
Exploring Architectural Design Decision Management Paradigms
for Global Software Development

Meiru Che, Dewayne E. Perry
Department of Electrical & Computer Engineering

The University of Texas at Austin
Austin, Texas, USA

meiruche@utexas.edu, perry@mail.utexas.edu

Abstract—Global software development (GSD) is an increas-
ing trend in the field of software engineering. It can be
considered as coordinated activities of software development
that are geographically and temporally distributed. The man-
agement of architectural knowledge, specifically, architectural
design decisions (ADDs), becomes important in GSD due to
the geographical, temporal, and cultural challenges in global
environment. However, little work has be done on capturing,
sharing, and evolving ADDs in a GSD context. Based on
our previous work on ADD management in localized soft-
ware development (LSD), we extend our study to explore
ADD management paradigms for GSD in this paper. We
propose three ADD management strategies for the distributed
development environment, and according to global software
project structures, we explore and analyze three typical ADD
management paradigms that can be widely adopted in GSD. We
aim to provide a fundamental framework on managing ADD
documentation and evolution in GSD, and offer good insights
into sharing and coordinating ADDs in a global setting.

Keywords-architectural design decisions; global software de-
velopment; architectural knowledge; documentation; evolution

I. INTRODUCTION

Global software development (GSD) is an increasing fo-
cus in the field of software engineering. It can be considered
as the coordinated activities of software development that are
not localized and centralized but geographically and tempo-
rally distributed [14]. In GSD, software teams work together
at geographically separated locations to accomplish software
projects. Thus, global teams face challenges associated with
the coordination of their work due to different locations,
time zones, languages, and cultures. In order to cope with
different challenges in the globalization of software devel-
opment, communication, as well as coordination, a number
of approaches have been proposed in different domains of
GSD [1]. However, little attention has been paid to software
architecting processes and software architectural knowledge
management in the context of GSD. Similar to localized
software projects, software architecting and architectural
knowledge are important to support designing, developing,
testing, and evolving software. We note, however, that in the
global development of large complex systems, architecture
plays an even more critical role in the structure of the project
[13]. Therefore, managing and coordinating architectural

knowledge such as architectural design decisions (ADDs)
is a significant and also relatively new research problem in
the context of GSD.

Perry and Wolf considered the selection of elements and
their form to be ADDs, and the justification for these
decisions to be found in the rationale [20]. It was not
until 2004, with Boschs paper [5] at the European Work-
shop on Software Architecture, that software architecture
has generally come to be considered as a set of ADDs.
This specific focus on ADDs led to a broader focus on
architectural knowledge [19]. Capturing and representing
ADDs helps to organize architectural knowledge and reduce
its evaporation, thus providing a better control on many
fundamental architectural drift and erosion problems [20] in
the software life cycle. In a globally distributed software
environment, the documenting and sharing of ADDs can
serve to support the complex collaboration and coordination
needs of software projects. With the increasing trends of
further globalization of software development, managing
ADDs in GSD becomes a much more critical task than in a
localized environment.

In our previous work on ADD management, we had an
overall goal of providing a systematic approach that supports
ADD documentation and evolution in a localized software
development (LSD) context. Based on this, we intend to fo-
cus on involving ADD management in a global development
environment in this paper. Since little work has been done on
ADD documentation and evolution in GSD, we are going to
discuss several ADD management strategies for multi-site
software projects, and then explore the typical paradigms
for ADD management in global software projects. We aim
to provide a fundamental framework for managing ADDs
in the context of GSD, and offer insights into architectural
knowledge documentation and evolution for researchers and
practitioners in the field of software architecture.

II. LOCALIZED ADD MANAGEMENT APPROACH

This section briefly introduces our previous work on ADD
documentation and evolution in a localized software project
context. We give an overview of the basic approach to



Figure 1. Triple View Model Framework

managing ADDs, which provides a foundation for exploring
ADD paradigms in GSD.

A. Triple View Model

To capture and document the ADD set in a software
project, we propose the Triple View Model (TVM) to
clarify the notion of ADDs and to cover key features in
an architecting process [7].

The TVM is defined by three views: the element view,
the constraint view, and the intent view. This is analogous
to Perry/Wolf models elements, form, and rationale but with
expanded content and specific representations [20]. Each
view in the TVM is a subset of ADDs, and the three
views together constitute an entire ADD set. Specifically,
the three views mean three different aspects when creating
an architecture, i.e., “what”, “how”, and “why”, as shown
in Fig. 1. The three aspects aim to cover design decisions
on “what” elements should be selected in an architecture,
“how” these elements combine and interact with each other,
and “why” a certain decision is made. The detailed contents
of each view in the TVM are illustrated in Fig. 2.

In the element view, the ADDs describe “what” elements
should be selected in an architecting process. We define
computation elements, data elements, and connector ele-
ments in this view. Computation elements represent pro-
cesses, services, and interfaces in a software system. Data
elements indicate data accessed by computation elements.
Both computation elements and data elements are regarded
as components in software architecture, and connector ele-
ments are (at minimum) communication channels (that is,
mechanisms to capture interactions) between those compo-
nents in the architecture.

In the constraint view, the ADDs are defined as behaviors,
properties, and relationships. They describe constraints on
system operations and are typically derived from require-
ment specifications. Specifically, behaviors illustrate what a
system should do and what it should not do in general. It
specifies prescriptions and proscriptions based on require-
ment specifications and other system drivers. Properties are
defined as constraints on a single element in the element
view, and relationships are constraints on interactions and
configurations among different elements.

Figure 3. The Process of the Scenario-Based Method

The ADDs in the intent view are composed of rationale
and best-practices in an architecting process. Rationale,
which includes alternatives, motivations, trade-offs, justifica-
tions and reasons, is generated when analyzing and justifying
every decision that is made. Best-practices are styles and
patterns we choose for system architecture and design. The
architectural decisions in the intent view mainly exist as tacit
knowledge [24].

B. Scenario-based ADD Documentation and Evolution

The TVM is the foundation of ADD documentation and
evolution. Based on the TVM, we define the scenario-based
ADD documentation and evolution method (SceMethod) [7].

In the SceMethod, we aim to obtain and specify the
element view, constraint view, and intent view through end-
user scenarios, which are represented by Message Sequence
Charts (MSCs) [21]. Figure 3 illustrates the SceMethod
process. At the beginning of the architectural design process,
we obtain initial ADD results. Later on, as the requirements
change, the ADDs are evolved and refined according to
the new or updated requirements. By documenting all the
possible ADDs and evolving these decisions with changing
requirements, the SceMethod effectively makes ADDs ex-
plicit and reduces architectural knowledge evaporation.

Basically, we have the following four steps in the
SceMethod to derive ADDs in a software project. For the
sake of brevity, we will not discuss the detailed process of
each step, but just give a brief introduction. We have the full
description in [8].

1) Initialization: Before applying the TVM to end-user
scenarios, the requirements of the software system are
elicited, then we use MSCs to describe both the positive and
negative scenarios. An MSC is composed of agent instances,
interaction messages, and the timelines of the agents.

2) From MSC Syntax to Element View: We derive the
element view directly from the syntax of MSCs. Specifically,
each agent instance is taken as a computation element, and
from the interaction messages between the source and target
agent instances, we can extract data elements accessed by
computation elements. Connector elements serve as commu-
nication channels between computation elements. Therefore,
the element view is derived as follows:



Figure 2. Triple View Model for Architectural Design Decisions

Computation Elements = {Agent Instances}
Data Elements = {Interaction Messages}
Connector Elements = {Channels between Agents}
3) From MSC Semantics to Constraint View: Based on

the semantics of MSCs, we analyze behavior, properties, and
relationships of the goal system to document ADDs in the
constraint view. The ADDs on the behavior of the system
are documented as:

Behavior = {Prescriptions; Proscriptions}
Prescriptions = {Positive Scenarios}
Proscriptions = {Negative Scenarios; Exceptions}
In addition, we use three factors to define properties, and

we adopt simple path expressions to illustrate the interacted
events in the MSCs to specify relationships:

Properties = {Receive; Issue; Check}
Relationships = {Event Traces by Path Expressions}
4) Intent View Documentation: Since decision making

strategies are usually behind stakeholders’ thoughts, the
intent view cannot be derived directly from MSCs, which
make it difficult to define a formal specification for docu-
menting the intent view. The best way to make the intent
explicit is to record decision making strategies as the archi-
tecting process moves forward. Specifically, answering each
question that occurs to the stakeholders in the architecting
and designing phase is helpful to constitute the ADDs in
the intent view. Besides, architectural styles, architectural
patterns and design patterns that we apply as best-practices
should also be recorded as design decisions in the intent
view.

Rationale = {Answers to The Intent-Related Questions}
Best-Practices = {Architectural/Design Styles and Patterns}

III. MULTI-SITE ADD MANAGEMENT STRATEGY

As mentioned previously, the TVM and the SceMethod
are the foundation of architectural knowledge management
in GSD. However, managing ADDs in GSD becomes more
difficult and complex than in LSD. On the one hand,
the capturing and the documenting on ADDs are not just

Table I
MULTI-SITE ADD MANAGEMENT STRATEGIES

Strategy ADD Management Mechanism

Client-Server
Strategy

Centralized ADD documentation on the
headquarters site;
Centralized ADD evolution on the headquarters site;
Central repository is set up to store ADD knowledge
information from the headquarters site;
Central repository is accessed by all the sites.

Hybrid
Strategy

Individual ADD documentation on each local site;
Individual ADD evolution on each local site;
Central repository is set up to store ADD knowledge
information from each local site;
Central repository is accessed by all the sites.

Incremental
Strategy

Individual ADD documentation on site 1;
Individual ADD evolution on site 1;
ADD knowledge on site 1 is transferred to site 2;
Individual ADD documentation on site 2;
Individual ADD evolution on site 2;
ADD knowledge on site 2 is transferred to site 3;

.

.
ADD knowledge on site n-1 is transferred to site n;
Individual ADD documentation on site n;
Individual ADD evolution on site n.

within a centralized environment, but considered for multi-
site teams distributed geographically and temporally. On
the other hand, the communication and the exchange of
ADDs have a significant impact on the coordination of
the distributed teams, and further, influence the subsequent
analysis, design and implementation of global projects.

In order to support ADD management in GSD projects,
we propose three different strategies for managing the doc-
umentation and the evolution of ADDs in a distributed con-
text, and discuss how distributed sites coordinate with each
other to share and maintain consistent architectural knowl-
edge. The three strategies for multi-site ADD management
are client-server strategy, hybrid strategy, and incremental
strategy respectively. Table I describes the detailed ADD
management mechanism for each strategy.

In the client-server strategy, one site in the global software
teams is considered as the headquarters, and it is responsible
for the entire process of ADD documentation and evolution



in the global software project. Therefore, all the tasks on
ADD documentation and evolution are conducted in the
headquarters, which is similar to a localized software project
context. In addition, a central repository is set up in the
headquarters site to record and store the up-to-date ADDs,
so that all the other sites can access the repository to share
and reuse the ADDs through the global context. We term
this strategy the client-server strategy because architectural
knowledge resides in a central repository (as the server) and
is accessed by all the distributed sites (as the clients).

In the hybrid strategy, every individual site manages
architectural knowledge in a localized context, i.e., each site
in the GSD project documents and evolves its own ADDs
that are derived from its local architecting process. However,
a central repository is also set up in one of the GSD sites
for storing and sharing architectural knowledge throughout
all the global teams. The repository is accessed by all the
sites in the global project, and by this means, different sites
can share and reuse ADD knowledge, or even reapply ADD
knowledge in a different context. We term this strategy the
hybrid strategy because it combines both the local ADD
management and the global architectural knowledge sharing
and reusing.

In the incremental strategy, the ADD management mech-
anism is analogous to the incremental development, i.e.,
on site 1, it manages the local ADD documentation and
evolution process, and stores all the architectural knowledge
in its local site. When site 1 derives all the ADD knowledge,
it transfers the ADDs to site 2. Site 2 manages its local
ADD documentation and evolution as well, and moreover,
it combines the ADD information from site 1 into a larger
ADD set. Similarly, when site 2 derives all the ADD
knowledge, it transfers the ADDs to site 3, which follows the
same way as site 1 and 2. In this strategy, each site captures
ADDs in a certain context of the global project, and the final
goal is that we are able to have a fully complete ADD set
through the incremental documenting and evolving process.

IV. ADD MANAGEMENT PARADIGMS IN GSD

In this section, we aim to explore the typical ADD man-
agement paradigms in GSD. First, we introduce three main
software project structures adopted in a global development
context, then we discuss the corresponding paradigm that is
specific to each project structure.

A. Global Software Project Structures

Since global software projects very often have to deal
with large and complex software systems, and development
activities are performed by geographically different teams,
the structure of a global software project plays a significant
role in GSD. A good structure provides an effective way to
organize the GSD project across multiple development sites,
and in the meantime, it also offers a platform for managing

the resources on both the development and the organizational
activities.

A large number of possible ways to structure the GSD
projects have been adopted. The main structures widely used
are product-based structure, process-based structure, and
release-based structure [3]. In addition, platform-based struc-
ture, competence-based structure, and open source structure
are also often considered in GSD [3]. In this paper, the
focus is on the first three typical structures to address ADD
management in GSD.

In a product-based structure, a global system is decom-
posed into different components based on its requirement
specification. Different components are then allocated as
work items to different global teams. In a process-based
structure, work items are allocated across different teams
in accordance with the development phases of a software
project. Specifically, we may allocate requirement, design,
development, and test to different sites, and each site focuses
on the tasks in the specific phase. As for the release-based
structure, each site is responsible for a different release of
the project, i.e., the first product release is developed on site
1, the second release is developed on site 2, and the third on
site 3. In most cases, the releases are overlapped on different
sites due to the timing requirement from customers.

B. ADD Management Paradigms

Given the foregoing discussion, we are going to explore
and discuss three different paradigms for managing ADDs
in GSD, which are specific to the three widely used software
project structures.

1) Product-based Paradigm (Product-based Structure /
Hybrid Strategy): For product-based structures in GSD,
the system is decomposed into components and the com-
ponents are allocated to distributed sites, thus each site
conducts its own architecting process locally focusing on
the functionality of the allocated components. During the
architecting process in each local site, ADDs can be captured
and documented by using the TVM and the SceMethod.
We adopt the hybrid strategy to manage ADDs in the GSD
projects with product-based structures. Figure 4 illustrates
this paradigm in details.

As shown in Fig. 4, each site manages ADD documenta-
tion and ADD evolution locally according to the SceMethod
and the TVM that we discussed in localized software
projects. In addition, one of the global sites is selected as
the headquarters and needs to set up a central repository
for recording and storing the architectural decisions, which
enables the geographically distributed sites to share ADDs
in the global context. Each site can access the central repos-
itory, check in their local ADDs to the repository, and even
read and reuse the ADDs from other sites when necessary.
The headquarters site with the central repository coordinates
the architectural knowledge in the repository and keep them
consistent without conflicts. During the evolutionary process,



Figure 4. Product-based Paradigm in GSD

Figure 5. Process-based Paradigm in GSD

the evolved ADDs from each site are also transferred to the
central repository. As we discussed for the hybrid strategy,
the multiple sites in GSD manage architectural decisions
not only within their local sites, but also with a central
coordination to share and reuse architectural knowledge.

2) Process-based Paradigm (Process-based Structure /
Client-Server Strategy): For the process-based structures
in GSD, it is appropriate to use client-server strategy for
managing ADDs. The reason is that the architecting process
mainly occurs in the architecture phase, and all the other sub-
sequent development phases, i.e., the design, development,
and testing phases, are largely considered as the clients who
access the ADDs that are derived in the architecture phase.
Therefore, the client-server strategy provides us suitable
support for GSD projects with process-based structures. We
describe this paradigm in Fig. 5.

In Fig. 5, we note that the architecting process is con-
ducted in the site with architecture phase, relying on our
TVM and SceMethod to derive the entire ADD set. More-
over, a repository is set up in the same site to manage
architectural knowledge documentation and evolution. This
repository is also regarded as a central repository among the
global teams, and all the other sites access the repository
for sharing and reusing ADDs in the specific development
phases. In some cases, the subsequent development phases,
such as design phase, may also come up with new ADDs
as the process proceeds. However, we do not deal with this
kind of exceptions for now, but only explore the general
paradigms that are normally used in GSD. More implications
and exceptions will be addressed in our future work.

3) Release-based Paradigm (Release-based Structure /
Incremental Strategy): The third paradigm that we are going
to explore and analyze is for GSD projects with the release-

Figure 6. Release-based Paradigm in GSD

based structures. In release-based structures, different prod-
uct releases are allocated to different sites, so that each
site handles all the development activities for the assigned
release. It is obvious that in this paradigm each site derives
its ADD set locally, and maintain ADD documentation and
evolution in its local repository. Note that we do not need to
create a central repository as the previous two paradigms,
but only use each local repository for the architectural
knowledge management.

As illustrated in Fig. 6, each repository plays an impor-
tant role in establishing a bridge to transfer architectural
knowledge, which complies with the mechanism in our
incremental strategy. Typically, the ADDs from the first site
are transferred to the second site, so that the architectural
knowledge from the first product release can be reused
efficiently in the next release. In the release-based structure,
the multiple releases contain similar or even the same func-
tionalities and product features, which implies that the ADDs
derived from different releases may have similarities as well.
By adopting the incremental strategy in this paradigm, each
repository can serve as a reused ADD pool, and the latter
site is easy to combine, reuse, or even modify the ADDs
derived from the former site.

V. RELATED WORK

The key concepts of the traditional view on software
architecture are components and connectors [4], [20]. Nowa-
days, software architecture has been seen as a set of ADDs
[16], [23]. The architectural decisions in the software archi-
tecting process are increasingly focused by researchers and
practitioners [12], [18], and ADDs are also considered to be
a part of architectural knowledge [19].

Guidelines for documenting software architecture has
been provided in [9], [15], however, those documentation
approaches do not explicitly capture ADDs in the architect-
ing process. Recently, many models and tools have been
proposed for capturing, managing, and sharing ADDs, most
of which are discussed and used within a localized software
development context. Tyrees template [25] provides a simple



document describing key architectural decisions, which es-
tablishes a concrete direction for design and implementation,
and also clarifies the rationale for different stakeholders.
In [19], an ontology of ADDs and their relationships have
been described. This ontology then can be used to construct
architectural knowledge of a software system. ADDSS [6]
is a web-based tool for documenting ADDs. It establishes
the backward and forward traceability between requirements,
decisions, and architectures. Other models and tools such
as Archium [17] and AREL [22] are also proposed for
managing ADDs

With the increasing attention paid to GSD, ADD man-
agement should be able to effectively applied in a GSD
setting as well. However, little work has be done on ADD
management in the GSD environment. A few of general ar-
chitectural knowledge management practices for GSD have
been proposed in [10], and the usefulness of these practices
are evaluated in [11]. Furthermore, a literature review has
been done [2] to explore architectural knowledge in a GSD
context, and to synthesize architectural knowledge concepts,
practices, tools and challenges that are important in GSD. In
[26], six architectural viewpoints are defined to model GSD
systems, which are based on a metamodel that has been
derived after a thorough domain analysis of GSD literature.

Notably, architectural knowledge, specifically, ADDs, has
not been widely discussed and supported in GSD, and the
aforementioned approaches do not address in detail how
to capture, share, and evolve ADDs in a global software
project. In this paper, our goal is to provide a fundamental
framework on managing ADDs in the GSD context.

VI. CONCLUSIONS AND FUTURE WORK

With the increasing trend of GSD, the management of
ADDs becomes more significant and critical due to the
geographical, temporal, and cultural challenges innate to
GSD. In this paper, we propose three different strategies
for managing ADDs within multiple distributed development
sites. Based on this, we explore three typical ADD manage-
ment paradigms that can be widely used in GSD, and provide
a high-level methodology on how to manage the documenta-
tion and the evolution of ADDs in the GSD context. In our
future work, we plan to perform field studies to evaluate
the ADD management paradigms in GSD projects. We also
intend to investigate problems and implications for ADD
management to provide insights into architectural knowledge
management in GSD.

REFERENCES

[1] First Workshop on Architecture in Global Software
Engineering. Helsinki, Finland, August 2011.
Http://www.cs.bilkent.edu.tr/AGSE-2011/.

[2] N. Ali, S. Beecham, and I. Mistrik. Architectural knowledge
management in global software development: A review. In
ICGSE’10, pages 347–352, 2010.

[3] A. Avritzer, D. Paulish, and Y. Cai. Coordination implications
of software architecture in a global software development
project. In WICSA ’08, pages 107–116, 2008.

[4] L. Bass, P. Clements, and R. Kazman. Software architecture
in practice. Addison-Wesley, Boston, MA, USA, 1998.

[5] J. Bosch. Software architecture: The next step. In EWSA’04,
pages 194–199, 2004.

[6] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas. A web-based
tool for managing architectural design decisions. SIGSOFT
Softw. Eng. Notes, 31, September 2006.

[7] M. Che and D. E. Perry. Scenario-based architectural design
decisions documentation and evolution. In ECBS’11, pages
216–225, 2011.

[8] M. Che and D. E. Perry. Managing architectural design
decisions documentation and evolution. International Journal
Of Computers, 6:137–148, 2012.

[9] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers,
and R. Little. Documenting Software Architectures: Views and
Beyond. Pearson Education, 2002.

[10] V. Clerc. Towards architectural knowledge management
practices for global software development. In SHARK’08,
pages 23–28, 2008.

[11] V. Clerc, P. Lago, and H. v. Vliet. The usefulness of
architectural knowledge management practices in gsd. In
ICGSE’09, pages 73–82, 2009.

[12] J. C. Dueñas and R. Capilla. The decision view of software
architecture. In EWSA’05, pages 222–230, 2005.

[13] R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The geography
of coordination: dealing with distance in r&d work. In
GROUP ’99, pages 306–315, 1999.

[14] J. D. Herbsleb. Global software engineering: The future of
socio-technical coordination. In FOSE, pages 188–198, 2007.

[15] C. Hofmeister, R. Nord, and D. Soni. Applied software
architecture. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[16] A. Jansen and J. Bosch. Software architecture as a set of
architectural design decisions. In WICSA, pages 109–120,
2005.

[17] A. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer.
Tool support for architectural decisions. In WICSA, page 4,
2007.

[18] P. Kruchten, R. Capilla, and J. C. Dueñas. The decision view’s
role in software architecture practice. IEEE Softw., 26:36–42,
March 2009.

[19] P. Kruchten, P. Lago, and H. V. Vliet. Building up and
reasoning about architectural knowledge. In Quality of
Software Architectures, pages 43–58, 2006.

[20] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. SIGSOFT Softw. Eng. Notes, 17:40–
52, October 1992.

[21] D. M. A. Reniers. Message sequence chart: Syntax and
semantics. Technical report, Faculty of Mathematics and
Computing, 1998.

[22] A. Tang, Y. Jin, and J. Han. A rationale-based architecture
model for design traceability and reasoning. J. Syst. Softw.,
80:918–934, June 2007.

[23] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. Wiley, 2009.

[24] D. Tofan. Tacit architectural knowledge. In ECSA’10, pages
9–11, 2010.

[25] J. Tyree and A. Akerman. Architecture decisions: Demysti-
fying architecture. IEEE Softw., 22:19–27, March 2005.

[26] B. M. Yildiz and B. Tekinerdogan. Architectural viewpoints
for global software development. In ICGSE, pages 9–16,
2011.


	Introduction
	Localized ADD Management Approach
	Triple View Model
	Scenario-based ADD Documentation and Evolution
	Initialization
	From MSC Syntax to Element View
	From MSC Semantics to Constraint View
	Intent View Documentation


	Multi-site ADD Management Strategy
	ADD Management Paradigms in GSD
	Global Software Project Structures
	ADD Management Paradigms
	Product-based Paradigm (Product-based Structure / Hybrid Strategy)
	Process-based Paradigm (Process-based Structure / Client-Server Strategy)
	Release-based Paradigm (Release-based Structure / Incremental Strategy)


	Related Work
	Conclusions and Future Work
	References

