
Optimizing Time in Workflow-Based Business
Processes When Handling Exceptions

Yuqun Zhang, Dewayne E. Perry

Center of Advanced Research in Software Engineering (ARiSE)
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX, USA

Email: yuqun zhang@utexas.edu, perry@mail.utexas.edu

Abstract. Dynamic exception handling is a major technique to ensure
the quality of runtime business processes. In this paper, we study the
methods to realize time optimization for workflow-based business pro-
cesses when handling its runtime exceptions. By applying our data-
centric modeling technique for workflow-based business processes, we
explore the exception patterns that are possible to avoid jeopardizing
the execution of business processes and analyze their respective impacts
on time performance. We also develop algorithms to adjust the execution
order of business activities dynamically for the exception patterns such
that an optimize time performance can be realized.

1 Introduction

Dynamic exception handling techniques for runtime business processes have been
well studied in the past decades: the authors of [1] [2] [3] propose solutions for
the exceptions caused by missing deadlines of business activities. Predicability
is provided in [4] [5] for their respective target business process properties. Time
scale for each business activity is estimated in [6] for designing a schema to
handle the dynamic assignment of business activity executions.

However, to our knowledge, dynamic exception handling techniques have
rarely been proposed for business process optimization, which is usually realized
by automatically improving business processes using quantitative measures of
performance (objectives) in a predetermined manner [7].

In this paper, on the purpose of business process optimization, particular-
ly time performance under runtime exceptions, data-centric dynamic exceptions
handling approaches are developed based on our previous approaches of business
process modeling [8] and static time optimization [9]. As in [10] [11], working
time, defined as the total lapse time to complete a process unit (e.g., business ac-
tivity, subprocess, cluster, etc.) is typically either known or estimated during the
design phase of business processes. Nevertheless, potential conflict occurs when
an execution of a business activity in runtime business processes demands real-
time working time that deviates from the predetermined time (i.e., it encounters
exceptions). This deviation might change the pattern of the time performance of

the overall business process, causing the original time optimality to be incorrect
(in this paper for simplicity, time performance of the predefined business process
is assumed to be optimized), and provide possibilities to dynamically optimize
runtime time performance of the overall business process.

Our approach in this paper is introduced by illustrating the exception pat-
terns that disable the predetermined optimized time performance of business
processes yet possibly enable runtime business processes to continue to be exe-
cuted and completed eventually. With respect to the data-centric perspectives,
complete executions of business processes are reflected by successfully delivered
data flows, that indicate exceptions under complete executions of business pro-
cesses cannot hinder the data delivery within the business processes. Accordingly,
three such exception patterns in these regards (partial data, halted data, and
business activity insertion/deletion) are specified in our approach.

Partial data refers to the case where instead of all, only a partial amount
of data is generated after the execution of business activities. Due to their real-
time working time and the portion of the data deliveries, we provide intuitive
methods to re-estimate the working time for the completion of the execution of
these business activities as the basis of dynamic time optimization. Halted data
indicates that data delivery is halted during the execution of business activities.
Business activity insertion/deletion illustrates the circumstance that in runtime
business processes, business activities that are not in the predetermined business
processes need to be inserted or those which have not been executed in the
predetermined business processes need to be deleted.

Algorithms are developed to approach optimized time performance of the
overall business processes for each exception pattern. For the pattern of par-
tial data and business activity deletion, it is as simple as to statically optimize
time performance using our previous approach [9]. For the pattern of halted
data, “best efforts” are provided to explore the possibility of executing the busi-
ness activities that are supposed to be executed later in the subprocess (defined
to be composed of business activities in execution order and bounded by their
convergence and divergence relations) with the halted data. For the pattern of
business activity insertion, business activities are inserted to the predetermined
business processes in a way that their individual contributions to increasing the
time performance of the overall business processes can be minimized. Moreover,
an additional “backtracking” process is implemented to diminish their combina-
tional contributions to increasing the time performance.

In sum, the major contributions of our approach in this paper are: 1) it
specifies the exception patterns in which the execution of business processes is
possible completed, and studies their impacts on the time performance of busi-
ness processes; 2) it develops methods to approach optimized time performance
for each of them.

The rest of the paper is organized as follows. Section II introduces related
work. Section III revisits our data-centric business process modeling and static
time optimization approaches. Section IV describes our approach of dynamical-
ly optimizing time performance of business processes. Section V discusses our
conclusions and future work.

2 Related Work

Exception handling techniques are usually studied for runtime business process-
es. A number of the relevant approaches aim at handling the exceptions under
the circumstances that deadlines of business activities are missed during run-
time. The authors of [2] describe how information about time can be captured
in workflow-based systems and provide various estimations about the working
time of business activities, such that violations of deadlines assigned to activ-
ities and the overall business process can be avoided or reacted to when they
occur. The authors of [3], based on history logs of a business process, build a
time probability model for the indeterminacy of the execution time of tasks. In
addition, they provide algorithms to detect the possible deadline violations by
analyzing the models with the realistic workload of the associated resources. To
predict a workflow’s deadline, the authors of [5] decompose the selected structure
of workflow, insert checkpoints into the decomposed activities, and propose the
corresponding predicting algorithms.

Time is considered as a metric to evaluate the performance and quality of
modeling techniques. Researchers of [12] [13] include time as the dynamic view
to evaluate business process configuration. With a known working time of each
business activity in [14], methods are developed to detect the degree of paral-
lelism, that is defined as the number of the executing business activities at the
same time. Researchers of [10] [11] implement empirical studies of software de-
velopments and conclude the factors that lead to the discrepancy of race time,
defined as the time spent on actual work, and elapsed time, defined as addi-
tionally including the presence of interruption, blocking, and waiting periods.
However, these researches fail to reason and solve how time performance can be
improved.

3 Data-Centric Business Process Modeling and Static
Time Optimization Approaches Revisited

In our previous research [8], a workflow-based business process is perceived to
be a homogeneous combination of data flows, where a business activity is com-
posed of a tuple of components (data, human actor, and atomic activity). A
business activity is designed with one or more atomic activities being executed
by identical human actor(s). The associated data is further modeled to indi-
cate its states in data flows within a business activity: initial data, input data,
global data, consumed data, output data, and final data, with their properties
simply introduced as follows:

– initial data: data that is injected to the data flows in its first appearance
and triggers the execution of the associated business activity.

– input data: data that is produced and delivered by the executions of oth-
er business activities and triggers the execution of the associated business
activity.

– global data: data that is injected independently from business processes and
triggers the execution of the associated business activity.

– consumed data: input data or initial data that is consumed after the execu-
tion of the associated business activity.

– output data: data that is produced by the execution of the associated busi-
ness activity.

– final data: data that is produced by the execution of a business process and
not consumed by any business activity, or a state to indicate the end of the
execution of a business process; indicates the end of certain data flows.

We perceive global data as a constant and do not consider its contribution to
evaluating any property of a business process.

In our research of static time optimization approach [9], based on the de-
sign of business processes, business activities are relocated from their original
subprocesses to other subprocesses to optimize time performance of the overall
business process. The eligibility of this business activity relocation is defined
as: given a business activity and a subprocess where the business activity is
not originally located, the business activity is eligible for relocation in the busi-
ness process when it can be forwardly moveable, backwardly moveable, or
loosely-parallelled moveable to that subprocess.

The algorithm to optimize time performance of the overall business processes
is subprocess-based, that is, for a subprocess that needs to optimize time per-
formance, its eligible business activities are collected across the overall business
process and sorted due to their contributions to optimizing its time performance.
Eventually, they are selected to be relocated to the subprocess such that its time
performance can be optimized. This process repeats to all the subprocesses that
need to optimize their respective time performance and the optimized time per-
formance of the overall business process is approached.

4 Approach Overview

In this section, we introduce our approach to optimize time performance for
the overall business process when handling runtime exceptions. Our approach
is categorized into two parts: introduction to exception patterns, where all the
exception patterns that possibly allow the completion of the executions of the
business processes are defined and their respective properties are analyzed; and
algorithms of time optimization for each of the exception patterns.

4.1 Exception Patterns

Generally, for a business activity that is being executed in a longer real-time
working time than the predefined working time, it would result in two possibili-
ties: completion in finite time and incompletion in infinite time, that correspond
to the exception patterns of partial data and halted data, respectively.

In addition, it is possible that during the execution of business processes,
business activities need to be instantaneously inserted to or deleted from the
predetermined business process. In our approach, these business activities are
assumed to be designed with appropriate data types such that their insertions
or deletions cannot jeopardize the data flows.

Partial Data In fact, the pattern of partial data includes the following sce-
narios: the execution of a business activity being completed with more time
than expected and full/partial output data, while they are perceived identical in
terms of their impacts on time performance. Thereby in our approach, they are
included as the partial data patterns.

Essentially, the pattern of partial data refers to the scenario that only a
partial amount rather than the total expected amount of the output data or the
final data is delivered after the execution of the associated business activities.
In our approach, partial data implies the possibility of complete data by re-
executing the associated business activities. Accordingly, assuming partial data
occurs only for one data item, the working time of the real-time executions of a
business activity can be estimated linearly by its real-time working time, that is
demonstrated as follows:

WTA= WTApd * Ntd/Npd

(1)
WTA denotes the estimated total working time of the business activity A

with partial data, WTApd denotes the real-time working time of A when partial
data is detected, Ntd denotes the amount of the expected output data, and Npd

denotes the amount of the partial data.
The partial data pattern for a single data item could be more complicated

when the completion of the execution of A demands more than one re-execution
of A. In this case, WTA and Npd are accumulated each time when A is re-executed
and thus (1) can be modified as follows:

WTA=
n∑
1

(WTApd) * Ntd/
n∑
1

(Npd)

(2)
It is possible that partial data occurs to more than one data item during

one execution of A. Since working time is a “worst-case” metric [9], to estimate
WTA, we simply estimate WTA in terms of each data item and select the largest
value among all possible values. The calculation is stated as follows:

WTA= maxi(
n∑
1

(WTApd) * Ntdi/
n∑
1

(Npdi))

(3)

Fig.1 illustrates the concepts of partial data by giving an example where
Fig.1(a) is the predetermined business process with the apriori knowledge of
working time for all the business activities, and Fig.1(b) indicates the runtime
business process with the time performance caused by partial data highlighted.
Activity 1 is presumed to be working for 2 days while in runtime, exceptions
occur such that only 2/3 of data D is produced after 3 days. By applying (1),
the estimated working time of activity 1 in this associated run time is calculated
as 3/2 * 3 = 4.5 days. Similarly, the execution of activity 3 is delayed from the

(a) The predetermined business process

(b) The instantaneous execution of business process

Fig. 1. An example of partial data pattern

presumed 1 day to 2 days by producing 1/2 of data G and 3/4 of data H. The
estimated working time of activity 3 due to data G and H is calculated as 4
days and 2.67 days. 4 days is selected as the estimated working time of activity
3 according to (3).

When partial output data is produced, it might be able to be delivered for the
execution of the subsequent business activities without waiting for the complete
output data. Fig.2 gives an example that when the subsequent business activities
can be executed with partial input data delivered from the execution of previous
business activities. When activity 2 is allowed to use partial input data (2/3*D)
for its execution, activity 1’, at mean time, is being executed to complete the
output data delivery. Since the execution of activity 1’ takes 1.5 days, the sub-
sequent execution of activity 2’ is parallel to the execution of activity 2 (by
that time, it still needs 0.5 day to complete its associated execution). In another
sense, these parallel executions of business activities enable the combination of
the execution of the two business activities into one, that is indicated by activ-
ity 2”. On the other hand, if activity 2 is not executed immediately after the
partial data D is input, while waiting to be executed after complete data D, the
total working time of the subprocesses would be 1.5 days more. This example
demonstrates the advantages of “execution whenever ready”.

Note that in the pattern of partial data, all data types (i.e., input data,
consumed data, etc.) are assumed to be quantified. Therefore, we do not need to

Fig. 2. An example of partial output data delivery

consider the case that input data is consumed already and cannot be delivered
to the re-execution of the business activities with partial data, etc.

Halted Data The pattern of halted data is defined to represent the scenario
in which the execution of any business activity is halted and cannot deliver
any data, that is indicated by the more real-time working time than expected.
Different from the pattern of partial data that aims at estimating the overall
working time by obtaining the working time after the execution of business
activities, the pattern of halted data is used to illustrate the overtime execution
of business activities during runtime.

To better demonstrate the pattern of halted data, after being detected with
more working time than expected, the working time of the associated executing
business activity is updated at a certain frequency. When the execution of the
business activity is eventually completed, the working time of that execution is
obtained and the pattern of halted data is transformed to the pattern of partial
data. On the other hand, after a certain predefined number of updates, if the
execution of the associated running business activity has not been completed yet,
the working time of this business activity is updated to be “∞”, that indicates
this business activity has encountered an exception that hinders the completion
of its execution. Moreover, since the working time of this business activity is
set to be “∞”, the working time of the subprocess that this business activity is
associated with is also set to be “∞”.

Note that when the working time of the executing business activity with
halted data is kept at “∞”, it means that the subsequent business activities in
the same subprocess usually cannot be executed and thus the execution of the
associated subprocess is perceived to be failed (the approach with “best efforts”
to “save” it is introduced in later sections). The frequency to update the working

time for the business activities with halted data is determined due to reality and
not our concern in this paper.

Business Activity Insertion/Deletion In reality, business processes need to
be changed by either inserting or deleting business activities for multiple reason-
s, such as changing business goals, varying runtime environments, and etc. Note
that the patterns of changing business activities can be diverse [15]. However
their impacts on the time performance of business processes are essentially iden-
tical that the time performance of subprocesses either increase or decrease with
varying amount of business activities in business processes. In our approach, we
represent all the patterns of changing activities by the typical business activity
insertion/deletion to analyze their impacts on the time performance.

Generally when new business activities need to be inserted or deleted, they
are intentionally designed with proper data types such that their insertions/dele-
tions can ensure the delivery of the updated data flows. In our approach, it is
assumed that these business activities are well designed and no errors of execu-
tion by the designs of them need to be considered.

4.2 Algorithm of Time Optimization

Our algorithm is initiated by detecting the exception patterns and followed with
the algorithm for each exception pattern. This is equivalent to “divide and con-
quer” and advanced when multiple types of exceptions occur at the same time.
This is because the defined exception patterns in our approach are orthogonal to
each other, that is, their formulations and properties do not necessarily involve
each other, which provides the orthogonality for their solutions and enables their
additivity in multi-exception scenarios.

Algorithms for the Pattern of Partial Data In the pattern of partial data,
the runtime working time is deviated from the predetermined working time of the
associated business activity to render the time optimality of the original business
process design incorrect. Approaches of statically optimizing time performance
of business processes by relocating the execution order of business activities
are introduced in our previous research [9]. Our approach in this paper, based
on [9], applies the techniques of business activity relocation to optimized time
performance for runtime business processes.

The relocation of a business activity A needs to ensure that the data flows
cannot be hindered in both the subprocess that A is originally located in, namely
Soriginal and the one that it is relocated to, namely Srelocate. Intuitively, without
the delivered data from A in Soriginal and with the data that can be delivered
to A in Srelocate, the fact that the data flows of both subprocesses are success-
fully delivered can validate the correctness of the relocation of A. This intuition
provides the basis of the eligibility for business activity relocation.

Moreover, business activity relocation in runtime business processes is not
allowed to trespass the subprocesses that have already been executed to avoid
wastes of resources. That requires a precise understanding of the executing

business activities that distinguish the subprocesses that have not been exe-
cuted from the the ones that already have. Accordingly, a cut Cexecuting =
(A1, A2, ..., Ai) is defined as the business activities Ais that are executing at the
same time. The techniques to discover the business activities that are being ex-
ecuted at the same time have been well studied [14] thus are not our concern in
our approach.

Cexecuting indicates the starting points of the business process during run-
time, that further indicates that the business activities that have not been exe-
cuted should not be relocated before Cexecuting.

To help identify the eligibility of business activity relocation during runtime,
for a certain business activity A, a data set Dinput reserve is defined to store the
data that are delivered yet not consumed from all the subprocesses before the
execution of Srelocate. Note that in our approach of this paper, the amount of
data needs to be taken into the consideration of data types. InputbeforeSrelocate ,
outputbeforeSrelocate , InitialbeforeSrelocate , and consumedbeforeSrelocate respectively
denote the sets of all the input data, output data, initial data, and consumed data
of the subprocesses that are executed before Srelocate.

Definition 1 Dinput reserve = outputbeforeSrelocate + consumedbeforeSrelocate -
(inputbeforeSrelocate + initialbeforeSrelocate) ∩ (outputbeforeSrelocate +
consumedbeforeSrelocate)

Similar to [9], the eligibility of a business activity being backwardly movable
under the circumstance of partial data is as follows:

Theorem 1 A business activity A is backwardly movable to a subprocess S
(A and S are executed no earlier than Cexecuting) when A is executed after S,
and its set of input data inputA only belongs to Dinput reserve.

As opposed to Dinput reserve, a data set Doutput reserve is defined to store the
data that is delivered to all the subprocesses after the execution of Srelocate.

Definition 2 Doutput reserve = inputafterSrelocate + initialafterSrelocate -
(inputafterSrelocate + initialafterSrelocate) ∩ (outputafterSrelocate +
consumedafterSrelocate)

The eligibility of the relocation of business activities being forwardly movable
and loosely-paralleled movable are defined as follows:

Theorem 2 A business activity A is forwardly movable to a subprocess S
(A and S are executed no earlier than Cexecuting) when A is executed before S,
and its set of output data outputA only belongs to Doutput reserve

Theorem 3 A business activity A is loosely-paralleled movable to a sub-
process S (A and S are executed no earlier than Cexecuting) when A is loosely
parallel to S, and outputA only belongs to Doutput reserve and inputA only belongs
to Dinput reserve.

The details about the execution order between Srelocate and A (i.e., executed
before, executed after, and loosely parallel) are introduced in our previous ap-
proach [9]. With the eligibility of business activity relocation, and the boundary
of the runtime business processes defined by Cexecuting, the following steps to
optimize the time performance of the overall business processes in the pattern of
partial data is equivalent to the static time optimization approach in [9]. Note
that the eligibility of business activity relocation is also the prerequisite of the
algorithms to optimize time for the patterns of halted data and business activity
insertion/deletion.

Algorithms for the Pattern of Halted Data A subprocess with halted data
hinders not only its execution, but also possibly the execution of the overall
business process when it bounds under convergence relations, such as “join” of
BPMN models [16]. Similar to the pattern of partial data, our approach for
halted data pattern is initiated by detecting Cexecuting when the working time
of the executing business activity with halted data turns to “∞”.

Define Dinput cut as the set of input data of all the subprocesses that have
been executed before the instantaneous cut of the executing business activities.
Here in our approach at this point, data is assumed to be easily replicated, i.e.,
consumed data is not considered. Therefore Dinput cut is defined as inputcut ∪
initialcut ∪ outputcut, where inputcut and initialcut, and outputcut respectively
represent input data, initial data, and output data of the subprocesses that have
been executed before Cexecuting.

With the completion of the execution of more subprocesses, Dinput cut is
expected to include more data items. It is possible these data items include in-
put data for business activities that await being executed in the subprocess with
the halted data. If Dinput cut happens to include all the input data to execute
any of these business activities, then this subprocess is possible to be executed
by “skipping” the execution of the business activity with halted data.

For each business activity Ai that has not been executed in the subprocess
with halted data pattern, its input data set inputi is recorded. Each time when
the execution of any activity in the business process is completed, Cexecuting and
Dinput cut are synchronously updated. Then for each of Ai, its inputi is checked
against Dinput cut. If any inputi ⊂ Dinput cut, Ai is qualified to be executed
directly instead of waiting for the completion of the execution of the one with
the halted data.

Note that it is possible that there might be some business activities that
cannot be executed between the one with the halted data and the executing one
in the same subprocess. According to our business process modeling approach
[8], the data which is supposed to be produced by their executions might be
input data to trigger the execution of later executed subprocesses. Thereby, it is
possible that the execution of the business process still fails to proceed. On the
other hand, this possibility validates that our approach offers “best efforts”.

Given more than one subprocess that suffer from the pattern of halted data,
the solution above is simply repeated for each of these subprocesses.

Business Activity Insertion/Deletion Assuming the business process that is
originally designed has an optimized time performance already for simplicity, our
approach to solve business activity insertion is initiated with a simple scenario
where only one business activity needs to be inserted to an runtime business
process. Since it is also assumed that the design of the inserted business activity
is correct, there must be at least one possible placement for this business activity
to be inserted in a certain subprocess, and each of the subprocesses with the
possible placements is collected.

To insert a business activity demands an understanding of the time perfor-
mance of each subprocess with the possible placements, namely Si of the runtime
business process. Define their working time as WTSi , and the working time of the
cluster (defined as subprocesses that are bounded by the identical convergence or
divergence relations) where Si belongs to, namely WTSi cluster is defined as the
largest working time of its subprocesses. DifSi cluster is defined and calculated as
WTSi cluster - WTSi . If DifA Si (defined as DifSi cluster - WTA) is non-negative,
it indicates the WTSi cluster cannot be changed by inserting the business activity
A into this subprocess, and the time performance of the overall business process
can be kept the same optimized as designed. If there are multiple such place-
ments for the business activity insertion, it is as simple as to pick the one with
the largest DifA Si for the insertion. On the other hand, if DifA Si is negative
for all its possible placements of the business process, the business activity A
is inserted into the subprocess that makes the largest DifA Si to approach an
optimized time performance of the overall business process.

Time optimization of the overall business process is expected to be harder to
approach when there are multiple business activities needed to be inserted into
a runtime business process. A straightforward method is to randomly insert all
of the business activities into the proper subprocesses and apply the static time
optimization approach of [9] to realize an optimized time performance. However,
as discussed in [9], the time complexity is expected to be high. In our approach in
this paper, with the apriori knowledge of the possible placements of the inserted
business activities, the freedom of degree of the business activity insertions in
subprocesses is expected be lower than the approach of [9]. Accordingly, the
time complexity of business activity intertion is lower. Typically in reality, the
possible placements of the business activity insertions can be easily captured and
stored in an array [A] where the activities are sorted according to the number
of their possible inserted subprocesses in an ascending order. Ai with fewer
possible placements are inserted earlier into the business process. If it has more
than one possible placement, it would be applied with the approach of inserting
one business activity to ensure the optimized time performance. This process
repeats until every business activity is inserted to the business process.

Intuitively, the methods above can approach an optimized time performance
of the overall business process. However, that is not always true. For instance
in Fig.3, assume Ai can be inserted to two subprocesses S1 and S2 to maintain
an optimized time performance (10.5 days). According to our approach to insert
only one business activity, Ai is inserted to S1. Assume Ai+1 can be inserted to
S1, S2, and S3. Any insertion at this point would increase the working time of

Fig. 3. An example of “backtracking” process for business activity insertion

the overall business process while the insertion to S1 would increase the least
among them (11.5 days). Therefore Ai+1 is inserted to S1. It is clear that if Ai

could be inserted to S2 and Ai+1 could be inserted to S1, the time performance
of the overall business process can be better improved (10.5 days). To avoid
this, an extra “backtracking” process is added into our approach: each time a
business activity Ai+1 from [A] is inserted to the business process and increases
the working time of the overall business process, the previous placement of Ai−j
(if there is any) in the same subprocess is checked for whether it can be reinserted
to other subprocesses to reduce the working time of the overall business process.
If so, Ai−j is reinserted and a better time performance of the overall business
process is achieved.

This “backtracking” process, though, cannot completely eliminate similar
counter examples as the one above. For instance, assume Ai−1 and Ai are in-
serted to S1 to maintain an optimized time performance of the overall business
process. The assumption that Ai+2 can only be inserted to S1 to ensure the
smallest increase of the working time of the overall business process might de-
mand “backtracking” the possible reinsertions of both Ai−1 and Ai to approach
a better time performance. This apparently increases the time complexity of the
algorithm. Similar as [9], we make trade-offs with efficiency for our approach of
this paper by performing the “backtracking” process within limited times.

The methods to realize optimized time performance of the overall business
process under the pattern of business activity deletion is as simple as to apply
the approach of static time optimization of [9] for the overall business process,
that is bounded by the cut Cexecuting with business activities deleted.

The pseudo code of the the algorithms for all the exception patterns to op-
timize time performance of business process while handling all the exception
patterns is listed as follows:

Algorithm 1 Dynamically Optimize Time (Business Process): dynamically de-
riving the optimized time for the overall business process when handling runtime
exceptions
Input:
BP := business process that needs to optimize time performance when handling runtime exceptions,
EP := exception patterns, including partial data, halted data, insertion, deletion
A := business activitiy
S := subprocess
[A] := array of business activities that need to be inserted to BP in an ascending order of the
number of possible placements
Cexecuting := (A1, A2, ... Ai), a cut to indicate the running business activities in the business
process
A∆ := new business activity being part of Cexecuting
Exception Flag := flag to indicate the exception detected
Dinput cut := input data set of all the subprocesses that have been executed before Cexecuting
Ahalted := business activity in the subprocess with halted data that have not been executed
inputA := the input data set of a business activity
WTA := the working time of a business activity
WTSi cluster := the working time of the cluster in which Si is associated with
DifSi cluster := varying working time between Si and its associated cluster
DifA Si

:= varying working time between DifSi cluster and the working time of A
i,j,k,m := integer
Output:
Optimize Time(BP) := the optimized working time of the overall business process

1: if Exception Flag then
2: if EP := partial data then
3: update the working time for business activities with partial data;
4: reconfigure BP bounded by Cexecuting ;
5: Statically Optimize Time (BP);
6: end if
7: if EP := halted data then
8: if Cexecuting := (A1, A2, ... Ai+∆) then
9: update Dinput cut;
10: for each A ∈ {Ahalted} do
11: if inputA ∈ Dinput cut then
12: execute A;
13: update Cexecuting and Dinput cut;
14: break;
15: end if
16: end for
17: end if
18: end if
19: if EP := deletion then
20: delete business activities;
21: reconfigure BP bounded by Cexecuting ;
22: Statically Optimize Time (BP);
23: end if
24: if EP := insertion then
25: while i < sizeof([A]) do
26: for each S that Ai can be inserted to do
27: if DifAi S >= 0 then

28: insert Ai to S with the largest DifAi S ;

29: i := i + 1;
30: break;
31: end if
32: if DifAi S < 0 then

33: continue;
34: check whether Ai−m is in any S ;
35: if Ai−m is in Sk and can be inserted to Sj to reduce the most of time then
36: update WTSk cluster and WTSj cluster;

37: insert Ai to the subprocess with the smallest WTSk cluster + WTSj cluster;

38: if this subprocess is Sk then
39: insert Ai−m to Sj ;
40: end if
41: end if
42: insert Ai to S with the largest DifAi S ;

43: i := i + 1;
44: break;
45: end if
46: end for
47: end while
48: end if
49: update Optimize Time(BP);
50: end if

5 Conclusion and Future Work

In this paper we study the approach to dynamically optimize time performance
of business processes when handling runtime exceptions. The contributions of
our approach are: 1) we propose the exception patterns that are possible to
be handled in runtime business processes, i.e., partial data, halted data, and
business activity insertion and deletion, in a data-centric manner, and further
explore their impacts on the time performance of business processes. 2) for each
of the exception patterns, algorithms are developed to dynamically handle them
during runtime to approach optimal time performance for the overall business
process.

For the pattern of partial data, the working time of the executing business ac-
tivity with partial data is re-estimated by its runtime performance. To approach
the optimal time performance, the dynamic reconstruction of the original busi-
ness process is then equivalent to our previous approach of statically optimizing
time performance [9]. For the pattern of halted data, it is possible that, instead of
waiting for being chronologically executed after the completion of the execution
of the business activity with halted data, the subsequent business activities can
be directly executed when data delivered by the execution of other subprocesses
happen to include all of their input data. Therefore, “best efforts” are provid-
ed to proceed executing the business activities in the same subprocess with the
halted data. For the pattern of business activity insertion, business activities
are inserted to the subprocesses that can enable an optimal time performance
of the overall business process. A “backtracking” process is applied when two
business activities are inserted in the same subprocess to inspect whether they
contribute to the time optimization. The methods to realize time optimization of
the exception pattern of business activity deletion is essentially that of statically
optimizing time performance after deleting unnecessary business activities from
business processes.

To verify our approach in the future, we plan to simulate these methods to
find out their efficacy and improve these methods due to the feedback from the
evaluation results. We also plan to conduct case studies for industries to gain
the feedback from the business actors and enterprise software system developers
for the future improvements.

Time is one of the major factors that need to be seriously considered and
optimized when constructing a business process. Other major factors include fi-
nancial costs, human labor involvement, etc. Dynamic exception handling tech-
niques could be valuable when they can improve these major factors of business
process modeling. Moreover, the research of this technique associated with spe-
cific scenarios (e.g, product line, etc.) can be expected to more useful than a
holistic overview or theory.

References

1. F. Leymann and D. Roller. Business process management with flowmark. In
Compcon Spring ’94, Digest of Papers., pages 230–234, Feb 1994.

2. J. Eder, E. Panagos, H. Pezewaunig, and M. Rabinovich. Time Management in
Workflow Systems. In W. Abramowicz and M.E. Orlowska, editors, Third Inter-
national Conference on Business Information Systems (BIS’99), pages 265–280,
Poznan, Polen, 1999. Springer-Verlag, Berlin.

3. Yang Yu, Ting Xie, and Xiaoyan Wang. A handling algorithm for workflow time
exception based on history logs. The Journal of Supercomputing, 63(1):89–106,
2013.

4. Wangyang Yu and Xianwen Fang. Analyzing real-time predictability of business
processes based on petri nets. In Zhixiang Yin, Linqiang Pan, and Xianwen Fang,
editors, BIC-TA, volume 212 of Advances in Intelligent Systems and Computing,
pages 207–215. Springer, 2013.

5. Xiaobo Guo, Jidong Ge, Yu Zhou, Haiyang Hu, Feng Yao, Chuanyi Li, and Hao Hu.
Dynamically predicting the deadlines in time-constrained workflows. In Zhisheng
Huang, Chengfei Liu, Jing He, and Guangyan Huang, editors, Web Information
Systems Engineering C WISE 2013 Workshops, volume 8182 of Lecture Notes in
Computer Science, pages 120–132. Springer Berlin Heidelberg, 2014.

6. Andreas Lanz, Roberto Posenato, Carlo Combi, and Manfred Reichert. Control-
lability of time-aware processes at run time. In Robert Meersman, Herv Panetto,
Tharam S. Dillon, Johann Eder, Zohra Bellahsene, Norbert Ritter, Pieter De Leen-
heer, and Deijing Dou, editors, OTM Conferences, volume 8185 of Lecture Notes
in Computer Science, pages 39–56. Springer, 2013.

7. K. Vergidis, A. Tiwari, and B. Majeed. Business process analysis and optimization:
Beyond reengineering. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 38(1):69–82, Jan 2008.

8. Yuqun Zhang and Dewayne E. Perry. A goal-directed method towards business
process modeling. In Service-Oriented System Engineering, 2014. IEEE Interna-
tional Conference on, volume 12, Apr 2014.

9. Yuqun Zhang and Dewayne E. Perry. A data-centric approach to optimize time in
workflow-based business process. In Services Computing, 2014. IEEE International
Conference on (to appear), volume 8, Apr 2014.

10. Dewayne E. Perry, Nancy A. Staudenmayer, and Lawrence. Understanding and
improving time usage in software development. In Alfonso Fuggetta and Alexan-
der L. Wolf, editors, Trends in Software Process, chapter 5. John Wiley and Sons,
1996.

11. Dewayne E. Perry, Nancy A. Staudenmayer, and Lawrence G. Votta. Under-
standing software development: Processes, organisations and technologies. IEEE
software, 11:36–45, 1994.

12. Hafedh Mili, Guitta Bou Jaoude, Eric Lefebvre, Guy Tremblay, and Alex Petrenko.
Business process modeling languages: Sorting through the alphabet soup. In OF
22 NO. IST-FP6-508794 (PROTOCURE II) SEPTEMBER, page 2005, 2004.

13. George M. Giaglis. A taxonomy of business process modeling and information
systems modeling techniques. International Journal of Flexible Manufacturing
Systems, 13(2):209–228, apr 2001.

14. Yutian Sun and Jianwen Su. Computing degree of parallelism for bpmn processes.
In Proceedings of the 9th international conference on Service-Oriented Computing,
ICSOC’11, pages 1–15, Berlin, Heidelberg, 2011. Springer-Verlag.

15. Han Aa, HajoA. Reijers, and Irene Vanderfeesten. Composing workflow activities
on the basis of data-flow structures. In Florian Daniel, Jianmin Wang, and Barbara
Weber, editors, Business Process Management, volume 8094 of Lecture Notes in
Computer Science, pages 275–282. Springer Berlin Heidelberg, 2013.

16. Object Management Group (OMG). Business process model and notation (bpmn)
version 2.0. Technical report, jan 2011.

