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ABSTRACT
Regression testing is widely used in practice for validating
program changes. However, running large regression suites
can be costly. Researchers have developed several techniques
for prioritizing tests such that the higher priority tests have
a higher likelihood of finding bugs. A vast majority of these
techniques are based on dynamic analysis, which can be pre-
cise but can also have significant overhead (e.g., for program
instrumentation and test-coverage collection). We introduce
a new approach, REPiR, to address the problem of regres-
sion test prioritization by reducing it to a standard Infor-
mation Retrieval problem such that the differences between
two program versions form the query and the tests consti-
tute the document collection. REPiR does not require any
dynamic profiling or static program analysis. As an enabling
technology we leverage the open-source IR toolkit Indri. An
empirical evaluation using seven open-source Java projects
shows that REPiR is computationally efficient and performs
significantly better than many existing (dynamic or static)
techniques while performs at least as well for others.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: [Testing and Debugging];
H.4 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Measurement

Keywords
Regression Testing, Test Prioritization, Information Retrieval

1. INTRODUCTION
Programs commonly evolve due to feature enhancements,

program improvements, or bug fixes. Regression testing is
a widely used methodology for validating program changes.
However, regression testing can be time consuming and ex-
pensive [3, 24]. Executing a single regression suite can even
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take weeks [40]. Therefore, early detection of regression
faults is highly desirable.

Regression test prioritization (RTP) is a widely studied
technique that ranks the tests based on their likelihood in
revealing faults and defines a test execution order based on
this ranking so that tests that are more likely to find (new,
unknown) faults are run earlier [12, 34, 50, 53, 55]. Ex-
isting RTP techniques are largely based on dynamic code
coverage where the coverage from the previous program ver-
sion is used to order, i.e., rank, the tests for running against
the next version [12, 50, 53, 21]. A few recent techniques
utilize static program analysis in lieu of dynamic code cov-
erage [34, 55]. RTP techniques (whether dynamic or static)
are broadly classified into two categories, total or additional,
depending on how they calculate the rank [40]. Total tech-
niques do not change values of test cases during the prioriti-
zation process, whereas additional techniques adjust values
of the remaining test cases taking into account the influence
of already prioritized test cases.

Even though a number of existing RTP techniques (specif-
ically coverage-based ones) have been widely used, they have
two key limitations [34]. First, coverage profiling overhead
(in terms of time and space) can be significant. Second, in
the context of certain program changes (which modify be-
havior significantly) the coverage information from the pre-
vious version can be imprecise to guide test prioritization
for the current version. Although the static techniques [55,
34] address the coverage profiling overhead, they simulate
the coverage information via static analysis, and thus can
be also imprecise.

This paper presents REPiR, which introduces a new di-
mension of techniques for regression test prioritization based
on information retrieval (IR) [30]. Traditional IR techniques
focus on the analysis of natural language in an effort to
find the most relevant documents in a collection based on
a given query. An IR system generally provides a ranked-
list of documents based on the relevance between the given
documents and query. Even though the original focus of IR
techniques was on documents written in natural language,
recent years have seen a growing number of applications of
IR to effectively solve software engineering problems by ex-
tracting useful information from source code and other soft-
ware artifacts [26, 33, 36, 7, 28]. The effectiveness of these
solutions relies on the use of meaningful terms (e.g., iden-
tifiers and comments) in software artifacts, and such use is
common in projects written in languages, such as Java and
C#, which encourage it among the best practices.

Our key insight is that in addition to writing good iden-



tifier names and comments in the code, developers use very
similar terms for test cases, and we can utilize these textual
relationships by reducing the RTP problem to a standard IR
problem such that program changes constitute the query and
the test cases form the document collection. Thus, we define
a natural connection between RTP and IR. Our tool REPiR
embodies our insight. We build REPiR on top of the state-
of-the-art Indri [46] toolkit, which provides an open-source,
highly optimized platform for building solutions based on IR
principles. Thus, REPiR provides an efficient approach to
addressing the RTP problem without requiring any dynamic
coverage information or static program analysis.

We evaluate REPiR using a dataset consisting of seven
open-source software projects with real regression faults.
Specifically, we compare REPiR against ten strategies for
RTP, including four total and four additional strategies. The
experimental results show that REPiR significantly outper-
forms each total program-analysis or coverage-based strate-
gies. REPiR also overall outperforms additional strategies
although the mean difference is not statistically significant.
We also experimented with different variants of REPiR and
provide detailed results how REPiR can be used more effec-
tively depending on test or program differencing granulari-
ties. The results show that REPiR is slightly more effective
with high-level program differences at method-level tests and
low-level differences at class-level tests. For reproducibility
and verification, our experimental data is available online.1

We make the following contributions:

• RTP using IR. We introduce the idea of using infor-
mation retrieval (IR) for regression test prioritization
(RTP). To our knowledge, previous work has not ap-
plied IR to RTP.

• REPiR. We define a reduction from the regression
test prioritization problem to a standard information
retrieval problem and present our approach, REPiR,
based on this reduction.

• Tool. We embody our approach into a prototype tool
that leverages off-the-shelf, state-of-the-art Indri toolkit
for information retrieval.

• Evaluation. We present a rigorous empirical evalu-
ation using seven open-source Java projects with real
regression faults and compare REPiR with 10 RTP
strategies. The results show that REPiR is computa-
tionally efficient and performs significantly better than
all total (dynamic or static) strategies while matching
the accuracy of all additional strategies.

2. BACKGROUND
This section briefly discusses the basic concepts of regres-

sion test prioritization, working procedure of an IR system,
and its applications in software engineering.

2.1 Regression Test Prioritization
A test prioritization technique or tool reorders the actual

execution sequences of test cases in such a way that it meets
certain objectives of developers or testers. The nature of
objectives could be diverse including, but not limited to,
increasing the overall fault detection rate or increasing code
coverage at a faster rate.

1https://www.dropbox.com/s/rsg1yk5x65bjh2u/repir.zip

Rothermel et al. [40] formally defined the test case priori-
tization problem as finding T ′ ∈ PT , such that (∀T ′′)(T ′′ ∈
PT )(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)]. In the definition, PT de-
notes the set of all possible permutations of a given test
suite T , and f denotes a function from any member of PT
to a real number such that a larger number indicates better
prioritization. In this paper, we focus on increasing the like-
lihood of revealing regression errors related to specific code
changes earlier in the regression testing process.

2.2 IR Techniques in Software Engineering
Recent years have seen many IR applications applied to

solve software engineering problems. IR is concerned with
search: given a massive collection of documents, IR seeks
to find the most relevant documents based on a user-query.
Generally an IR system works in three major steps: text pre-
processing, indexing, and retrieval. Preprocessing involves
text normalization, stop-word removal, and stemming. A
text normalizer removes punctuation, performs case-folding,
tokenizes terms, etc. In the stop-word removal phase, an IR
system filters out the frequently used terms such as prepo-
sitions, articles, etc. in order to improve efficiency and re-
duce spurious matches. Finally, stemming conflates variants
of the same term (e.g., go, going, gone) to improve term
matching between query and document. Then the docu-
ments are indexed for fast retrieval. Once indexed, queries
are submitted to the search engine, which returns a ranked-
list of documents in response. Finally, the search engine (or
“model”) is evaluated by measuring the quality of its output
ranked-list relative to each user’s input query. For a broad
overview of IR, please refer [30] online.

IR techniques have been applied to over two dozens of
different software engineering problems, many of which are
highlighted in two surveys on the application of IR to SE
problems [5, 6]. There are two predominant tasks today.
One is feature (or concept) location, which consists of lo-
cating features described in maintenance requests, such as
enhancements or faults [26, 33, 36, 16, 7, 28]. The second
task is traceability, which links or recovers links between
software engineering artifacts [27, 32]. Another closely re-
lated task is software reuse, where IR is used to identify the
reusable software artifacts [15]. There are also a diverse set
of other tasks such as quality assessment [22], change impact
analysis in source code [8], restructuring and refactoring [2],
defect prediction [4], clone detection [31] and duplicate bug
detection [47].

3. REPiR APPROACH
Regression test prioritization (RTP) and Information Re-

trieval (IR) both deal with a ranking problem, albeit in dif-
ferent domains (Section 2). While RTP is concerned with
test cases written in programming language, IR is concerned
with documents written in natural language. However, many
human-centric software engineering documents are text-based,
including source-code, test scripts, and test documents. Fur-
thermore, in real world software projects, developers often
use meaningful identifier names and write comments, which
allow solving a number of software engineering problems us-
ing information retrieval. Our key insight is that in addition
to writing good identifier names and comments in the code,
developers use very similar terms for test cases, and we can
utilize these textual relationships using IR to develop effi-
cient RTP techniques.



3.1 Problem Formulation
We reduce RTP as a standard IR problem where the pro-

gram difference between two software revisions or versions is
the query and the test cases or test-classes are the document
collection. Therefore, for a given test suite TS, the priori-
tized test suite TS′ is defined by the ranking of tests in TS
based on the similarity score between the program difference
and test cases. Reducing the RTP technique to a standard
IR task enables us to exploit a wealth of prior theoretical
and empirical IR methodology, providing a robust founda-
tion for tackling RTP. In this work, we primarily focus on
projects with JUnit test-cases.

3.2 Construction of Document Collection
The process of constructing documents from test cases

varies depending on the information granularity and the
choice of information retrieval techniques. Generally a test
suite is a collection of source code files, where each source
code file consists of one or more test-methods/functions. For
example, JUnit has two levels of test cases: test-classes and
test-methods. Prior researches [55, 53] on RTP focused on
prioritizing both test-methods and test-classes. In this sec-
tion, we describe the construction of three types of docu-
ment collections. Hereafter, we use test-class to denote test-
class/file and test-method to denote test-method/function.

3.2.1 At Test-Class Level
To make document collection at test-class level, we first

build the abstract syntax tree (AST) of each source code file
using Eclipse Java Development Tools (JDT), and traverse
the AST to extract all the identifier names (class names,
method names, and variable names) and comments. The
identifier names and comments are particularly important
from the information retrieval point of view, since these are
the places where developers can use their own natural lan-
guage terms. Note that a document collection at the test-
class level can be also constructed without any knowledge of
underlying programming language. In this case, we do not
construct any AST for test-classes. Rather, we read each
term in the test class, remove all mathematical operators
using simple text processing, and tokenize them to construct
the document-collection.

3.2.2 At Test-Method Level
For constructing document collection at the test-method

level, we extract all the methods from the AST using JDT
and store all the identifiers and comments related to a given
method as a text document.

3.2.3 Structured Document
For structured information retrieval, it is important to

store documents in such a way that they retain the program
structure. In our study, we distinguish four kinds of terms
based on program constructs: i) class names, ii) method
names, iii) all other identifier names such as variable names,
api names, and iv) comments. To construct structured doc-
uments, we traverse the AST for either each test-class or
test-method to extract aforementioned terms and store them
in an XML document.

3.3 Query Construction
As we defined in the problem formulation, in an IR-based

RTP, differences between two program versions comprise the

Table 1: High Level Change Types

No. Type Change Description

1 CM Change in Method
2 AM Addition of Method
3 DM Deletion of Method
4 AF Addition of Field
5 DF Deletion of Field
6 CFI Change in Instance of Field Intializer
7 CSFI Change in Static Field Initializer
8 LCm Look-up Change due to Method Changes
9 LCf Look-up Change due to Field Changes

query. How to utilize the best query representation (e.g.,
succinct vs. descriptive)–is a very well-known problem in
traditional IR [23]. While the succinct representation often
provides the most important keywords, it may lack other
terms useful for matching. In contrast, although the more
verbose descriptions may contain many other useful terms to
match, it may also contain a variety of distracting terms. In
our work, we experiment with three representations of pro-
gram differences that can affect the overall results of RTP.

3.3.1 Low Level Differences
By low level differences, we mean the program differences

between two versions at the line level. We compute the
low level differences by applying UNIX diff recursively while
ignoring spaces and blank lines. It can be also obtained
from program versioning system (e.g. cvs, svn, git) without
any computation. We denote this representation of query as
LDiff and quantify it in terms of number of lines.

3.3.2 High level differences
Since LDiff is expected to be noisy (e.g., from changes

in formatting, or local changes), our goal is to summarize
LDiff by abstracting local changes and ignoring formatting
differences. To this end, we consider nine types of atomic
changes (Table 1) that have been used in various studies for
change impact analysis. We use FaultTracer [54], a change
impact analysis tool, to extract these changes. We denote
this high level query as HDiff and quantify it in terms of
number of the atomic changes.

3.3.3 Compact LDiff or HDiff
Since difference between two program versions is often too

long (e.g. thousands of lines), it is highly likely that they
would have many duplicated terms. In this representation,
we construct a compact version of LDiff and HDiff by remov-
ing all the duplicated words from them. We denote these
compact forms of LDiff and HDiff as LDiff.Distinct and
HDiff.Distinct respectively.

3.4 Tokenization
Since we are dealing with program source code rather than

natural language written in English, similar to other IR sys-
tems for software engineering, our tokenization is different
than that of standard IR task. Generally identifier names
are often a concatenation of words. Dit et al. [8] compared
simple camel case splitting to the more sophisticated Samu-
rai [10] system and found that both performed comparably
in concept location. Therefore, in addition to splitting terms
based on period, comma, white space, we also split identifier



names based on the camel case heuristic.

3.5 Retrieval Model
Researchers in software engineering have experimented

with a number of different retrieval models developed by
IR including latent semantic indexing (LSI) [9], the vector
space model (VSM) [30], and Latent Dirichlet Allocation
(LDA) [49]. However, recent research shows that TF.IDF
term weighted VSM (briefly TF.IDF model) works better
than others [41, 56]. Another study shows that although
there is a widespread debate on which of three (TF.IDF [42],
BM25 (Okapi) [37], or language modeling [35]) traditionally-
dominant IR paradigms was best, all three approaches uti-
lize the same underlying textual features, and empirically
perform comparably when well-tuned [14]. Therefore, we
chose the TF.IDF model for our study. We elaborate on
this TF.IDF formulation below.

Let us assume that test cases (documents) and a program
difference (query) are represented by a weighted term fre-

quency vector ~d and ~q respectively of length n (the size of
vocabulary, i.e., the total number of terms).

~d = (x1, x2, ......, xn) (1)

~q = (y1, y2, ....., yn) (2)

Each element of xi in ~d represents the frequency of term ti
in document d (similarly, yi in query ~q). However, the terms
that occur very frequently in most of the documents are less
useful for search. Therefore, in a vector space model, gen-
erally query and document terms are weighted by a heuris-
tic TF.IDF weighting formula instead of only their raw fre-
quencies. Inverse document frequency (IDF) diminishes the
weight of terms that occur very frequently in the document
set and increases the weight of terms that occur rarely. Thus,

weighted vectors for ~d and ~q are:

~dw = (tfd(x1)idf(t1), tfd(x2)idf(t2), ..., tfd(xn)idf(tn)) (3)

~qw = (tfq(y1)idf(t1), tfq(y2)idf(t2), ..., tfq(yn)idf(tn)) (4)

The basic formulation of IDF for term ti is idf(ti) =
log N

nti
, where N is the total number of documents in C and

nti is the number of documents with term ti. Therefore, in
the simplest TF.IDF model, we would simply multiply this
value by the term’s frequency in document d to compute
the TF.IDF score for (t, d). However, actual TF.IDF mod-
els used in practice differ greatly from this to improve accu-
racy [44, 37]. To date IR researchers have proposed a num-
ber of variants of TF.IDF model. We adopt Indri’s built-in
TF.IDF formulation, based upon the well-established BM25
model [37, 52]. This TF.IDF variant has been actively used
in IR community over a decade and rigorously evaluated in
shared task evaluations at the Text REtrieval Conference
(TREC). In this variant, the document’s tf function is com-
puted by Okapi:

tfd(x) =
k1x

x + k1(1− b + b ld
lC

)
(5)

where k1 is a tuning parameter (≥ 0) that calibrates doc-
ument term frequency scaling. The term frequency value
quickly saturates for a small value of k1, whereas, a large
value corresponds to using raw term frequency. b is another
tuning parameter between 0 and 1, which is the document
scaling factor. When the value of b is 1, the term weight
is fully scaled by the document length. For a zero value of
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Figure 1: REPiR Architecture

b, no length normalization is applied. ld and lC represents
the document length and average document length for the
collection respectively.

The IDF value is smoothed as log N+1
nt+0.5

to avoid division
by zero for the special case when a particular term appears
in all documents.

The term frequency function of query, tfq is defined sim-
ilarly as tfd. However, since the query is fixed across docu-
ments, normalization of query length is unnecessary. There-
fore, b is set simply to zero.

tfq(y) =
k2y

y + k2
(6)

Now the similarity score of document ~d against query ~q is
given by Equation 7.

s(~d, ~q) =

n∑
i=1

tfd(xi)tfq(yi)idf(ti)
2 (7)

3.6 Structured Information Retrieval
The TF.IDF model presented in Equation 7 does not con-

sider source code structure (program constructs)–i.e., each
term in a source code file is considered having the same rele-
vance with respect to the given query. In our recent work on
IR-based bug localization [41], we found that incorporating
structural information into IR model, known as structured
retrieval, can help improve the results considerably. In this
paper, we adapt the structured IR for RTP.

As we described in Section 3.2.3, we distinguish four differ-
ent program constructs: class, method, variables, comments.
Therefore, to exploit all of this structural information, we
perform a separate search for each type of terms. Since
TF.IDF model assumes that there is no statistical depen-
dence between terms, we simply sum all the field retrieval
scores to calculate the final similarity score.

s′(~d, ~q) =
∑
f∈D

s(df , q) (8)

where f is a particular document field. The benefit of this
model is that terms appearing in multiple document fields
are implicitly assigned greater weight, since the contribution
from each term is summed over all fields in which it appears.

3.7 Architecture
Figure 1 shows the overall architecture of our IR-based

RTP prototype, REPiR (REgression test Prioritization us-
ing information Retrieval). First, REPiR takes the source



code files of tests as input that we would like to prioritize.
Next, it extracts information from test cases, tokenizes the
terms, and constructs a document collection for a given level
of granularity as described in Section 3.2. REPiR also ex-
tracts program changes (LDiff, HDiff, or compact) and tok-
enizes terms in the same way as tokenizing document terms
to construct the query.

We adopt the Indri toolkit [46], a highly efficient open-
source library, for indexing and developing our retrieval model.
After documents and queries are created above, they are
handed off to Indri for stopword removal, stemming, and in-
dexing. Note that we use the default stopword list provided
with Indri and Krovetz stemmer for stemming. We also set
the values of k1, k2, and b to 1.0, 1000, and 0.3 respectively,
which have been found to perform well empirically [41].

4. EMPIRICAL EVALUATION
To investigate the effectiveness of REPiR, we performed

an empirical evaluation in terms of five research questions.

• RQ1: Is REPiR more effective than random or un-
treated test case orders?

This research question aims to understand whether
REPiR reveals regression faults earlier than when there
is no RTP or test cases are ordered at random.

• RQ2: Do the high-level program differences help im-
prove the performance of REPiR?

Low-level program differences are expected to produce
noisy results since changes to even a single character
of a line would be interpreted as deletion of a line fol-
lowed by an addition of line. Therefore, in this re-
search question, we investigate whether the high-level
program differences based on AST help improve the
accuracy of REPiR.

• RQ3: Is structured retrieval more effective for RTP?

In our recent work, we showed that incorporating the
structural information program into traditional infor-
mation retrieval model, which is known as structured
information retrieval, can improve the bug localization
results considerably [41]. In this research question, we
investigate whether the same is true for IR-based RTP.

• RQ4: How does REPiR perform compared to the ex-
isting RTP techniques?

To date researchers have focused on various program
analysis (either static or dynamic) based techniques to
propose or improve RTP. In this research question, we
are interested in investigating how well REPiR per-
forms compared to those existing techniques.

• RQ5: How does REPiR perform when it is oblivious
to language-level information?

Since REPiR only utilizes textual information, identifi-
cation of specific programing language constructs, such
as control-flow structures, is not needed. Lightweight
languange-specific parsing is used only for identifier-
name extraction for constructing document collection
at the method-level. However, if we use LDiff to priori-
tize test-classes, REPiR can be made completely obliv-
ious of the underlying programming language. In this
research question, we investigate how REPiR performs
for this configuration.

4.1 Subject Systems
We studied seven open source software systems for our

study. All of these systems are from diverse application
domain and have been widely used in software testing re-
search [11, 34, 43]. We obtained Xml-Security from the well-
known Software-artifact Infrastructure Repository (SIR) [10]
and extract other subject systems from their host website.
The sizes of these systems vary from 5.7K LOC (Time and
Money, 2.7K LOC source code and 3K LOC test code) to
88.8K LOC (Joda-Time, 32.9K LOC source code and 55.9K
LOC test code).

For each subject systems, first we extract all the major
releases with their test cases and consider each consecutive
versions as a version-pair. For each pair, we run the old re-
gression test suite on new version to see if there is any regres-
sion fault. In this way, we were able to identify 20 version-
pairs with regression faults, which we used in our study.
Table 2 provides all the details regarding each version-pair
including the number of methods and classes, the number of
test-classes and test-methods, the size of program edits, the
number of faulty edits, and fault-revealing test cases.

4.2 Independent Variable
Since we are interested in investigating the performance

of REPiR for different granularities of test cases, different
representations of program differences, and how it work com-
pared to other RTP strategies, we have mainly three inde-
pendent variables:

• Test-case Granularity

• Program Differences, and

• Prioritization Strategy

In section 3, we discussed different test cases granularities
and program differences. Now we briefly describe 10 test
prioritization strategies that we considered for comparison.

Untreated test prioritization keeps the original se-
quence of test cases as provided by developers. In our dis-
cussion, we denote the untreated test case prioritization as
UT. We consider this to be the control treatment.

Random test prioritization rearranges test cases ran-
domly. Since the results of random strategy may vary a lot
for each run, we applied random test prioritization 20 times
for each subject and considered the average as final result.
In our discussion, we denote the random test prioritization
technique as RT.

Dynamic coverage-based test prioritization varies
depending on the types of coverage information (e.g., the
method or statement coverage) and prioritization strategies
(e.g., the total or additional strategy). We used the four
most-widely used variants of coverage-based RTP: CMA, CMT,
CSA, and CST. For example, CMA denotes test prioritization
based on the method coverage using the additional strategy,
and CST denotes test prioritization based on the statement
coverage using the total strategy.

JUPTA [55, 34] is a static program analysis based test
prioritization approach that sorts the test cases based on test
ability (TA). TA is determined by the number of program el-
ements relevant to a given test case (T), which is computed
from the static call graph of T to simulate coverage infor-
mation. TA can be calculated based on two levels of gran-
ularity: fine granularity and coarse granularity. TA at the



Table 2: Description of Dataset
No. Project Version Pair #TMethods #TClass #FTMethods #LDiff #HDiff #FEdits

P1 Time and Money 3.0-4.0 143 15 1 1200 215 1
P2 Time and Money 4.0-5.0 159 16 1 658 246 1
P3 Mime4J 0.50-0.60 120 24 8 4377 2862 3
P4 Mime4J 0.61-0.68 348 57 3 2967 3160 4
P5 Jaxen 1.0b7-1.0b9 24 12 2 2788 204 3
P6 Jaxen 1.1b6-1.1b7 243 41 2 5688 473 5
P7 Jaxen 1.0b9-1.0b11 645 69 1 1020 92 1
P8 Xml-Security 1.0-1.1 91 15 5 6025 329 2
P9 XStream 1.20-1.21 637 115 1 833 209 1
P10 XStream 1.21-1.22 698 124 2 1079 222 2
P11 XStream 1.22-1.30 768 133 11 5920 540 11
P12 XStream 1.30-1.31 885 150 3 2630 416 3
P13 XStream 1.31-1.40 924 140 7 6744 1225 7
P14 XStream 1.41-1.42 1200 157 5 828 136 5
P15 Commons-Lang 3.02-3.03 1698 83 1 1757 221 1
P16 Commons-Lang 3.03-3.04 1703 83 2 3003 172 2
P17 Joda-Time 0.90-0.95 219 10 2 8653 5976 2
P18 Joda-Time 0.98-0.99 1932 71 2 13735 1254 2
P19 Joda-Time 1.10-1.20 2420 90 1 1348 793 1
P20 Joda-Time 1.20-1.30 2516 93 3 1979 571 3

fine-granularity level is calculated based on the statements
contained by the methods called by a test case, whereas
TA at the coarse-granularity level is calculated based on
the methods called by a test case. Similar with coverage-
based prioritization techniques, we also used four variants
of JUPTA: JMA, JMT, JSA, and JST.

Note that we implemented all the static and dynamic RTP
techniques using byte-code analysis. More specifically, we
used the ASM byte-code manipulation framework2 to extract
all the static and coverage information for test prioritization.

4.3 Dependent Variable
We use the Average Percentage Faults Detected (APFD) [40],

a widely used metric in evaluating regression test prioriti-
zation techniques, as the dependent variable. This metric
measures prioritization effectiveness in terms of the rate of
fault detection of a test suite, and is defined by the following
formula:

APFD = 1−
∑m

i=1 TFi

n×m
+

1

2× n
(9)

where n denotes the total number of test cases, m denotes
the total number of faults, and TFi denotes the smallest
number of test cases in sequence that need to be run in
order to expose the ith fault. The value of APFD can vary
from 0 to 1. Since n and m are fixed for any given test suite,
higher APFD values indicate higher fault-detection rates.

4.4 Study Results
In this section, we present the experimental results which

answer our research questions.

4.4.1 Performance: REPiR vs. UT and RT
First, to understand the performance of REPiR compared

to UT and RT at the test-method level, REPiR is set to
construct the document collection at test-method level and
use LDiff as a query. We select the TF.IDF model as the

2http://asm.ow2.org/
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Figure 2: Performance of REPiR(LDiff) at Test-
Method and Test-Class Level

underlying retrieval technique and run REPiR on all version
pairs (P1-P20). We also run RT and UT for the same dataset.
Each RTP technique provides a ranked-list of test-methods
for each version-pair, which we use to calculate APFDs. We
also perform the same experiment for test-class level.

Figure 2 presents the results for all version-pairs in form
of boxplot. In each plot, the X-axis shows the strategies that
we compared and the Y-axis shows the APFD values. To
name RTP techniques, we used M to denote method-level
and C to denote class-level test-cases. Each boxplot shows
the average (dot in the box), median (line in the box), up-
per/lower quartile, and 90th/10th percentile APFD values
achieved by a strategy. From the figure, we see that the
mean, median, first and third quartiles APFD of (UT, RT,
REPiR) at test-method level are (0.57, 0.6, 0.74), (0.63,
0.58, 0.79), (0.35, 0.49, 0.69), and (0.75, 0.67, 0.87) respec-
tively, which clearly indicates that REPiR overall performs
better than UT and RT.

We also investigate whether the accuracy of REPiR vary
with the length of program differences or the number of test-
methods, since these are two main inputs for REPiR. We
compute the Spearman correlation between the size of LDiff
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Figure 3: Impact of Program Differences at test-
method Level

(quantified by number of changed lines) and APFD, and
between the number of test-methods and APFD. The low
correlation values for both cases (0.19 and 0.44) indicate that
the accuracy of REPiR is fairly independent of the length of
program differences and the number of test-methods.

Similarly for the test-class level, we see that the mean,
median, first and third quartiles APFD of REPiR (0.81,
0.87, 0.7, 0.94) is higher than that of UT (0.55, 0.61, 0.3,
0.76) and RT (0.53, 0.51, 0.49, 0.6). These results show that
REPiR performs much better than UT and RT at test-class
level. The low Spearman correlations between the number
of test-classes and APFD (0.23) and between the length of
program differences and APFD (-0.4) indicate that the ac-
curacy of REPiR is not dependent either on the the number
of test-classes and size of program differences.

4.4.2 Impact of Program Differences
To answer RQ2, we run REPiR with four forms of program

differences (LDiff, LDiff.Distinct, HDiff, HDiff.Distict) sep-
arately for both at test-method level and at test-class level.

Figures 3 and 4 present the summary of APFD values for
test-methods and test-classes respectively. From Figure 3
we see that at method-level HDiff works better than the
LDiff in terms of both mean (HDiff: 0.76 vs. LDiff: 0.74)
and median (HDiff: 0.83 vs. LDiff: 0.79). When we take
a closer look into our data for individual program versions,
we find that HDiff improves the APFD values for 12 version-
pairs, while decreases it for 5 version-pairs. However, if we
further condense the query by removing duplicate terms, the
accuracy decreases for both HDiff and LDiff and the drop is
higher for HDiff than that of LDiff. We believe that since
HDiff is already condensed, it was affected more due to the
removal of duplicated terms than LDiff.

On the other hand, From Figure 4, we see that LDiff
works better than HDiff at test-class level. The mean and
median APFDs for HDiff are 0.79 and 0.82 respectively,
whereas they are 0.81 and 0.87 for LDiff. From the results
of LDiff.Distinct and HDiff.Distinct, we see that like test-
method level, the removal of duplicated terms hurt the re-
sults as well. However, at test-class level the drop is very
small compared to that of test-method level.

4.4.3 Impact of Structured Retrieval
To understand whether the structured retrieval leads to

better prioritization, we constructed the structured version
of document collection at both test-method and test-class
level as described in Section 3.2.3. Then we used the struc-
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Figure 4: Impact of Program Differences at test-
class Level
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Figure 5: Impact of Structured Retrieval at test-
method Level

tured retrieval as described in Section 3.6. From the Fig-
ures 5 and 6, we see that structured retrieval works basically
the same as unstructured retrieval at both test-method and
test-class levels for LDiff. It shows a slightly better perfor-
mance (median improvement of 0.02) for HDiff.

Our results show that although structured retrieval has
been found to improve the accuracy of bug localization re-
sults considerably, this is not the case for RTP.

4.4.4 Performance: REPiR Vs. JUPTA or Coverage-
based RTP

To answer RQ4, first we ran all the eight techniques (four
variants of JUPTA based on call graphs and four variants of
coverage-based technique) described in Section 4.2 on each
program-pair in our dataset. Figures 7 and 8 show the sum-
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Figure 6: Impact of Structured Retrieval at test-
class Level
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Figure 7: Performance of JUPTA and Coverage-
based RTP at test-method Level
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Figure 8: Performance of JUPTA and Coverage-
based RTP at test-class Level

mary of APFD values for each strategy at method-level and
class-level respectively. Results show that for both static
and dynamic techniques, additional strategies are more ef-
fective than total, regardless of test-case granularities. This
is consistent with prior studies [19, 53].

Now we compare all the mean APFDs of REPiR (from
Figures 3 and 4) with that of JUPTA and coverage-based
techniques (from Figures 7 and 8). From the results, we
see that REPiR equipped with HDiff at method level and
LDiff at class level overall outperformed both JUPTA and
coverage-based approaches. At test-method level the mean
APFD achieved by REPiR is 0.76, whereas the best vari-
ants of JUPTA (JMA) and coverage-based technique (CSA)
achieve 0.72 and 0.73, respectively. At test-class level, REPiR
equipped with LDiff achieves the mean APFD of 0.81, whereas
the best variants of JUPTA (JSA) and coverage-best tech-
nique (CSA) achieve 0.76 and 0.7, respectively. Even for the
compact representation of queries, REPiR performs better
than any total strategies at test-method level (mean of 0.72
for HDiff.Distinct) and any total and additional strategies at
test-class level (mean of 0.81 for LDiff.Distinct).

We further investigated how REPiR performs for each
subject system. Each column in Tables 3 and 4 show the
results of best configuration from each category (REPiR,
JUPTA, and coverage-based). Results show that REPiR
achieved the best APFD for five out of seven systems at test-
method level and four subject systems at test-class level.

Finally, we perform statistical tests to investigate if the
differences between various strategies are significant. Before
applying paired significance test, we first apply the Shapiro-
Wilk Normality Test to check the normality assumption and
found that the accuracy achieved by different strategies are
not normally distributed. Therefore, we perform Wilcoxon

Table 3: Comparison by Subjects test-method Level

Sub. Sys. HDiff JMA CSA

Time and Money 0.50 0.47 0.19
Mime4J 0.68 0.68 0.59
Jaxen 0.67 0.67 0.94
XML-Security 0.80 0.42 0.69
XStream 0.84 0.68 0.79
Commons-Lang 0.95 0.79 0.86
joda 0.75 0.87 0.78

Table 4: Comparison by Subjects test-class Level
Sub. Sys. LDiff JSA CSA

Time and Money 0.82 0.91 0.45
Mime4J 0.89 0.79 0.66
Jaxen 0.61 0.57 0.86
XML-Security 0.90 0.77 0.37
XStream 0.87 0.83 0.74
Commons-Lang 0.96 0.62 0.84
Joda-Time 0.63 0.66 0.69

Sign-Rank Test for each pair shown in Table 5. The in-
put to the test is two vectors, where each vector consists
of 20 APFD values for 20 version-pairs achieved by a given
strategy. From the results we see that for any test-case gran-
ularity (either test-class or test-method), REPiR equipped
with simply low-level program differences works significantly
better than any total strategies (either static or dynamic).
Also, as we have already noticed, high-level program differ-
ences works better at test-method level. Results show that
at method-level, REPiR equipped with HDiff significantly
outperformed any static total strategies even at a signifi-
cance level at 0.01. On other hand, although REPiR per-
formed better than the additional strategies as well in terms
of mean, statistically the differences are not that significant.

Statistical test results for UT and RT: While an-
swering RQ1 in Section 4.4.1, we did not perform any sta-
tistical test since we just wanted to get an idea how REPiR
performs with respect to UT and RT. We have not also dis-
cussed different variants of REPiR by then. Thus, now we
perform the same Wilcoxon test between REPiR results and
UT and RT results at both test-case levels for both LDiff and
HDiff. As shown in the last two rows of Table 5, REPiR sig-
nificantly outperformed seven out of eight combinations of
UT and RT.

Table 5: Wilcoxon Test Results (p-values)

Method Level Class Level
Strategy LDiff HDiff LDIff HDiff

JMT 0.002** 0.002** 0.029* 0.048*
JMA 0.467 0.235 0.111 0.052
JST 0.003** 0.001** 0.001** 0.042*
JSA 0.391 0.145 0.171 0.201
CMT 0.01* 0.002** 0.048* 0.218
CMA 0.780 0.506 0.126 0.140
CST 0.011* 0.004** 0.015* 0.113
CSA 0.702 0.513 0.053 0.151

UT 0.151 0.03* 0.001** 0.004**
RT 0.015* 0.015* 0.0002** 0.0004**

* indicates significance at the 0.05 level (p<0.05)
**indicates significance at the 0.01 level (p<0.01)



public StringBuffer format(Calendar calendar,
StringBuffer buf) {

- if (mTimeZoneForced){
- calendar.getTimeInMillis();
- calendar = (Calendar) calendar.clone();
- calendar.setTimeZOne(mTimeZone);
- }
}

Figure 9: Faulty-edits in Commons-Lang 3.02

4.4.5 Performance when REPiR is oblivious of Pro-
gramming Language

For this experimental setting, REPiR does not build any
AST for source code or test classes while constructing docu-
ment collections and queries. Documents are made at test-
class level by simply removing mathematical operators and
tokenizing any text that are in the test-classes. So the docu-
ments are expected to have noisy results because of language
keywords. We used LDiff as query, which is also program
language independent. Then we run REPiR for all version-
pairs and calculate the APFD values. Results show that
the mean APFD across all version-pairs is 0.8, while it was
0.81 when we used only identifiers and comments as doc-
ument terms. The median difference is slightly more than
that of mean (0.81 for language-oblivious configuration vs.
0.84 when we used only identifiers and comments).

4.5 Qualitative Analysis
Our hypothesis is that, in real-world software projects,

developers tend to choose meaningful terms for identifier
(e.g. classes, methods, variables) names and write comments
in source code. It turns out that developers also use very
similar terms for corresponding test cases. One of our main
motivations of building an IR-based RTP is to exploit these
common practices. In this section, we illustrate a concrete
example to show the usefulness of this information.

When Commons-Lang evolved from version 3.02 to 3.03,
test-method FastDateFormatTest.testLang538 failed since
the developer incorrectly removed a conditional block for
updating time zone in method FastDateFormat.format()

(shown in Figure 9, highlighted in red). If we extract the
program differences from this change, LDiff produces the
following terms: time, zone, forced, calendar, get, time etc.,
while HDiff produces CM:FastDateFormat.format. It should
be noted there were also many other (non-faulty) changes
in the query. Now let us take a look at the test-method
that reveals this fault in Figure 10. Interestingly, we see
many of the terms from faulty edits in the test-method. Fur-
thermore, the source code class (FastDateFormat) and the
corresponding test-class (FastDateFormatTest) have similar
names. As a result, REPiR with HDiff ranked this method
at 7th and LDiff ranked at 17th position among 1,698 test-
methods. On the other hand, the best variants of JUPTA
and coverage-based technique, JMA and CSA ranked it at
367th and 370th position respectively.

In spite of these extremely good results, there was an oc-
casion, where REPiR performed unsatisfactorily. We in-
vestigated this case, and found that it was for the system,
Time and Money, when it was evolving from 4.0 to 5.0.
We found that the fault revealing test-method was Mon-

eyTest.testPrint where there was apparently no informa-
tion of use to IR. The only line in the test-method is as-

sertEquals("USD 15.00",d15.toString());. However, our
overall results show that this rarely happens in our subjects.

4.6 Time and Space Overhead
The running time of REPiR depends on three paramters:

the size of vocabulary, the number of test cases, and the
length of program difference. REPiR works most efficiently
when we use compact representation of the query. It takes
only a fraction of a second for each version-pair to prioritize
its test cases. For example, REPiR took only 0.18 second
to prioritize all the test-methods of Joda-Time 1.20, which
is the largest system in our study. The preprocessing and
indexing time is also approximately three seconds in total.
When we used the full representation of query, REPiR took
20 seconds. On the other hand, the additional strategy based
on statement level coverage information took 40 seconds,
only for test prioritization (excluding instrumentation and
coverage collection). The time complexity of REPiR and
total strategy grows linearly when test suite size increases,
while the additional strategy grows quadratically [34]. In
addition, as discussed in Section 4.4.4, REPiR even with
compact queries performs better than the total strategies
and at least as effectively as the additional strategies. Thus,
REPiR is a more cost-effective approach. Furthermore, note
that coverage-based approach is not useful if the coverage
information is not available from the old version because
developers can simply run all the tests instead of spending
time for recollecting the coverage. We performed all the ex-
periments on a MacBook Pro with 2.8GHz and 4GB RAM.

The space overhead of REPiR is determined by the re-
quirement of indexing test cases for IR. For most of the sub-
ject systems, index-size was around 1MB. For the largest
system, Joda-Time 1.20, the index-size was 3MB. On the
contrary, the data required by the traditional techniques for
the same system was 11.6MB for method coverage matrix
and 31MB for statement coverage matrix. The time and
space overhead of JUPTA is very similar to coverage-based
approaches since JUPTA tries to simulate code coverage.

4.7 Threats to Validity
This section discusses the validity and generalizability of

our findings.
Construct Validity: We used two artifacts of a soft-

ware repository: program source code and test cases, which
are generally well understood. Our evaluation uses subject
systems with real regression faults. Also we applied all the
prioritization techniques on the same dataset, enabling fair
comparison and reproducible findings. In order to evaluate
the quality of prioritization, we chose Average Percentage
Faults Detected (APFD), which has been extensively used in
the field of regression test prioritization, and is straightfor-
ward to compute. APFD expresses the quality of prioritized
test cases based on how early the faulty test cases are posi-
tioned in the prioritized suite. However, APFD does neither
consider the execution time of individual test cases nor con-
sider the severity of faults. Therefore, it may not accurately
estimate how much we are gaining from the prioritized test
suite in terms of cost and benefits.

Internal Validity: Since IR-based RTP works based on
the term-similarity between the source code and test cases,
the success of REPiR vastly depends on meaningful iden-
tifier names and comments, consistent with programming
best practices.

External Validity: Our experimental results are based
on 20 versions of programs from seven software projects,
all of them are open source projects and written in Java.



public void testLang538() {
final String dateTime = "2009-10-16T16:42:16.000Z";
// more commonly constructed with: cal = new GregorianCalendar(2009, 9, 16, 8, 42, 16)
// for the unit test to work in any time zone, constructing with GMT-8 rather than default locale time zone
GregorianCalendar cal = new GregorianCalendar(TimeZone.getTimeZone("GMT-8"));
cal.clear();
cal.set(2009, 9, 16, 8, 42, 16);
FastDateFormat format = FastDateFormat.getInstance("yyyy-MM-dd’T’HH:mm:ss.SSS’Z’", TimeZone.getTimeZone("GMT"));
assertEquals("dateTime", dateTime, format.format(cal));}

Figure 10: Fault Revealing Test-Method for Commons-Lang 3.02

Although, they are popular projects and widely used in re-
gression testing research, our findings may not be general-
izable to other open source projects or industrial projects.
Furthermore, all the subject systems in our experiment use
JUnit test cases. Therefore, we cannot generalize our results
for other types of tests. The risk of insufficient generaliza-
tion could be mitigated by applying REPiR on more subject
systems (both open source and industrial). This will be ex-
plored in our future work.

5. RELATED WORK
Reducing the time and cost of regression testing has been

an active research area for near two decades. Researchers
have already proposed various regression testing techniques,
such as regression test selection [1, 39], prioritization [12,
34], and reduction [38]. Since our work is for regression test
prioritization (RTP), this section is limited to the relevant
work in this area. For related work regarding IR in software
engineering, please refer to Section 2.2.

Wong et al. [50] introduced the notion of RTP to make re-
gression testing more effective. They made use of program
differences and test execution coverage from the previous
version, and then sorted test cases in order of increasing
cost per additional coverage. Rothermel et al. [40] empir-
ically evaluated a number of test prioritization techniques,
including both the total and additional test prioritization
strategies using various coverage information. In that work,
they also proposed the widely used APFD metric for test
prioritization. Along the same line, Elbaum et al. investi-
gated more code coverage information [13], and incorporated
the cost and the severity of each test case for test prioriti-
zation [12]. Jones and Harrold [20] argued that there are
important differences between statement-level coverage and
modified condition/decision coverage (MC/DC) for regres-
sion testing, and proposed test reduction and prioritization
using the MC/DC information. Jeffrey and Gupta [17] intro-
duced the notion of relevant slices in RTP. Their approach
assigns higher weight to a test case that has larger number
of statements (branches) in its relevant slice of the output.
However, a common limitation of these techniques is that
they require coverage information for the old version, which
can be costly to collect or not available in the repository.

Besides investigating different types of coverage informa-
tion, researchers have also proposed various other strategies
for RTP. Li et al. [25] used search-based algorithms, such
as hill-climbing and genetic programming, for test prioriti-
zation. Jiang et al. [19] used the idea of adaptive random
testing for test prioritization. Zhang et al. [53] recently pro-
posed a spectrum of test prioritization strategies between
the traditional total and additional strategies based on statis-
tical models. However, according to the reported empirical
results [19, 53], the traditional additional strategy remains
one of the most effective test prioritization strategies.

There are also some approaches that do not require dy-
namic coverage information. Srikanth et al. [45] proposed

a value-driven approach to system-level test case prioritiza-
tion based on four factors: requirements volatility, customer
priority, implementation complexity, and fault proneness of
the requirements. Tonella et al. [48] used relative priority
information from the user, in the form of pairwise test case
comparisons, to iteratively refine the test case ordering. Yoo
et al. [51] further used test clustering to reduce the man-
ual efforts in pairwise test comparisons. Ma and Zhao [29]
distinguished fault severity based on both users knowledge
and program structure information, and prioritized tests to
detect severe faults first. All these approaches require in-
puts from someone who are familiar with the program un-
der test, which may be costly and not always available. To
avoid manual efforts, Zhang et al. [55] proposed a static test
prioritization approach, JUPTA, which extracts static call
graph of a given test case to estimate its coverage. Later Mei
et al. [34] extended the study and proposed more variants of
JUPTA along the same way. Recently, Jiang and Chan [18]
proposed a static test prioritization approach based on static
test input information. However, all these approaches try to
use static information to simulate code coverage, and thus
may be imprecise. In contrast, REPiR is a fully automated
(does not require user knowledge) and lightweight (does not
require coverage collection or static analysis) test prioritiza-
tion approach based on information retrieval, and has been
shown to be more precise than many existing techniques.

6. CONCLUSION
To reduce the regression testing cost, researchers have de-

veloped various techniques for prioritizing tests such that
the higher priority tests have a higher likelihood of find-
ing bugs. However, existing techniques require either dy-
namic coverage information or static program analysis, and
thus can be costly or imprecise. In this paper, we intro-
duced a new approach, REPiR, to address the problem of
regression test prioritization by reducing it to a standard
IR problem. REPiR does not require any dynamic pro-
filing or static program analysis. We rigorously evaluated
REPiR using a dataset consisting of 20 version-pairs from
seven projects with real regression faults, and compared it
with 10 RTP strategies. The results show that REPiR is
more efficient and performs significantly better than all total
(dynamic or static) strategies while matching the accuracy
of all additional strategies. We also show that REPiR can
be made completely oblivious of the underlying program-
ming language for test-class prioritization, almost without
loosing any accuracy. We believe that this new approach
to RTP represents a promising and largely unexplored new
territory for investigation, providing an opportunity to gain
new traction on this old and entrenched problem of RTP.
Moreover, further gains might be achieved by investigating
such IR techniques in conjunction with traditional static and
dynamic program analysis, integrating the two disparate ap-
proaches, each exploiting complementary and independent
forms of evidence regarding RTP.
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