY VERIFICATION AND
CONSEQUENCE OF HOOKS

Considering the development process to be a sequence of
operations such as edits and version control system (VCS)
commits, it makes sense to consider the entire development
process as a relatively stable and predictable sequence of
operations such as edits, compiler invocations, lint or other

verification tools, test suite runs terminated with a VCS
commit.

A typical development cycle using C, for example, could be
characterized as a sequential path:

1. checkout & lock in VCS

2. (edit | lint)+

3. state:no-lint-problems

4. compile

5. state:no-build-problems | goto 2

6. VCS checkin & unlock

which cleanly represents a basic process model ensuring that
the core build on the main repository is never broken.
Practically speaking, requirements about the state of the project
repository are expressed as process requirements such as these
and implemented as version control system hooks allowing for
preconditions such as requiring that the preconditions of build
and lint sanity prior to checkin. The Git, CVS and Mercurial
version systems all provide verification hooks known by the
“pre-” prefix. These hooks are simple Unix shell scripts which
can abort the VCS operation should they return a nonzero (shell
false) value.

While the implementation of hooks is obvious, they are at
least under the Git version system restricted in that some
operations such as merges of multiple development threads.
Such a hook would be useful in allowing the definition of rules
restricting which threads of development may be affected and
under what conditions. For example a development
environment using a “development/testing” codebase to which
programmers have free access providing a condition that all
commits are in accordance with a commit precondition policy
like the above and a “master” codebase which is regularly as
the deployment base in a critical application. In this position
one can define a “release” as a sequence of edits which is
moved as an update from the development codebase to the
master codebase presumably after extensive testing and
staging. Therefore it would be valuable to codify this implicit
rule that development code must be audited in a pre-release
state and cannot be merged directly into the live codebase. In
order to do so however we must extend the standard hooks
provided by Git and other repository systems to include a “pre-
merge” hook in order to implement this policy. Also for “post-
merge” events such as automatically evoking a bump script
after merges to master or other such side-effect policies.

It is obvious that hooks are an effective and efficient tool
for implementing preconditions on when a developer may
perform actions and what tests should be automatically invoked
to verify that the appropriate preconditions have been met.
However, the hooks system can only be chained by the version
control system. As we noted earlier, there is great value to be
derived from automated invocation of tools such as lint and
make on a “when file is flushed” basis: a basis which version
systems are unable to support.

IV. DESIGN & STRUCTURE OF PATH*
As existing VCSs provide a subset of the event hooks

which we consider most valuable, we feel that it would be
foolish to ignore them as part of the implementation of a Path*

work environment in no small part because Path* is intended to
augment VCS workflow. Consequently we propose to
implement the Path* system as a meta-VCS command suite
which provides a wrapper over VCSs such as CVS and Git
explicitly using their hook features rather than attempting to
supplant existing infrastructure.

This leads us to a definition of Path* as a tool which first
executes any predicate/guard hooks not defined by the wrapped
VCS, executes the appropriate VCS command passing
arguments through and then executes any and all side-effect
hooks not defined by the VCS upon a zero exit code (success)
from the VCS command. This lends itself to an extremely
flexible structure as a simple wrapper that can be ported to any
VCS at all regardless of what hooks facility of lack thereof it
may possess. Furthermore by providing a standard for hook
script argument format we free hooks from dependence on the
VCS for answering questions such as “what is the current
branch” or “what files are staged for commit”?

V. CONCLUSIONS
Here we present existing version control and hook systems

in a historical context of process and workflow model research,
arguing that they are good and helpful tools. However, we
further present our own system, Path* which seeks to provide a
meta-vcs wrapper around these tools to provide a simple and
lightweight implementation of additional features atop existing
infrastructure. Our approach increases the potential utility of
the system to developers and developer employers alike by
adding support for the implementation of additional simple and
useful tools without burdening users with concerns about their
specific platform. We then further argue that not only is our
meta-platform useful, but that as it offers a greater diversity of
trigger events than any existing platform that it simplifies the
implementation and enforcement of finely grained yet largely
unobtrusive policies regarding developer workflow.

VI. REFERENCED

[1] Anonymous. "Eclipse - The Eclipse Foundation open source

community website", 30 January 2013, http://www.eclipse.org/
[2] Roy H. Campbell and A. Nico Habermann. "The specification of

process synchronization by path expressions", Proceedings of an
International Symposium on Operating Systems, April 23-25,
1974 (Lecture Notes in Computer Science, No. 16).

[3] Gail E. Kaiser, Peter Feiler, and Steven Popovich. "Intelligent
Assistance for Software Development and Maintenance", IEEE
Software, May 1988.

[4] Naftaly Minsky, "Law Governed Systems", IEE Software
Engineering Journal, 6:5 (September 1991).

[5] Alexander L Wulf and David S Rosenblum, "Process Centered
Environments (Only) Support Environment-Centered
Processes", Proceedings of the 8th International Software
Process Workshop (ISPW8), Schloss Dagstuhl, Germany, March
2-5, 1998.

http://www.eclipse.org/

	I. Introduction
	II. Utility of Automated Hooks
	III. Utility of Regular History Verification and consequence of hooks
	IV. Design & Structure of Path*
	V. Conclusions
	VI. Referenced

