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Abstract—Business process optimization can provide direct
benefits to achieve business goals by improving predetermined
objectives. In this paper, we study the properties of time per-
formance and develop approaches to optimize it in workflow-
based business processes. By applying our data-centric business
process modeling techniques, we explore the possibility of re-
constructing business process that is realized by modifying the
execution order of business activities. Accordingly, we develop
efficient algorithms to approach optimal time performance for
both a single subprocess and an overall business process.
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I. INTRODUCTION

In the realm of business process modeling, optimization
refers to the automated improvement of business processes
using pre-specified quantitative measures of performance
(objectives) [1]. A holistic approach for business process
modeling should optimize business processes and eventu-
ally generate improved ones [1] [2]. However, in the past
decades, while most of research approaches about business
process modeling have been proposed to cover the modeling
techniques and qualitative analysis, business process opti-
mization, e.g. time optimization, has gained less attention.

One possible reason is that some researchers perceive
time as only a carrier of resources. They emphasize that
business process optimization should reduce time and cost
to improve the specified product qualities [3] [4]. It is
nevertheless argued that this multi-aspect optimization might
be complicated and result in conflicting criteria [5]. A large
portion of the relevant research is based on scheduling,
that mathematically models the optimal resource allocation
of business processes in terms of specified objectives [6]
[7] [8] [9]. While these approaches are considered to op-
timize time-relevant business applications, it is argued in
[10] that they can only be applied in simplified and ideal
business processes where their constraints and objectives can
be mathematically modeled. However, some time-relevant
business elements, such as decisions, are hardly mathemat-
ically expressed. Moreover, modeling techniques for these
elements might not be applied when their constraints vary
in realistic business process settings.

On the other hand, a group of researchers insist that time
is essentially a significant resource of process management.

Time is considered as one important factor in modeling
and evaluating business processes [11] [12]. Some time-
relevant properties, such as the degree of parallelism [13],
the race time and elapsed time [14], etc., have been widely
explored. Though being specific in depicting these time-
relevant properties, they mainly focus on the conclusions of
their discoveries from empirical studies or domain-specific
interests, instead of providing explicit methodologies about
how to exactly improve these properties.

In this paper we study an approach to optimize time
performance of workflow-based business process, that is
based on our previous research of data-centric business
process modeling techniques [15]. In a workflow-based
business process, a business activity is defined to consist of
atomic activities, data types, and human actors. Moreover,
we use an abstract syntax tree (AST) to represent a business
process. Assuming deterministic components of business
activities that cannot be redesigned in our approach at this
point, our time-optimization approach aims at reconstructing
business processes by modifying the execution order of
business activities, i.e., by relocating business activities from
their original subprocesses to others, where a subprocess is
defined to be composed of business activities in execution
order and bounded by their convergence and divergence
relations.

Assuming an apriori knowledge (i.e., either known or
estimated) of time of each business activity as [13] [16],
our approach is initiated by determining whether a business
activity is eligible for relocation in a business process. Given
a subprocess that a business activity is not originally located
in, the business activity is determined to be eligible for
relocation to the subprocess only when it is, as defined in
our approach, forwardly moveable, backwardly moveable,
or loosely-parallelled moveable to the subprocess.

For any subprocess, given the working time that is defined
as the total lapse time to complete a process unit (e.g.,
business activity, subprocess, and process), as in [14] [17],
its waiting time is defined as the time duration of its idle
state when other subprocesses are being executed. In our
approach, the time optimization of a subprocess is essentially
to optimize the waiting time by filling its idle states with
executing eligible business activities from other subpro-
cesses. By selecting the proper eligible activities according



to their contributions to the waiting time performance of
the subprocess, our algorithm effectively reconfigures the
subprocess by inserting those activities into it to minimize
its waiting time.

Furthermore, we develop algorithms to optimize time
performance for the overall business process. Based on
the technique of optimizing time performance for a single
subprocess, the time-optimization algorithm of the overall
business process modifies the sorting criteria of eligible
activities to emphasize their contributions to the overall
time optimization of the business process, and realizes the
efficient arrangement of the business activity relocation for
the subprocesses that need to optimize the time performance.

The rest of the paper is organized as follows. Section
II introduces related work. Section III revisits our abstract-
syntax-tree-based technique and its associated properties.
Section IV describes our approach of optimizing time per-
formance of business processes. Section VI discusses our
conclusions and future work.

II. RELATED WORK

Scheduling is one major approach to optimize time-
relevant properties in business processes. Researchers of [6]
present an overview of mixed integer linear programming
(MILP) based approaches to schedule chemical processing
systems. By representing time in a discrete and continu-
ous manner, they develop effective models for a variety
of chemical processes and efficient solutions for difficult
MILP models in a short-term scheduling domain. Using the
similar time representation, researchers of [8] present two
scheduling models: single-unit assignment models where
task assignment is predetermined and multiple-unit assign-
ment models where objects compete for processing products.
Researchers of [9] aim at extending scheduling techniques
of batch processes to handle large volume processes as
well as different objectives. However, they are argued to
be limitedly applied in the scenarios in which constraints
cannot be mathematically modeled. Moreover, most of the
techniques are NP-complete such that closed-form solutions
cannot be provided by merely deriving those mathematical
models.

Time sometimes is considered as a reference for modeling
techniques. Researchers of [18] [12] include time as the
dynamic view along with informational, functional, and
organizational views together as the fundamental views to
construct business processes. Assuming apriori knowledge
of working time of each business activity, researchers of
[13] present methods to detect the degree of parallelism,
that is defined as the number of the running subprocesses at
the same time. Researchers of [14] [17] implement empir-
ical studies of software developments and try to identify
the factors to cause the discrepancy of race time, that
is defined as the time spent on actual work and elapsed
time, that additionally includes the presence of interruption,
blocking, and waiting periods. However, these researches

fail to provide in-depth approaches for how exactly time
performance can be improved by applying their discoveries.
Our approach, by analyzing the eligibility of how a business
process can be optimized, provides methods to effectively
optimize time performance for both a single subprocess and
overall business process.

III. AST-based TECHNIQUE REVISITED

In our previous research, a workflow-based business pro-
cess is represented in an abstract syntax tree (AST) with a
specified set of syntax [15]. In the AST-based approaches, a
business activity being composed of a tuple of components
(data, human actor, and atomic activity) is formed when
one or more atomic activities are executed in order by
identical human actor(s). Data is further modeled to indicate
its states in data flows within a business activity: initial data,
input data, global data, consumed data, output data, and
final data, with their properties simply introduced as fol-
lows:
• initial data: data that is initially injected to the data

flows and triggers the execution of the associated busi-
ness activity.

• input data: data that is generated and delivered by other
business activities and triggers the execution of the
associated business activity.

• global data: data that is injected independently from
business processes and triggers the execution of the
associated business activity.

• consumed data: input data or initial data that is con-
sumed by the execution of the associated business
activity.

• output data: data that is the deliverable by the execu-
tion of the associated business activity.

• final data: data that is generated by the execution of
a business process and not consumed by any business
activity, or a state to indicate the end of the execution
of a business process.

In our approach, we do not consider global data for its
contribution to evaluate any property of a business process
because it is a constant.

A business process is bounded by the divergence and
convergence relations of “cooperative”, “exclusive”, “N-
cooperative”, and “N-exclusive”. The former two concepts
are identical with what they are in [19]. “N-cooperative”
indicates the number of N out of M business activities
(N<=M) or more are allowed to be executed to proceed
to the subsequent executions. “N-exclusive” indicates only
the number of N out of M business activities (N<=M) or
less are allowed to be executed to proceed to the subsequent
executions.

An example AST-based business process is shown in
Fig.1, with the letters representing business activities. It
depicts a business process that is initiated by the execution
of F, H, and J. G is executed after H. E is executed after
the execution of either F or G. D, that is executed after
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Figure 1. An AST example

E, together with I, that is executed after J, are executed to
trigger the subsequent execution of C, B, and A. The AST-
based technique renders the following properties:

• Operators (cooperative, exclusive, N-cooperative, and
N-exclusive) are placed as non-leaf nodes. Leaf nodes
must be business activities.

• Business activities are placed left when its parent
node is an operator (i.e., cooperative, exclusive, N-
cooperative, or N-exclusive). Business activities that are
executed to trigger the execution of the subsequent sub-
process, are placed under “and” following the operators.

• Leaf nodes that are placed in lower levels are executed
before those placed in higher levels.

• Operators are associated with the connector “and” as
one of their child nodes.

Our AST-based approach provides a goal-directed model-
ing technique of business process, where business goals are
modeled as final states of data. Starting from these final
states, metrics (e.g. data dependencies) are evaluated by
backtracking the business process through the AST. More-
over, the definition of the data types and their transmission
patterns enable a data-centric approach where business pro-
cess is essentially realized, maintained, and depicted by data
flows. Compared with traditional business process modeling
techniques, e.g. BPMN [19], our AST-based technique is
advanced in that 1) it breaks acyclic graphs into regular
tree structures; 2) it provides more complicated convergence
and divergence relations (i.e., “N-cooperative” and “N-
exclusive”); 3) it provides possible fast and easy solutions
by using sophisticated tree-relevant techniques.

Our research in this paper, based on the AST-based
approach, analyzes the scenarios where time performance of
business process can be optimized, and in turn, provides the
methodologies to optimize time for both single subprocess
and overall business process.

IV. APPROACH OVERVIEW

In this section, we introduce our approach to optimize
time performance of business processes, that is classified
to two stages: the detection of the eligibility for business
activity relocation and the algorithms of time optimization.
Typically, our approach is initiated by identifying whether
one business activity is eligible to be relocated to a given
subprocess. With the knowledge of the eligibility and the
working time of each business activity, our algorithm selects
proper eligible activities for the subprocess to approach
an optimal time performance. Accordingly, the time opti-
mization of the overall business process is approached by
modifying the criteria of selecting the eligible activities and
effectively assigning them to the subprocesses that demand
time optimization.

A. Eligibility for Activity Relocation
In a workflow-based business process, a business activity

is executed in a chronologically static manner when its input
is delivered by its adjacently previous activities, or its output
is immediately absorbed by its adjacently subsequent activi-
ties. On the other hand, it is possible that a business activity
can be flexibly executed if it is not directly dependent on the
execution of its adjacently- previous or subsequent activities.

Our AST-based approach specifies this possibility by
defining that for any execution of adjacent business ac-
tivities, the input data of the later-executed activity is not
necessarily the output data of the former-executed activity.
Specifically, assume a business activity, namely BA, with its
input data being part of the output data generated only by
a subprocess SPA that is executed earlier but not adjacently
ahead. Then the advanced execution of BA adjacently follow-
ing SPA is legitimate (assuming no other sources of impact),
because this flexible execution does not impact on their
original order of data transmission that ensures the execution
of the business process. Analogously, if the output data of
BA is part of the output data of a subprocess SPB only and
SPB is executed not adjacently later, then the postponed
execution of BA adjacently ahead of SPB is legitimate as
well. This observation provides the fundamentals for flexible
execution of business activities in business process, that is
realized in the AST-based approach as the relocation of the
eligible business activities.

Our approach in detecting the eligibility for business
activity relocation is initiated by representing a business
process in AST and printing the paths from the root to
all its leaf nodes, namely P. These paths are then sorted
by their mutual commonalities and lengths of the operators
and connectors (i.e., “cooperative”, “exclusive”, “and”, etc.).
For instance, {P} in Fig.1 are originally represented in AST
as {(cooperative, A, B, C), (cooperative, and, exclusive, D,
E), (cooperative, and, exclusive, and, F), (cooperative, and,
exclusive, and, G, H), (cooperative, and, I, J) }, where their
paths that have been tailored to include only the operators,
namely TP, are represented and synchronically sorted with



{P} as {(cooperative), (cooperative, and), (cooperative, and,
exclusive), (cooperative, and, exclusive, and), (cooperative,
and, exclusive, and)}. It is observed that the adjacent sorted
paths of operators differ at most by one operator element.

According to our AST properties, the execution order of
business activities of the sorted {P} can be reflected by the
number of the operator elements ahead of them in their own
paths. For instance, activity D and E of (cooperative, and,
exclusive, D, E) are executed after the execution of activity
F of (cooperative, and, exclusive, and, F) because both of
the paths have the same operator elements except the latter
has an extra connector “and” that indicates F is executed
earlier than D and E and trigger their executions.

This reflection of the execution order of business activities
provides a possibility of deriving a partial order of any given
subprocess and activity. Define TP(A) to denote the array of
operator elements ahead of activity A , and TP(SP) to denote
the array of operator elements ahead of subprocess SP in a
TP. The partial order between A and SP can be derived by
comparing the elements in TP(A) and TP(SP).

Theorem 1: Activity A is executed before subprocess SP
when TP(SP) ⊂ TP(A), and Activity A is executed after
subprocess SP when TP(A) ⊂ TP(SP).

A TP is captured from a root to a leaf node in AST.
Therefore, any TP that is a subset of another indicates the
corresponding activity/subprocess is in the same workflow
with the other, and their execution order can be completely
identified.

Theorem 2: Activity A is loosely parallel to subprocess
SP when TP(SP) 6⊂ TP(A), and TP(A) 6⊂ TP(SP).

As opposed to Theorem 1, The fact that the TPs of a
pair of activity/subprocess are not mutually subsets of one
another indicates disjoint workflows between them. This
parallelism is considered to be loose because the chronology
of A and SP can actually be detected by deriving the total
order of activities/subprocesses based on the properties of
the AST-based approach and the knowledge of their working
time, yet it is not necessary in our approach at this point.

In the data-centric AST-based approach, a workflow-
based business process is perceived as being established and
maintained by its dataflow, i.e., the execution of a business
process is realized by the data delivery among business
activities. Hence to explore the eligibility of relocating a
business activity of a business process is essentially to find
out whether the data delivery in the business process would
be impeded after relocating the business activity. Assuming
in our approach at this point that a business activity is
kept consistent without modifying its components (i.e., data
types, human actors, and atomic activities), data delivery
is ensured to be safe when its pattern, specifically the
order of data transmission among business activities, is kept
identical with that in the original workflows. Particularly,
for any relocated activity, the data delivery of a business
process is secured when the input data of that activity is
part of the data that is delivered by all its former-executed

activities (e.g., the output data that has not been consumed),
and the output data of that activity is part of the data
that is delivered to all its later-executed activities (e.g., the
input data) in its workflow.

For instance, in Fig. 1, assume the input data of activity
C, that is obviously the part of the output data generated
by subprocess (F, E, D), (H, G, E, D), and (J, I), happens to
be the part of the output data generated by subprocess (J, I)
as well. If activity C is relocated under the connector “and”
and above activity I, its associated pattern of data delivery
would stay identical with its original pattern. Specifically, the
output data generated by activity C could still be delivered
to the latter-executed activities in the original workflow. In
this case, the relocation of activity C is perceived as being
eligible. Note that although the working time of the updated
(J, I, C) is increased to be 4.3, the total working time of
the subprocess of (cooperative, and, *) remains at 6, and
the total working time of the overall business process is
reduced by 1.5 (The numbers beside activities denotes the
working time of the associated activities.).

Definition 1: Starget denotes a subprocess. Atarget de-
notes an activity that is not part of Starget. InputAtarget

,
outputAtarget

, InitialAtarget
, and consumedAtarget

respec-
tively denote the sets of all the input data, output data,
initial data, and consumed data of Atarget. Sbeforetarget
denotes the set of the subprocesses that are execut-
ed before Starget (including Starget) in its workflow.
InputSbeforetarget

, outputSbeforetarget
, initialSbeforetarget

, and
consumedSbeforetarget

respectively denote the sets of the
input data, output data, initial data, and consumed data of
all the activities of Sbeforetarget.

Sbeforetarget can be derived by searching in the {TP} the
TPs that contains TP(Starget). This search can be simple
since {TP} have already been sorted by their mutual com-
monalities and lengths of the operators.

Theorem 3: Atarget is backwardly moveable to Starget
when Atarget is executed after Starget, and inputAtarget

only
belongs to {outputSbeforetarget

+ consumedSbeforetarget
-

(inputSbeforetarget
+ initialSbeforetarget

) ∩ (outputSbeforetarget

+ consumedSbeforetarget
)}.

Theorem 3 illustrates under what circumstances the
execution of Atarget is eligible to be brought forward
to be adjacently following the execution of Starget. Ac-
cording to the AST-based approach, it is possible that
in Sbeforetarget, a single piece of data is transmit-
ted among different activities as multiple data type-
s. Therefore, outputSbeforetarget

+ consumedSbeforetarget
-

(inputSbeforetarget
+ initialSbeforetarget

) ∩ (outputSbeforetarget

+ consumedSbeforetarget
) ensures accurate data delivered

from Sbeforetarget. Since Atarget is brought forward, the
impact of its output data delivery to the subsequent sub-
processes stay consistent and is not necessarily cared about.

Definition 2: Saftertarget denotes the set of the sub-
processes that are executed after Starget (including
Starget) in its workflow. InputSaftertarget

, outputSaftertarget
,



initialSaftertarget
, and consumedSaftertarget

respectively de-
note the sets of the input data, output data, initial data,
and consumed data of all the activities of Saftertarget.

As opposed to the way of deriving Sbeforetarget,
Saftertarget can be derived by searching in the {TP} the
TPs that are contained TP(Starget).

Theorem 4: Atarget is forwardly moveable to Starget
when Atarget is executed before Starget, and outputAtarget

only belongs to {inputSaftertarget
+ initialSaftertarget

- (outputSaftertarget
+ consumedSaftertarget

) ∩
(inputSaftertarget

+ initialSaftertarget
)}.

Theorem 4 illustrates under what circumstances the exe-
cution of Atarget is eligible to be postponed to the execution
of Starget. Since Atarget is postponed, the impact from its
former-executed subprocesses to its input data stay consis-
tent and is not our concern.

Theorem 5: Atarget is loosely-parallelled
moveable to TP(Starget) when Atarget is loosely
parallel to Starget, outputAtarget

only belongs to
{inputSaftertarget

+ initialSaftertarget
- (outputSaftertarget

+ consumedSaftertarget
) ∩ (inputSaftertarget

+
initialSaftertarget

)}, and inputAtarget
only belongs

to {outputSbeforetarget
+ consumedSbeforetarget

-
(inputSbeforetarget

+ initialSbeforetarget
) ∩ (outputSbeforetarget

+ consumedSbeforetarget
)}. Moreover, the workflows where

Atarget is originally located should not be impeded.
Obviously, the conditions to trigger a loosely-parallelled

moveable business activity are stricter compared with those
of Theorem 3 and 4. It is expected that in reality, few
business activities are expected to be loosely-parallelled
moveable in a sophisticated business process design.

In sum, given a subprocess and an activity, the activity is
eligible for relocation in the business process when it can
be forwardly moveable, backwardly moveable, or loosely-
parallelled moveable to a different subprocess.

B. Algorithms of Time Optimization

Definition 3: Subprocesses that are composed of activi-
ties and bounded by the identical convergence or divergence
relations are defined as a “cluster”, where one subprocess
of a cluster is called a cluster process. In the AST-based
approach, cluster subprocesses are represented following the
connector “and”.

In this paper, time inefficiency is considered to be caused
only by the waiting time of cluster subprocesses, that is
generated after their executions are completed while other
cluster subprocesses are still being executed. Given the
apriori knowledge of the working time of each business
activity of business process, the working time of a cluster
subprocess can be calculated by simply summing up the
working time of all its activities. Then the waiting time of
that cluster subprocess is derived by subtracting the largest
working time of the cluster with its own working time.
Note in our approach, working time and waiting time are
considered as worst-case metrics. Particularly, the working

time of a cluster is defined as the largest working time of all
its cluster subprocesses, regardless the operator types. There-
fore, even though operators “exclusive” and “N-exclusive”
indicate the scenarios that only the subprocesses winning
the competition are allowed to proceed to the subsequent
execution of the business process, the working time of their
associated cluster cannot simply be the shortest working time
among all its cluster subprocesses. Moreover, the assumption
of some business process modeling techniques [13] [15]
that no exception of executing business activities does not
always hold in reality and the subprocesses that have shorter
working time cannot always be executed. For instance, in
Fig. 1, the working time of subprocesses (F), (H, G), (F, E,
D), (H, G, E, D), and (J, I) is respectively 1, 2, 5, 6, and
2.8. That leads to the waiting time of each calculated as 1,
0, 1, 0, and 3.2.

1) Time Optimization for A Single Cluster Subprocess:
It is possible in reality that only one (or a few) subprocess
needs to optimize its time performance to achieve certain
business goals without considering the overall optimization
for the entire cluster or business process. In our approach, to
optimize time performance for a single cluster subprocess,
namely Starget is simply equivalent to optimize its work-
ing time by filing itself with executing additional eligible
activities from other subprocesses.

Each activity in the business process is detected before-
hand whether they are eligible for Starget, that is, whether
they are forwardly moveable, backwardly moveable, or
loosely-parallelled moveable to Starget. There might be
multiple eligible activities, namely Aeligibles in other subpro-
cesses, all of which could contribute to optimizing waiting
time of Starget. Ideally, they are considered to be selected
and relocated together to Starget to minimize the working
time. However, it is only allowed to have one Aeligible

relocated to Starget at one time, because after any activity is
relocated to Starget, the patterns of data delivery of Starget
need to be updated accordingly. It is possible that multiple
Aeligibles might be “incompatible” with each other’s work-
flow, such that data delivery of Starget would be impeded if
they are relocated together to Starget.

Furthermore, this brings up a typical NP-hard problem.
Each time when any Aeligible is relocated to Starget, it is nec-
essary for Starget to update the eligibility of all the activities
and reselect the eligible activities. After an initial optimal
Aeligible is relocated to Starget, the subsequent choice of
Aeligible cannot guarantee the optimal accumulative time
performance compared with other choices. Under the con-
straints of our approach, the optimal waiting time cannot
be obtained unless all the possible choices of the Aeligible

combination are tried out and each of their performance
relative to waiting time optimization is compared. Even
given a solution of Aeligible combination, the only way to
find out whether it is optimal is still to enumerate all the
possible Aeligible combination and compare all the results
in our approach at this point. This can be generalized that



the optimality of a given solution of this problem cannot be
ensured by any method to our knowledge within polynomial
time. Therefore, to optimize time performance for a single
subprocess is an NP-hard problem under our constraints of
this approach.

To approach an optimal solution in this case, techniques of
approximation need to be adopted in our algorithms. Initial-
ly, the absolute value of the contribution to time optimization
from each Aeligible , namely ABtime is calculated as the
waiting time of Starget, namely WAtarget subtracting the
working time of each Aeligible, namely WOeligible. Aeligibles
are sorted in an ascending order of their ABtime.

After the first element in {Aeligible} is extracted,
{Aeligible}, along with {WAtarget} and {ABtime} are up-
dated according to the varying pattern of the data delivery
of Starget. After sorting {ABtime}, the smallest one is
compared with WAtarget. If it is larger than WAtarget, then
WAtarget is believed to be the optimal waiting time of Starget
and no further update is needed. Otherwise the above process
repeats until a smaller WAtarget is found. This algorithm, in-
stead of enumerating all the possibilities, affirmatively select
the observed optimal solutions to approach an approximately
optimal waiting time.

The pseudo code of this algorithm is listed in Algorithm 1.
In our approach, the details of sorting, AST, printing path,
tailoring, and merging are not addressed because they are
well-known sophisticated techniques.

2) Time Optimization for The Overall Business Process:
The technique of optimizing time performance of the overall
business process is generally based on that of a single cluster
subprocess. Instead of focusing on simply optimizing the
working time in one single cluster subprocess, the techniques
of time optimization for overall business process aims at
reducing the total working time of the execution of the
overall business process.

One major difference is the fact that ABtime, that is cal-
culated simply as the absolute value of WAtarget subtracting
WOeligible, cannot be used as the criteria to accurately reflect
the overall time optimization. In fact, not only the contribu-
tion from WOeligible after Aeligible being relocated to Starget,
but also the impact that the relocation of Aeligible imposes on
its original subprocess needs to be considered to contribute
to the varying time performance of the overall business
process. Define VAoriginal as the varying working time of
the cluster where Aeligible is originally located. VAoriginal is
calculated as the working time of the original cluster before
Aeligible being relocated, subtracting the working time of
the original cluster after Aeligible being relocated. Similarly,
VAtarget denotes the varying working time of the cluster that
needs to optimize time performance and is calculated as the
working time of that cluster after Aeligible being relocated
subtracting the working time of that cluster before Aeligible

being relocated.
VAsum, defined as the summation of VAoriginal and

VAtarget, is used to indicate how the relocation of Aeligible

Algorithm 1 Optimize Time (Cluster Subprocess,
Waiting Time): deriving the optimized time for a cluster
subprocess
Input:
Starget := a cluster process that needs to optimize time performance,
Aeligible := activity that is eligible for relocation to the cluster process that needs
to optimize time performance,
WOcluster := working time of the cluster, a constant
WAtarget := waiting time of the cluster process that needs to optimize time
performance,
WOtarget := working time of the cluster process that needs to optimize time
performance,
WOeligible := working time of the eligible activities,
ABtime := absolute value of working time of the eligible activities subtracting
waiting time of the cluster process that needs to be timely optimized,
Output:
Optimize Time(Starget, WAtarget) := optimized waiting time of Starget

1: WAtarget := absolute value of (WOcluster - WOtarget);
2: {Aeligible} := ∅;
3: {WOeligible} := ∅;
4: {ABtime} := ∅;
5: for each A /∈ Starget in business process do
6: check whether A is forwardly moveable, backwardly moveable, or loosely-

parallelled moveable to Starget;
7: if yes then
8: {Aeligible} := {Aeligible} + A;
9: ABtime := absolute value of (WAtarget - WOeligible);

10: {ABtime} := {ABtime} + ABtime;
11: {WOeligible} := {WOeligible} + WOeligible;
12: end if
13: end for
14: sort({ABtime});
15: sort({WOeligible}) according to sort({ABtime});
16: sort({Aeligible}) according to sort({ABtime});
17: if {ABtime}[0] < WAtarget and {Aeligible} 6= ∅ then
18: WOtarget := WOtarget + {WOeligible}[0];
19: Starget := Starget + {Aeligible}[0];
20: Optimize Time(Starget, WAtarget);
21: else
22: break;
23: end if

changes the total time of the execution of the overall business
process. If VAsum is negative, then the total execution
(working) time of the overall business process is decreased,
and vice versa. For any Aeligible, the more negative VAsum

is, the more time optimization the overall business process
gains by relocating the Aeligible.

Ideally, to achieve the time optimization of overall busi-
ness process, it is equivalent to realizing the time optimiza-
tion of each subprocess and sum them up. However, each
time after one Aeligible is relocated to a cluster subprocess,
the subprocesses whose pattern of data delivery is impacted
need to update their respective {Aeligible}. Moreover, the
possibility of a relocated Aeligible being selected and relocat-
ed by another subprocess at a later stage increases the uncer-
tainty of identifying an optimal solution of reconstructing the
business process. Therefore, to optimize time performance
of the overall business process is at least as hard as that
of a single subprocess and can be perceived as an NP-hard
problem as well. To efficiently approach the approximated
optimal time performance of the overall business process, an
array, namely {Aabandon} is defined to store the Aeligible that
has been relocated to make sure that even Aeligible might be
optimal for other subprocesses at a later stage, they would



not be relocated anymore. This process ensures the reduction
of the number of the remaining Aeligibles.

Our algorithm is initiated by detecting {Aeligible} for
each Starget. {Aeligible} is then sorted along with {VAsum}
in an ascending order. All the first elements of all the
{VAsum} are then compared. The Aeligible associated with
the smallest VAsum is relocated to its corresponding Starget.
Then this Aeligible is inserted to {Aabandon}, that indicates
this Aeligible cannot be relocated by any subprocess at a later
stage. This process is repeated in our algorithm.

One Starget quits relocating Aeligible when either its
VAsum associated with the Aeligible is a positive value,
that means the overall time of executing business process
would be increased after the relocation of the Aeligible, or
no Aeligible can be found. The execution of our algorithm is
terminated after each Starget quits its respective process.

The pseudo code of this algorithm is listed in Algorithm 2.
The process of calculating VAoriginal and VAtarget is omitted
here for simplicity.

V. CONCLUSION AND FUTURE WORK

There are three factors in business process reengineering:
improvement of quality, reduction of cost, and reducing time.
In this paper we study a data-centric approach to optimize
time performance in workflow-based business process. As-
suming deterministic business activities whose components
stay consistent, we focus on reconstructing the original
business process by relocating the business activities in the
business process. Our approach is initiated by representing
a workflow-based business process with an abstract syntax
tree based (AST-based) approach. By applying its properties,
the eligibility for a business activity that can be relocated
to a given subprocess is determined by whether it can
be forwardly moveable, backwardly moveable, or loosely-
parallelled moveable to a subprocess.

Furthermore, we explore how the time performance of a
single subprocess can be optimized. It is observed that time
inefficiency of one subprocess, that is reflected by waiting
time in our approach, is generated when the execution of
the subprocess is completed while others in the same cluster
are still being executed. By collecting the eligible business
activities, we develop algorithms to identify the ones that
can approach the optimal (that is, minimal) waiting time
performance of the associated subprocess and relocate them
to that subprocess. Moreover, we develop algorithms to
explore how to optimize time performance of the overall
business process. Based on the methods to optimize time
performance of a given subprocess, we approach the op-
timal time performance of the overall business process by
modifying the criteria to determine the eligible activities that
can contribute to reducing the working time of the overall
business process. In addition, our design of restricting that
any activity can only be relocated once efficiently derives
the approximate optimal solution and avoids the potential
NP-hard problems.

Algorithm 2 Optimize Time (Business Process,
Waiting Time): deriving the optimized time for the overall
business process
Input:
BP := business process that needs to optimize time performance,
WOBP := working time of the overall business process, apriori knowledge
Starget := a cluster process that needs to optimize time performance,
Aeligible := activity that is eligible for relocation to the cluster process that needs
to optimize time performance,
Aabandon := activity that has already been relocated to the cluster process that
needs to optimize time performance, {Aabandon} := ∅,
VAoriginal := varying working time of the original cluster where the eligible
activity is located, apriori knowledge for simplicity
VAtarget := varying working time of the target cluster where the eligible activity is
located, apriori knowledge for simplicity,
VAsum := varying working time of the business process contributed by the eligible
activity after being relocated,
VAinterim := interim element to represent the the smallest VAsum of all the
subprocesses,
Ainterim := interim element to represent the Aeligible corresponding to its
corresponding VAinterim,
Output:
Optimize Time(BP, WOBP ) := the optimized working time of the overall business
process

1: for each Starget ∈ BP do
2: {Aeligible} := ∅;
3: {VAsum} := ∅;
4: {VAinterim} := ∅;
5: {Ainterim} := ∅;
6: for each A /∈ (Starget ∪ {Aabandon}) in BP do
7: check whether A is forwardly moveable, backwardly moveable, or

loosely-parallelled moveable to Starget;
8: if yes then
9: {Aeligible} := {Aeligible} + A;

10: VAsum := VAtarget + VAoriginal;
11: {VAsum} := {VAsum} + VAsum;
12: end if
13: end for
14: sort({VAsum});
15: sort({Aeligible}) according to sort({VAsum});
16: {VAinterim} := {VAinterim} + {VAsum}[0];
17: {Ainterim} := {Ainterim} + {Aeligible}[0];
18: end for
19: sort({VAinterim});
20: sort({Ainterim}) according to sort({VAinterim});
21: if {VAinterim}[0] < 0 and {Ainterim} 6= ∅ then
22: WOBP := WOBP + {VAsum}[0];
23: BP updates {Ainterim}[0];
24: {Aabandon} := {Aabandon} + {Ainterim}[0];
25: Optimize Time(BP, WOBP );
26: else
27: break;
28: end if

There are generally two domains that can be adopted to
evaluate our approach. One is to develop realistic software
systems to implement our approach for optimizing time
performance. Moreover, the performance of our approx-
imated approaches for the time optimization of both a
single subprocess and the overall business process can be
verified and potentially improved with the support of the
realistic system implementation. As a matter of fact, many
enterprise software systems, such as ERP and BPM, have
been widely used and proved to be the pioneers for applying
the philosophies of business process optimization. Their
users, including but not limited to, the enterprise managers
and the enterprise software designers and developers can be
the sources in providing valuable feedback for improving the
efficacy of our approach in the future. Accordingly, we plan



to conduct case studies for them to refine our perspectives
and approaches by collecting their valuable suggestions.

Time optimization could be complicated in terms of differ-
ent scenario settings, in which the corresponding approaches
can be significantly different from each other. Assuming
consistent business activities, our approach at this point
focuses on the inter-activity adjustment in a business process
by relocating the eligible activities to subprocesses. In the
future, methods for the intra-activity adjustment can be
proposed and implemented to realize time optimization in
the case when redesigning business activities tend to be
necessary. More domain-specific methods can be proposed
for different types of business processes that are relevant to
specific industries, such as software engineering, chemical
engineering, etc. as well.

Business process optimization approaches can provide the
direct benefit for business goals to optimize the specified
objectives. Researches with respect to business process op-
timization in reality can be complicated and some relevant
elements are hard to be theoretically modeled. Therefore,
it is seemingly difficult to come up with unified solutions
for multi-aspect problems. How to improve the value of the
research of business process optimization remains a long-
term challenge and interest. Starting from our approach
to optimize time performance, in the long run, we would
pay attention to discovering more properties under different
settings of business processes and aim at proposing corre-
sponding solutions to realize their optimization.
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