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Abstract—Bug fixing is a crucial part of software development
and maintenance. A large number of bugs often indicate poor
software quality since buggy behavior not only causes failures
that may be costly but also has a detrimental effect on the
user’s overall experience with the software product. The impact
of long lived bugs can be even more critical since experiencing
the same bug version after version can be particularly frustrating
for user. While there are many studies that investigate factors
affecting bug fixing time for entire bug repositories, to the best of
our knowledge, none of these studies investigates the extent and
reasons of long lived bugs. In this paper, we analyzed long lived
bugs from five different perspectives: their proportion, severity,
assignment, reasons, as well as the nature of fixes. Our study
on four open-source projects shows that there are a considerable
number of long lived bugs in each system and over 90% of
them adversely affect the user’s experience. The reasons of these
long lived bugs are diverse including long assignment time, not
understanding their importance in advance etc. However, many
bug-fixes were delayed without any specific reasons. Our analysis
of bug fixing changes further shows that many long lived bugs
can be fixed quickly through careful prioritization. We believe
our results will help both developers and researchers to better
understand factors behind delays, improve the overall bug fixing
process, and investigate analytical approaches for prioritizing
bugs based on bug severity as well as expected bug fixing effort.

Index Terms—Bug tracking system, bug triaging, bug survival
time

I. INTRODUCTION

Software development and maintenance is a complex pro-
cess. Although developers and testers try their best to make
their software error free, in practice software ships with bugs.
The number of bugs in software is a significant indicator
of software quality since bugs can adversely affect users
experience directly. Therefore, developers are generally very
active in finding and removing bugs.

To ensure high software quality for each release, devel-
opers/managers triage bugs carefully and schedule the bug
fixing tasks based on their severity and priority. Despite such
a rigorous process, there are still many bugs that live for a
long time. We believe the impact of these long lived bugs
(for our study, bugs that are not fixed within one year after
they are reported) is even more critical since the users may
experience the same failures version after version. Therefore,
it is important to understand the extent and reasons of these
long lived bugs to improve software quality.

A number of previous studies have investigated the overall
factors affecting bug fix time. Giger et al. [7] empirically inves-
tigated the relationships between bug report attributes and the
time to fix. Zhang et al. [23] predicted overall bug fix time in
commercial projects. Canfora et al. [6] used survival analysis
to determine the relationship between the risk of not fixing a

bug within a given time frame and specific code constructs
changed when fixing the bug. Zhang et al. [22] examined
factors affecting bug fixing time along three dimensions: bug
reports, source code involved in the fix, and code changes that
are required to fix the bug.

While these studies are useful in understanding the overall
factors related to bug fix time, we know of no study that has
specifically investigated long lived bugs to understand why
they take such a long time to be fixed and how important
they are. We point out that analyzing entire bug datasets
using various machine learning or data mining techniques
(as done in previous work) is not sufficient in understanding
long lived bugs due to the imbalanced dataset, i.e., containing
relatively low proportion of long lived bugs compared to
others. Imbalanced dataset is a major problem in most data
mining applications since machine learning algorithms can be
biased towards the majority class due to over-prevalence [8].
Therefore, if we automatically analyze all the bug reports using
a standard data mining technique, it is highly likely that the
main factors behind long lived bugs would get lost. In this
paper, we conduct an exploratory study focused solely on long
lived bugs to understand their extent and reasons with respect
to following research questions:

1) What proportion of the bugs are long lived? The
answer to this question is important since if there are
few long lived bugs, there may be little reason to worry.

2) How important long lived bugs are in terms of
severity? It is important to understand how crucial these
bugs were from the perspective of both developers and
users. If they are minor or trivial bugs, their impact
would be less on overall software quality.

3) Where was most of the time spent in the bug fixing
process? The answer to this question is important to
identify the time consuming phases so that developers
as well as researchers can work on improving the process
involving that phase.

4) What are common reasons for long lived bugs? To
improve the bug fixing process, first we need to under-
stand the underlying reasons for delay. Delineating the
common reasons of long lived bugs will help researchers
deal with the problem more systematically.

5) What is the nature of long lived bug fixes? The answer
to this question will help us in better understanding the
bug fixing process, estimating change efforts, and so on,
which will be useful in exploring potential approaches
for improving overall bug fixing process.
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We study four open source projects namely JDT, CDT, PDE,
and Platform from the Eclipse product family, 1 and make the
following key observations:

1) Despite advances in software development and mainte-
nance processes, there are a significant number of bugs
in each project that survive for more than one year.

2) More than 90% of long lived bugs affect users’ normal
working experiences and thus are important to fix.
Moreover, there are several duplicate bug reports for
these long lived bugs, which indicates the users’ demand
for fixing them.

3) The average bug assignment time of these bugs was
more than one year despite the availability of a number
of automatic bug assignment tools that could have been
used. The bug fix time after the assignment was another
year on average.

4) Reasons for long lived bugs are diverse. While problem
complexity, reproducibility, and not understanding the
importance of some of the bugs in advance are the
common reasons, we observed there are many bug-fixes
that got delayed without any specific reason.

5) Unlike previous studies [22], we found that a bug
surviving for a year or more does not necessarily mean
that it requires a large fix. We found that 40% of long-
lived bug fixes involved few changes in only one file.

We believe these findings will play an important role
in developing new approaches for bug triaging as well as
improving the overall bug fixing process.

II. BACKGROUND

A. Bug Tracking System:

Generally project stakeholders maintain a bug database for
tracking all the bugs associated with their projects. There are
several online bug tracking systems such as Bugzilla, JIRA,
Mantis etc. These systems enable developers/managers to
manage bug database for their projects. Different repositories
may have different data structures and follow different life cy-
cles of bugs. The dataset used in our work was extracted from
Bugzilla, a popular online bug tracking system. Therefore, the
rest of the discussion in this paper regarding the bug tracking
system is only limited to Bugzilla.

Any person having legitimate access to a project’s bug
database can post a change request through Bugzilla. A
change request could be either a bug or an enhancement.
In Bugzilla, however, both bugs and enhancements are repre-
sented similarly and referred as bugs with an exception that for
enhancements severity field is set to enhancement. Generally
bug reporters provide a bug summary, bug description, the
suspected product, and the component name with its severity.

According to Eclipse Bugzilla documentation, the severity
level can be one of the following values, which actually
represents the degree of potential harm.2

Blocker: These bugs block the development and/or test-
ing work. There exists no workaround.

1http://www.eclipse.org
2http://wiki.eclipse.org/Eclipse/Bug Tracking
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Fig. 1. Life Cycle of a Bug in Bugzilla

Critical: These bugs cause program crashes, loss of
data, or severe memory leaks.
Major: These bugs result major loss of function.
Normal: These are regular issues. There are some loss of

functionality under specific circumstances.
Minor: These bugs cause minor loss of functionality, or

other problems where an easy workaround was present.
Trivial: These are generally cosmetic problems such as

misspelled words or misaligned text.
Reporters also specify the software version, the platform

and operating system where they encountered the bug so that
developers can easily reproduce it. Bug reporters also can
attach files to the bug report such as screen shots, failing test
cases etc. Once a bug is posted, all other related developers can
make comments regarding the bug to discuss different issues.
Therefore, a bug repository has rich set of information that
can be analyzed to gain insight about bugs.

B. Bug Life Cycle

The overall bug fixing process in a system is directly related
to the bug life cycle maintained by the bug tracking system.
Although Eclipse projects have different schemes for using
Bugzilla, a common life cycle for a bug is as follows: 3

Validation: At the start of each day, each project/component
team leader triages NEW bugs to verify if the bug is really
a bug and if the provided information is correct. In case of
any inconsistencies, the bug triager can correct them. The bug
triager also can request further information to validate a bug
if it is necessary. If there is no response within a week, the
team leader closes the bug marking RESOLVED, INVALID, or
WONTFIX. However, the reporter can reopen the bug anytime
if she has more information.

Prioritization In this stage, the triager first determines
whether a bug is a feature request. If so, the severity of the
bug is changed to enhancement. Otherwise, she checks the
severity level of the bug to make sure that it is consistent with
the bug description. Then the priority of the bug is set based
on following guidelines: 4

P1: These bugs are a must fix for the indicated target
milestone.
P2: These bugs are very important for the indicated target

milestone. Generally developers try to resolve all the P2 bugs.

3http://wiki.eclipse.org/Development Resources/HOWTO/Bugzilla Use
4http://wiki.eclipse.org/WTP/Conventions of bug priority and severity
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TABLE I
DATA SET

System Change Requests # Bugs # Enhancements # Bug Fixed
JDT 46,308 38,520 7,788 18,873
CDT 14,871 12,854 20,17 7,260
PDE 13677 11,958 1,719 6,854
Platform 90,691 78,120 12,571 33,738
Total 165,547 141,452 24,095 66,725

P3: It is the default priority. If the bug triager is uncertain
about the priority of a bug or it is actually a normal bug, she
can set P3 priority. Then the assigned developer can adjust it
if appropriate.
P4: These bugs should be fixed if time permits.
P5: These are valid bugs, but there are no plans to fix.

Also P5 priority indicates that help is wanted.
Fixing: At this point, a bug remains in the component’s

“inbox” account until a developer takes the bug, or the team
leader assigns it to them. After fixing the bug, the developer
mark it as RESOLVED-FIXED.

Verification: Once a bug is fixed, it is assigned to another
committer on the team to verify. Ideally, all bugs should be
verified before the next integration build. Once the verifier
tests that the bug is completely resolved, she changes the bug
status to VERIFIED. Figure 1 represents all possible state
transitions of a bug in Bugzilla.

III. STUDY SETUP
A. Subject Systems

We choose four open source projects: JDT, CDT, PDE, and
Platform from the Eclipse product family for our study. There
are mainly two reasons for choosing these projects. First,
Eclipse projects are highly successful and have been widely
used in software engineering research. Second, although these
projects belong to the same product family, they are from
different domains. The Eclipse Platform defines the set of
frameworks and common services that collectively make up
infrastructure required to support the use of Eclipse. The
Plug-in Development Environment (PDE) provides tools to
create, develop, test, debug, build and deploy Eclipse plug-
ins, fragments, features, update sites and RCP products. On the
other hand, JDT and CDT provide a fully functional Integrated
Development Environment based on the Eclipse platform for
developing Java, and C and C++ applications. We have used
Lamkanfi et al’s [11] bug dataset to extract the bug information
associated with these projects. This dataset includes all the
bug reports and their histories from their inception to March
2011 for these four projects (extracted from Eclipse Bugzilla
database). 5 A more detailed description of the dataset is
presented in Table I.

B. Terms and Metrics
We make use of bug tracking and version control system’s

information to calculate metrics that we were interested in.
This section defines different terms and metrics that we use
in the rest of the paper.

Bug Introduction Time (TI ): This is the timestamp when
the buggy code is committed for the first time for a given bug.

5https://bugs.eclipse.org/bugs/
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Fig. 2. An Example Timeline of a Bug

Bug Reporting Time (TR): This is the timestamp when a
bug is reported to the Bugzilla system by a user/developer.

Bug Assignment Time (TA): This is the timestamp when
a bug was officially assigned to the right developers through
Bugzilla. If a bug is assigned to multiple developers, we use
the assignment time of the developer who fixed the bug. If a
bug is fixed by multiple developers, we use the assignment
time of the developer who committed the last changes.

Bug Severity Realization Time (TS): This is the times-
tamp when the actual severity of a given bug was understood
by the developers and thus the severity field of that bug was
changed for the last time.

Bug Fix Time (TF ): This is the timestamp when a devel-
oper officially marked a bug as FIXED in Bugzilla through
the resolution field.

Bug Assignment Period (AP ): This is the lapse time
between when the bug was opened and when it was assigned
to the right developer. Mathematically, AP = TA − TR

Bug Fixing Period (FP ): This is the period of time that
developers took to fix a bug. It should be noted that it is not
the actual coding time of the bug-fix. Instead, it is the time
period between the bug assignment time and the bug fix time.
Mathematically, FP = TF − TA

Pre-Severity Realization Period (Pre-SRP ): This is the
period of time developers took to understand the actual
severity of the bug. Therefore, pre-severity realization time
is the time between bug reporting time and the time when
the severity was changed for the last time. Mathematically,
Pre-SRP = TS − TR.

Post-Severity Realization Period (Post-SRP ): This is the
time developers took to fix the bug after realizing the actual
severity time. Mathematically, Post-SRP = TF − TS .

Bug Verification Period (VP): This is the period of time
that a developer took to verify a bug after it is marked as
FIXED in Bugzilla. Mathematically, V P = TV − TF .

Bug Survival Period (SP): This is the period that a bug
was exist in the system. Although it should be ideally the time
period between the bug introduction time (TI ) and bug fixing
time (TF ), in our study it is the time period between TR and
TF . It should be noted that since TR is always greater than TI ,
our calculated SP never overestimates actual SP . However,
we do not subtract the time period from SP when a bug was
temporarily closed. Figure 2 visually presents all the terms
and metrics in a timeline.

C. Identification of Faulty Source Code

Previous studies [9] showed that when developers fix bugs
they often put the bug id in their commit message. Therefore,
to get the version histories and commit messages of these
four projects, first we accessed their git repositories. Then
using JGit APIs, we extracted all the commit messages from
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the histories and searched all numbers. 6 Then we matched
each number with the bug IDs. To further ensure that those
are indeed bug IDs, we only accepted those commits that
contain the term bug(s) (case insensitive). In this way, we
reduced the chance of getting false positives, although we
might missed some true mappings. Then we used git diff to
compute following metrics for bug fixes:

Number of Changed Files: It is the number of files that
went for changes in the bug fixing commit. If a bug was fixed
in multiple commits, it is the total number of distinct files in
all commits.

Number of Hunks: A hunk is a chunk of adjacent lines that
was changed. For a bug fix spanning over multiple commits,
it is total number of hunks in all commits. This is useful to
understand how many times developers had to move here and
there to fix a bug.

Code Churn: This is the total number of changed lines.
Since we use git diff itself, the changes in comments were
counted as well. For multiple commits, it is the total number
of changed lines in all commits. It should be noted that if a
line is changed, it is considered as a line deletion first and
then addition of another line. Thus the value of code churn
for a line change is two.

IV. STUDY RESULTS

RQ1: What proportion of the bugs are long lived?
Defining long lived bugs is subjective since the time threshold
for deciding whether a bug is long lived or short lived could
vary across projects, persons, or studies. In this research
question, we analyze the survival time of all the fixed bugs
in each subject system and define the long lived bugs more
concretely for our study.

To this end, we first group bugs based on their survival
period (SP ) and count the number of bugs in each group as
shown in Table II. Results show that around 50%(+/-4%) of
the total (fixed) bugs were fixed within a week. This indicates
that even in open source project, developers are active in
fixing bugs. 83%-90% of bugs were fixed within six months.
However, as the results show, 10% to 17% of bugs took more
than six months to be fixed.

Although many of us believe that a bug could be considered
as long lived if it survives more than six months, in this study
we have considered only those bugs as long lived that survive
more than one year. There are two main reasons behind this
decision. First, we wanted to be more conservative so that we
can investigate really long lived bugs. Second, since 2006, the
Eclipse Foundation has coordinated an annual simultaneous
release for all projects. Therefore, if a bug was not fixed in
one year, it is expected that the bug propagated through at least
two major releases. And it would not be a pleasant experience
for a user if s/he experiences the same bug in subsequent major
versions of a software.

Surprisingly, even for such a conservative definition, we
found more than 4,000 long lived bugs, in total, in these four
subject systems. We believe this is a huge number and thus it is
important to investigate them quantitatively and qualitatively.

6http://www.eclipse.org/jgit/

TABLE II
BUG FIX TIME

Time JDT CDT PDE Platform
# Bugs [%] # Bugs [%] # Bugs [%] # Bugs [%]

<1 day 5,009 26.54 1,911 26.32 2,154 31.43 8,244 24.44
1-7 days 4,788 25.37 1,485 20.45 1,570 22.91 7,420 21.99
8-30 days 3,704 19.63 1,230 16.94 1293 18.86 6,442 19.09
1-6 months 3,604 19.10 1,426 19.64 1,212 17.68 7,101 21.05
6-12 months 855 4.53 567 7.81 353 5.15 2,173 6.44
>1 year 913 4.84 641 8.83 272 3.97 2,358 6.99
Total 18,873 100.00 7,260 100.00 6,854 100.00 33,738 100.00

TABLE III
IMPORTANCE OF LONG LIVED BUGS

System Blocker Critical Major Normal Minor Trivial
JDT 1 5 49 712 119 27
CDT 2 4 61 523 37 14
PDE 0 6 20 224 13 9
Platform 6 42 221 1856 170 63
Total 9 57 351 3315 339 113

There are 5%-9% of total bugs in systems which takes more
than one year to be fixed.

RQ2: How important long lived bugs are in terms of
severity? There are two fields in Bugzilla that indicate the
importance of a bug: i) severity and ii) priority. However, based
on their usage, severity is more important than priority since
severity actually indicates how harmful a bug is. On the other
hand, priority often describes the relative work schedule of
fixing a bug set by the developers for a given milestone. For
example, if there are 10 critical bugs in a system but developers
have time to fix only five bugs, they can set higher priority to
any five bugs based on some consideration and set a relatively
lower priority to others. Sometimes, developers can set high
priority to even a less severe bug, if it is expected to fix easily
than a critical bug. Therefore, for this research question, we
emphasize severity over priority.

Table III presents the importance of long lived bugs based
on their severity. Our results show that almost 90% of the long
lived bugs have severity level of normal or above. Project-
wise the proportion varied from 84% to 90%. According to the
Eclipse Bugzilla documentation, only minor and trivial
bugs do not interfere with normal work or use, which means
that any bugs having severity level normal and above ad-
versely affect user experiences. Taking that information into
account, we can anticipate that the long bug fix process of
these bugs was not due to the fact that they were trivial.

Now let us a take closer look into more severe bugs:
critical and major (blocker bugs generally do not
interfere directly users). Our results show that only 1% to
2% of long lived bugs were critical, whereas 5% to 10%
of long lived bugs were major in each system. The absolute
number ranged from 4 to 42 for critical and 20 to 221
for major bugs. Considering that a critical bug causes
program crashes and/or data loss and a major bug causes
major loss of function, these numbers are high, especially since
all of them took more than one year to be fixed.

Severity Realization Period (SRP ): As a part of this
research question, we are also interested in investigating how
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TABLE IV
ANALYSIS OF SEVERITY FOR CRITICAL AND MAJOR BUGS

System # Bugs Sev. Changed Proportion Max. Changed
JDT 54 23 42.59% 3
CDT 65 21 32.31% 4
PDE 26 11 42.31% 3
Platform 263 115 43.73% 5

TABLE V
TIME NEEDED FOR UNDERSTANDING BUG SEVERITY

System Pre-SRT (Days) Post-SRT (Days)
Avg. Med. Max. Avg. Med. Max

JDT 374 163 1890 338 320 1712
CDT 80 7 590 760 700 1442
PDE 348 388 1274 300 34 1201
Platform 351 164 2208 498 410 2730

long it takes to understand the severity of the bugs. Our initial
hypothesis was that:

Perhaps it took long time to realize the severity of these
important (severity level of critical or major) bugs. But
once the severity was realized it should not take long time to
fix them since they are important problems to solve.

For this analysis, we have considered only those bugs that
have severity level of major or higher because they are the
most important ones. From Table IV, we see that the severity
level of 32%-43% of such bugs was corrected later. This
indicates that the bug reporters could understand the actual
severity level for more than 50% of the bugs at the time of
bug posting. Therefore, it is evident that developers took more
than one year to fix a large number of bugs even after they
realized that the bugs are very important.

Now we analyze the bugs, which severity has corrected later
in Table V. Our results show that it took almost a year on
average to realize the correct severity level of the bug in three
of the four projects. Only exception is the CDT, where the
average Pre-SRP was 80 days. The maximum Pre-SRP of
each system shows that for some bug it took several years to
realize the severity. On the other hand, for these bugs, it took
another year on average to be fixed. For CDT, which was the
best in terms of average Pre-SRP , Post-SRP was more than
two years. From the maximum Post-SRP , we see that some
bugs took even three to eight years to be fixed after developers
realized the actual severity level. Therefore, we can say that
for most of long lived bugs Post-SRP was high regardless
of their Pre-SRP .

Duplicate Bugs: Severity is certainly the most reliable
information to understand the importance of a bug since it is
determined by the bug reporters and supported by developers.
However, a large number of duplicate bugs also may express
their importance since they often indicate that the scope of the
master bug is large and/or the affected users/other developers
are getting frustrated [4]. Therefore, in addition to the severity
level, we also investigated the number of duplicated bugs.

Table VI presents an overview of duplicated bugs of long
lived bugs. Results show that for 9% to 23% of long lived
bugs, users/developers submitted multiple bug reports. From
the maximum number of duplicate bugs, we see that some
bugs have more than 20 duplicated bug reports. The middle

TABLE VI
DUPLICATE BUGS

System # Bugs # Dup # Duplicated Bugs (NOD) Max
Bugs 1 2 3 4 5 >5 NOD

JDT 913 210 101 42 27 10 13 17 26
CDT 641 52 36 8 4 3 0 1 6
PDE 272 50 32 8 2 0 2 6 15
Platform 2358 495 271 102 51 23 15 33 20

columns present more fine grained results of duplicated bugs.

More than 90% of long lived bugs affect users’ normal
working experiences and thus are important to fix. How-
ever, it took a long time to fix these bugs even after real-
izing their severity. Moreover, there are several duplicate
bug reports for these long lived bugs, which indicates the
users’ demand for fixing them.

RQ3: Where was most of the time spent in the bug fixing
process? A bug fixing process majorly can be divided into
three phases in terms of activity: i) assignment phase ii) fixing
phase, and iii) verification phase. In this research question, we
analyze the time taken by team leads/developers in each phase.
Our initial hypothesis about the long lived bugs was:

Perhaps it took a long time to find the appropriate develop-
ers for these bugs. But once the right developers were found,
it should not take too long to fix them.

Table VII presents the average, median, and maximum time
of both assignment period (AP ) and fixing period (FP ) in
terms of days for all long lived bugs. Our results show that
it took more than 1.5 years on average to assign the bugs
to the appropriate developers. The median AP also shows
that the data is fairly normally distributed. The maximum AP
shows that it can take more than six years to assign sum bugs
to the correct developers. We have also observed that more
than 10% of long lived bugs were reassigned 5 times or more.
While we understand that there may be some other reasons for
bug reassignment such as prioritizing work items or workload
balancing, these findings indicate that the assignment of these
long lived bugs was complex and time consuming, supporting
our initial hypothesis.

However, unlike our expectations, the average FP of all
the systems was quite high: around a year. By seeing the
median FP for CDT, we understand the data is skewed. But
for the other three subject systems, it is not the case. Also the
maximum FP shows that, like the bug assignment, it took
more than five years for some bugs to be fixed after they
assigned to the right developers.

On the other hand, for the verification period, we found
that most of the bugs were never verified, at least according to
Bugzilla data. However, if they do get verified, the verification
time is pretty small: less than a month for each subject system.

Bug assignment and bug fixing are still time intensive pro-
cesses, despite the availability of automatic bug assignment
tools that could have been used.

RQ:4 What are common reasons for long lived bugs?
To answer this question, we first manually analyzed all the
critical and major bug reports from JDT. We have
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TABLE VII
BUG ASSIGNMENT TIME VS. BUG FIXING TIME

System Assignment Period (AP) Fixing Period (FP)
Avg. Med. Max. Avg. Med. Max

JDT 463 374 2745 407 376 2854
CDT 603 552 2035 330 97 1815
PDE 484 482 2728 437 393 1622
Platform 459 373 3326 407 409 2854

intentionally chosen the highly severe bugs, since they should
be taken seriously by the developers and thus, we will be able
to identify the actual reasons of delay. We also analyzed 50
recent (critical or major) long lived bugs from PDE and
Platform. Since JDT and CDT are from similar domain, we
did not take any bugs from CDT. In this way, we identified a
set of 105 (= 55+25+25) bug reports for manual analysis.

Tagging Methodology: As we discussed in Section II,
each bug report contains a summary, description and a list of
developers comments, which often provide rich information
about the problems associated the bug. In order to identify
the underlying reasons, first, we read the bug summary and
description to understand the nature of bugs. Second, we
carefully analyze developers’ comments to understand the
reasons for any delays since developers often discuss different
problems associated with a given bug through comments. For
most of the cases, the actual reasons were easily identifiable.
We have quoted several key comment(s) for most of the
categories to better understand the tagging procedure. In the
few cases where the reasons were ambiguous, we relied on
contextual information. The following summarizes a taxonomy
of common reasons for long lived bugs that we found in the
subject systems.

1) Hard to understand: Understanding/locating buggy
statements/files in a software project is hard. Sometimes, iden-
tifying even the buggy component can be hard. For example,
there is a bug ( #128563) in JDT, where developers had hard
time in understanding if it is a VM or JDT bug. The following
comments explains the situation:

“I found something quite interesting. If you move the classes
from the two output folders into the same directory and you
run from there, it works fine. We generate exactly the same
bytecodes in both cases. The VM should behave the same.
Might be a VM bug.”

After two years, another developer commented–“I believe
this is our bug, we should not reference a non accessible type
in our bytecode. The fact it works at times feel like unspecified
behavior from the VM.”

2) Uncertain how to fix: Sometimes developers may
know how to solve a bug, but need to wait for making the
solution consistent/robust with other parts of the software. The
following comments in bug # 3849 represents such a scenario:

“I would like to defer this until we know how we will
implement the new Code Manipulation Infrastructure. This is
only possible if we get a better undo story. Currently we can
only push undo commands on the refactorings undo stack if
a file is save. Otherwise the next save would flush the current
undo stack which would remove the undo object for extract
method.”

3) Hard to fix: This kind of bug is hard to fix. There were
lots of group discussions for a long time regarding different
alternative solutions and finally the group agreed on some
specific solution.

4) Risky to fix: Sometimes, bugs are caught just before
the release. Then if developers think that it would be risky to
change the relevant code, they generally defer it for the next
release although the bug is important. Then it takes a long
time to fix the bug. The following developers’ comments on
bug #80,000 in JDT represents such a scenario:

“Will investigate during RC2 whether there’s a low risk fix
for this.”

Two weeks later, the same developer commented: “Sorry,
too risky to touch at this point.”

5) Incomplete fix: This is considered as one of the common
problems for taking a long time to fix bugs. Developers often
miss corner cases while bug fixing and need to re-fix again
until the problem is not fully solved. Here is a developer’s
comment regarding a bug fix for #38746 in JDT.

“The fix for this problem is not sufficiently robust. Please
see Bug 75454 for more information as to how things can
go wrong. Not only does the situation described there happen
once, but it happens 60 times on start-up ( 10 minutes of
start-up time).”

There are also lots of other reasons for incomplete bug fixes.
For a comprehensive set of reasons for incomplete bug fixes,
please refer to [15].

6) Importance was not realized until duplicate bugs
were reported: We found many bugs where there were some
activities around the bug for some time, which we observed
by reading developers’ comments. After that there was no
activity for a long time. Then somebody pointed out some
duplicate bugs and everybody started talking again; the bug
was fixed quickly. The following comment on bug # 16114 in
PDE represents such an example:

“this one is experienced by several users (see the duplicates
for more info). Looks like something causes certain fragment
files on the disk to be in use and when we try to delete the
project (even with ’force’ option), we fail. This leave us with a
partially deleted project that causes more trouble after that.”

7) Reproducibility: There are some bugs that take a long
time to reproduce, but once it is reproduced, it is fixed quickly.
For example, it took 1 year and 4 months to reproduce the
bug #268833 in Platform but took only one day to fix. This
problem often happens from low quality bug report, execution
difference due to platforms, and so on.

There are some interesting bugs, where users know how to
reproduce the bug but it happens for some special cases and
thus needs some time to reproduce. For this kind of bug, if
users submit the bug without concrete data, it takes a long time
to reproduce the required data that developers need to analyze
the bug. Therefore, the bug fix gets delayed although the
responsible developer is ready to fix it. For example, to debug
an “out of memory” problem in JDT (# 54831), developers
needed a heap dump, which was not submitted when the bug
was posted. When the assigned developer asked for it, the bug
reporter (who is actually another developer of JDT) was busy
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with his own work and could not submit the heap dump on
time. As a result, it took a long time to fix the bug.

8) Schedule issue: Sometimes developers also feel that a
bug is important to fix. However, they have more important
bugs at hand that should be fixed earlier. Therefore, although
the other bugs are important, they are generally deferred.
For example, there is a blocker bug (#10800) in JDT that
prevented users to put space in VM arguments. Blocker bugs
are considered as the most severe bugs. However, such a severe
bug was deferred due to scheduling issues. Certainly, other
developers were not very happy about that. The following
developers’ comments illustrate the scenario more clearly.

“Can more explanation be given as to why this issue has
been marked as LATER? Does this mean it will not be fixed
any time soon? If so, I find it very unfortunate as this is a very
serious bug and requires nasty work arounds. If not, then my
apologies...”

In reply, the responsible team leader said: “In this case,
‘LATER’ means probably not for the final 2.0 release (ten-
tatively scheduled for sometime in May). Quite simply, this
problem was not deemed as critical as a lot of other problems
that need to be solved for 2.0. The debug committers have
A LOT to do before 2.0. But the beauty of an open source
project is that if someone feels strongly about a particular
feature or bug, they can make a contribution. If you would
like to contribute a fix, I would be happy to review it.”

Finally, it took more than two years to fix the bug.
9) Reopened due to misunderstanding These bug are not

really long lived. They got fixed within months after they
were reported. But the reporter misunderstood something and
reopened the bug again. Then the other developers clarified the
mistakes the reporter was making and finally again marked it
as FIXED and RESOLVED.

10) Infrequent use case: This kind of bug is important
to fix considering their destruction ability. However, they are
not too frequent use cases. Therefore, developers just defer
it for next milestone. For example, due to the bug # 130874
in JDT, a user can lose his/her Java code template references.
However, developer deferred it by making following comment.

“We should definitely fix this during 3.5. Too late for 3.4
and really not a very common case.”

11) Others: There are also other reasons for delay in bug
fixing such as expert developers are on vacation, dependency
on other bugs to be fixed, and various document fixing.

12) As-usual delay: We have not found any specific
reasons for these bugs by analyzing developers’ comments and
thus we considered them as as-usual delay. Since these bugs
are already marked as important, if there are some specific
reasons (mentioned above) to make delay, it is highly likely
that developers will discuss it like the other bugs. However, it
is also possible that the fixes were deferred due to scheduling
issues. The following comment for bug #149316 in JDT can
be served as an example of as-usual delay.

“Thanks for the good examples, sorry for the wait. fixed >
20080422.”

We encountered an interesting finding while analyzing the
bug reports manually. We started our manual investigation with
JDT and listed all the common reasons from there. We have

TABLE VIII
REASONS OF SAMPLED LONG LIVED BUGS

Reason # Bugs Bug IDs
1) 7 113870 (PDE), 128563 (JDT), 241241 (Platform),

245008 (Platform), 247766 (PDE), 268833
(Platform), 278598 (PDE)

2) 3 3849 (JDT), 36204 (JDT), 133072 (PDE)
3) 14 3849 (JDT), 24951 (PDE), 36204 (JDT), 38746

(JDT), 40243 (JDT), 46407 (JDT), 67425 (JDT),
82850 (JDT), 99137 (JDT), 233643 (PDE), 233773
(Platform), 266651 (JDT), 273450 (Platform),
295200 (JDT)

4) 2 80000 (JDT), 102780 (JDT)
5) 4 1766 (JDT), 33035 (JDT), 36204 (JDT), 136135

(PDE)
6) 14 36204 (JDT), 46216 (JDT), 50735 (JDT), 109636

(JDT), 117698 (JDT), 156168 (JDT), 175226 (JDT),
224880 (Platform), 243894 (Platform), 257202
(Platform), 266651 (JDT), 267649 (Platform),
273450 (Platform), 278598 (PDE)

7) 9 1766 (JDT), 39222 (JDT), 54831 (JDT), 82850
(JDT), 83473 (JDT), 195183 (JDT), 262032
(Platform), 294650 (Platform), 298795 (Platform)

8) 7 3920 (JDT), 19251 (PDE), 46216 (JDT), 67425
(JDT), 224880 (Platform), 235572 (Platform),
277638 (Platform)

9) 8 6437 (JDT), 19248 (PDE), 28637 (JDT), 44035
(JDT), 61744 (PDE), 132333 (PDE), 158589 (PDE),
271373 (Platform)

10) 2 34033 (PDE), 130874 (JDT)
11) 8 12955 (JDT), 16686 (JDT), 20919 (PDE), 24951

(PDE), 29799 (PDE), 34399 (PDE), 231936 (PDE),
290324 (PDE)

12) 29 21100 (PDE), 26556 (JDT), 38288 (PDE), 39803
(JDT), 51862 (PDE), 89347 (JDT), 95288 (JDT),
97541 (JDT), 111419 (JDT), 128303 (PDE), 129689
(PDE), 149316 (JDT), 154823 (JDT), 175133 (JDT),
181954 (JDT), 209537 (JDT), 226595 (Platform),
234623 (Platform), 235554 (Platform), 236104
(Platform), 237025 (PDE), 238943 (JDT), 258952
(Platform), 262032 (Platform), 267173 (Platform),
275910 (Platform), 277638 (Platform), 279781
(Platform), 285101 (Platform)

not found any new common reason when analyzing the bug
reports for PDE or Platform. Therefore, we believe that this is
a comprehensive list of reasons for long lived bugs. It should
be noted that these reasons are not mutually exclusive.

Reasons for long lived bugs are diverse. While problem
complexity, problems in reproducing errors, and not un-
derstanding the importance of some of the bugs in advance
are the common reasons, we observed there are many bug-
fixes that were delayed without any specific reason.

RQ5: What is the nature of bug fixes? In this research
question, we investigate the nature of bug fixes in terms of
source code changes. More specifically, we focused on the
number of changed files, number of hunks, and code churns as
described in Section III-B. These metrics are often used to get
a rough idea about change effort, although understanding the
actual change effort is difficult and depends additionally on the
implemented algorithm and code complexity itself. Analogous
to previous study results [22], our initial hypothesis was:

The required source code changes to fix most of the long
lived bugs would be large.

To this end, we first analyze the source code changes in
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TABLE IX
ANALYSIS OF BUG FIXES

System # Bugs #Number of Files (NOF) Med Max
1 2 3 4 5 >5 NOF NOF

JDT 223 80 41 37 10 15 40 2 47
CDT 185 50 32 19 18 8 58 3 237
PDE 105 34 13 13 12 4 29 3 211
Platform 740 349 114 72 47 36 122 2 91
Total 1253 513 200 141 87 63 249 - -
(%) - 40.94 15.96 11.25 6.94 5.03 19.87 - -
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Fig. 3. Number of Hunks Vs. Proportion of Bugs

terms of number of changed files. We were able to identify
fixed files for 280, 264, 154, and 1,109 bugs in JDT, CDT,
PDE, and Platform respectively, using the methodology de-
scribed in Section III-B (Table IX). As we stated in our initial
hypothesis, we expected a large number of changed files for
most long lived bugs. Surprisingly, we found more than 40%
of fixes involved only one source code file. This proportion
varied from 27% to 47% project-wise. For only 30% of long
lived bugs, the required changes spanned over more than three
files. From our results it is also noticeable that the maximum
number of changed files in each system is quite high. However,
when we manually investigated such changes, we found they
are often moving files from one directory to another, or adding
a test suite to test a specific or multiple bugs.

Second, we analyzed the changes in terms of hunk size
to get more fine grained results. A large number of hunks
indicates that developers needed to modify a lot of different
places to fix the bugs. Figure 3 presents the number of bugs
for each hunk size. Our results show that 43% to 53% of bugs
was fixed by changing five hunks or less. More than 70%
of long lived bugs for JDT and Platform was fixed within
10 hunks, whereas the numbers are 16 and 17 for PDE and
CDT respectively. The median number of hunks for all long
lived bugs is only 5. Considering that, this is an overestimated
measurement of source code changes since we have analyzed
textual diff results (so changes in comments have been also
counted), we believe the number of hunk is low. It should be
noted that we presented all the bugs that involved more than
100 hunks in the graph at the end. Therefore, there is a spike
at the end of each graph.

Finally, by investigating further low level changes (at line
level), we found that a considerable proportion of bugs re-
quired major changes. More specifically, for 23% of bugs, the
value of code churn was more than 100. However, there are
even a larger proportion of bugs that required changes less
that 20 lines. For example, for 8-14% of bug fixes, the value
of code churn was from 1 to 5, for 7-12% the value of code
churn was from 6 to 10, and for 9-13% the value of code
churn was from 11 to 20. Recalling Section III-B, it should
be noted that the code churn value of one line change is 2,
whereas an addition or deletion of line is 1. Therefore, a value
of code churn value of 10 may be changes in only five lines.
We understand that some smaller bug fixes can be complex.
But at the same time, we also stress that many long lived bugs
could be fixed quickly through careful prioritization.

To support our claim, now we discuss two bug fixes to
show how a simple fix can take a long time to be fixed. Most
importantly, both of these bugs are considered as important by
the reporters/developers.

Bug # 38260: This is a bug in the SWT component of
Eclipse Platform. The bug was first reported as having a
normal severity level. However, within 15 days, it was
reconsidered to be critical. The following is the bug
description provided by the reporter:
“When I use the CCombo with the dialog, the dropdown list
shown in the back of the Dialog.

I did as following.
1. Create one sample application with a Group.
2. The parent of group is one shell.
3. I create a dialog.
4. I put my application to this dialog. and change the

Group’s parent as the dialog’s parent.
Now the above descripbed pbm occured.”
From the bug comments, we found that the bug was repro-

duced within three days and the actual problem was identified
within a month. However, it took more than ten months to fix
the bug. Figure 4 presents the changed code for fixing this bug
and it was only a one line change.

Bug # 195183: This is a major bug in the Debug compo-
nent in JDT. The bug summary and description (condensed)
are as follows: “JavaClassPath.performApply() uses original
instead of working copy causes NPE”
“Steps To Reproduce: I use JavaClassPath in my custom
launch config and has some code like:” ............[some code
snippet] “and as soon as performApply() is called isDefault-
Classpath() fails since it is passed in a null as a launchconfig
even though I passed in a newly created one. This worked fine
in eclipse 3.2 and it seem the culprit is that wc.getOriginal()
is used instead of just wc. Resulting in a NPE.”

From the bug description, we can see that the bug report
was very specific. The reporter clearly pointed out that there
are some problems with the getOriginal() API. Interestingly,
from the bug-fix (Figure 5), we found that only one line was
changed and the change was the removal of the getOriginal()
API. But by that time, more than two years had passed.

We believe that one year or more is too long time to fix the
bugs like these two examples, especially considering that they
were considered as very important.
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--- a/bundles/org.eclipse.swt/Eclipse SWT Custom Widgets/common/org/eclipse/swt/custom/CCombo.java
+++ b/bundles/org.eclipse.swt/Eclipse SWT Custom Widgets/common/org/eclipse/swt/custom/CCombo.java
@@ -76,7 +76,7 @@ public CCombo (Composite parent, int style) {

if ((style & SWT.READ_ONLY) != 0) textStyle |= SWT.READ_ONLY;
if ((style & SWT.FLAT) != 0) textStyle |= SWT.FLAT;
text = new Text (this, textStyle);

- popup = new Shell (getShell (), SWT.NO_TRIM);
+ popup = new Shell (getDisplay(), SWT.NO_TRIM | SWT.ON_TOP);

int listStyle = SWT.SINGLE | SWT.V_SCROLL;
if ((style & SWT.FLAT) != 0) listStyle |= SWT.FLAT;
if ((style & SWT.RIGHT_TO_LEFT) != 0) listStyle |= SWT.RIGHT_TO_LEFT;

Fig. 4. Bug Fixing Changes for # 38260 in SWT Component of Platform

--- a/org.eclipse.jdt.debug.ui/ui/org/eclipse/jdt/debug/ui/launchConfigurations/JavaClasspathTab.java
+++ b/org.eclipse.jdt.debug.ui/ui/org/eclipse/jdt/debug/ui/launchConfigurations/JavaClasspathTab.java
@@ -272,7 +272,7 @@ public class JavaClasspathTab extends AbstractJavaClasspathTab {

public void performApply(ILaunchConfigurationWorkingCopy configuration) {
if (isDirty()) {

IRuntimeClasspathEntry[] classpath = getCurrentClasspath();
- boolean def = isDefaultClasspath(classpath, configuration.getOriginal());
+ boolean def = isDefaultClasspath(classpath, configuration);

if (def) {
configuration.setAttribute(IJavaLaunchConfigurationConstants.ATTR_DEFAULT_CLASSPATH, (String)null);
configuration.setAttribute(IJavaLaunchConfigurationConstants.ATTR_CLASSPATH, (String)null);

Fig. 5. Bug Fixing Changes for # 195183 in Debug Component of JDT

Unlike previous studies, we found that a bug surviving for
a year or more does not necessarily mean that it requires
a large fix. We found that 40% of long-lived bug fixes
involved few changes in only one file.

V. THREATS TO VALIDITY

Construct Validity: We used two artifacts: bug reports from
the bug tracking system and source code changes from the
version history, which are generally well understood. We have
used also well known metrics in our data analysis such as
various time periods, the number of changed files, the number
of hunks, code churns, which are straightforward to compute.
Both the used dataset and version histories are also publicly
available, which enable the replication of this study. Therefore,
we argue for a strong construct validity.

Internal Validity: In our study, we relied on the infor-
mation from the bug tracking system and version histories.
However, the information in these systems may not be com-
pletely accurate. For example, a developer may commit a bug
fixing change a long time after she actually fixed the bug.
Similarly, a tester may change the bug status from FIXED to
VERIFIED a long time after she actually verified the bug.

To delineate the common reasons of long lived bugs, we
manually analyzed bug reports. There might have been some
unintentional misinterpretations during the manual verification
due to the lack of domain knowledge or the lack of useful
contextual knowledge. However, we held extensive discussions
to minimize this threat.

The phenomena studied had yearly major releases. Systems
with more frequent release cycles may well exhibit different
phenomena, although there will still be long lived bugs. The
number of release cycles and the lapse times for long lived
bugs in this context are likely to be different.

External Validity: We have used only four subject systems
in our experiment and all of them are open source projects.
Although, they are very popular projects and the used dataset
has more than 165,000 bug reports, our findings may not

be generalizable to other open source projects or industrial
projects. This risk of insufficient generalization could be
mitigated by adding more subject systems (both open source
and industrial). This will be explored in our future work.

VI. RELATED WORK

The study of software bugs/faults has been an active re-
search area for nearly two decades. Perry and Stieg [16]
were among the first to analyze software faults in a large
evolving software system. Since then, researchers analyzed
various software artifacts relevant to bugs (e.g. bug report,
bug fixing changes) to understand and to improve different
steps (e.g. bug reporting, triaging, localizing, fixing) of the bug
fixing processes. For example, Thung et al. [20] investigated
when a bug should be reported. Bettenburg et al. [3] studied
the qualities of a good bug report. In another study, Bettenburg
et al. [4] investigated the extents and reasons of duplicated bug
reports. Ahmed et al. [10] predicted the severity of bugs. Anvik
et al. [2] and Shokripour et al. [19] proposed approaches for
automatic bug assignment. Saha et al. [17] and Zhou et al. [24]
proposed different approaches for automatic bug localization.
To complement these studies, in this paper, we focused on long
lived bugs to understand their characteristics and reasons.

The work closest to ours is the study of bug-fix time predic-
tion, since these studies also identify the factors that are cor-
related to bug fixing time. Weiss et al. [21] considered the text
(summary and description) in the bug report as the prime factor
and used that to predict bug fix time. Panjer [14] observed
that commenting activity, bug severity, product, component,
and version are the most influential factors in predicting bug
fix time. Giger et al. [7] found that the assigned developer,
the bug reporter, and the month when the bug was reported
have the strongest influence on the bug fixing time. Zhang et
al. [23] also found the same results for commercial projects.
Anbalagan et al. [1] found a strong relationship between bug
fixing time and the number of people participating in the bug
report. Marks et al. [12] observed different results for different
projects. They found that bug filing time is important for
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Mozilla project, whereas, bug severity is the key for Eclipse.
While these studies vary in terms of analysis and techniques

used, some of the common approaches used in these studies
are that researchers used various machine learning or data min-
ing techniques to analyze the whole bug dataset in identifying
the overall factors affecting bug fixing time. Bhattacharya and
Neamtiu [5] pointed out that most attributes used by prior
work do not correlate with bug-fix time when analyzed in
isolation, and thus they emphasized on finding new attributes
that correlate with bug-fix time in isolation. We stress that
it is also important to analyze various kinds of bug-fixes in
isolation to gain better insight about specific group of bugs.
For example, Shihab et al. [18] studied and predicted reopened
bugs, Park et al. [15] investigated supplementary bug-fixes, and
Ngyuen et al. [13] analyzed recurring bug-fixes. In this study,
we analyzed long lived bugs to advance empirical knowledge
further regarding long-term delays in the bug fixing process.

There is another group of studies that investigated the actual
source code changes for bug fixes to study bug fixing time.
Canfora et al. [6] found relationships between different pro-
gram constructs and bug survival time. For example, exception
handling leads to low bug survival time. Zhang et al. [22]
found that bug fixing time increases with the increase of code
churns. In our study, we have also analyzed the source code
changes for long lived bug-fix and showed that there are many
long lived bugs that required only few changes in one file.

VII. CONCLUSION

Bug fixing is a fundamental and critical activity in the
software development and maintenance phases since buggy
behavior may cause not only costly failures but also can affect
user’s overall experiences with the software product. In this
paper, we showed that although the software development and
maintenance processes have advanced a lot, there are still a
significant number of bugs in each project that survive for
more than a year. More than 90% of these long lived bugs
affected users’ normal working experience. The average bug
assignment time was more than one year and the bug fix time
after the assignment was another year on average. When we
analyzed the bug descriptions and the developers’ comments
around these bugs, we found that the reasons for long lived
bugs are diverse. While problem complexity, problems in
reproducing, and not understanding the importance of some
of the long lived bugs in advance are the common reasons,
we observed there are many bugs that were delayed without
any specific reasons. Finally, by investigating the actual source
code changes for these long lived bugs, we noted that a bug
surviving for a year or more does not necessarily mean that it
requires a large fix. In fact, we found 40% of long-lived bug
fixes that involved few changes in only one file.

In summary, our results indicate that the overall bug fixing
time of many, if not all, long lived bugs can be reduced through
careful prioritization. Our findings also indicate that although
there are a number of tools for supporting bug triaging and
fixing (e.g. automatic bug assignment, bug fix time prediction),
we appear to realize very few benefits from them. There may
be two possible reasons: i) developers are not aware that these
tools exist, or ii) the tools do not meet developers needs or

expectations. In the future, we plan to conduct a developers
survey to understand the reasons for this phenomenon. We
believe all of these findings together will play an important
role in developing new approaches for bug triaging as well as
improving the overall bug fixing process.
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